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Professor Revaz Bantsuri — 80

This year is marked by the 80-th birthday anniversary of Professor Revaz Bantsuri,
a prominent Georgian mathematician, Corresponding Member of the Georgian National
Academy of Sciences, Doctor of physical and mathematical sciences.

He was born on June 10, 1936 in the village of Bantsurtkari (Dusheti region). Upon
graduation from I. Javakhishvili Thbilisi State University, since 1960 up to the end of his life
he has been working at A. Razmadze Mathematical Institute holding different positions.
In 1966 he defended his Candidate’s thesis and in 1982 Doctoral thesis at the Institute
of Problems of Mechanics of the Russian Academy of Sciences. Since 1983 he headed the
Department of Mathematical Theory of Elasticity.

In 1997, Revaz Bantsuri was elected a Corresponding Member of the Georgian National
Academy of Sciences. He was a member of Russian National Committee in Theoretical
and Applied Mechanics.

Revaz Bantsuri was Niko Muskhelishvili’s pupil and worthy successor of his scientific
ideas.

He devoted all his works to: boundary and contact problems of the plane theory of
elasticity, mixed boundary value problems of the theory of analytic functions, problems
of elasticity for domains with partially unknown boundaries, systems of convolution type
integral equations and infinite algebraic equations. He essentially developed the well-
known Muskhelishvili research area, having considerably enriched with new trends a range
of application of methods of the theory of analytic functions.
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Using integral transformations, R. Bantsuri reduced contact problems of certain classes
to boundary value problems of the theory of analytic functions of new type and called
them the Carleman type problems for a strip. He elaborated a new type method of
factorization and solved the Carleman type problem in a rather general case. Applying
this method, he solved very important contact problems of various types for isotropic and
anisotropic bodies.

This method, besides the theory of elasticity, can be used in the theory of integral
equations of convolution type and in the theory of systems of infinite algebraic equations
of the same type, in problems of heat distribution with third kind boundary conditions, in
problems of electromagnetic wave diffraction, etc. The method for the above-mentioned
problems is of the same importance as that developed by Muskhelishvili in the 40ies of
the past century for investigation of classical contact problems. The method is known as
R. Bantsuri’s method of canonical solutions, and presently is a unique general method
successfully used for effective solution of the above-mentioned contact problems.

The problems for domains with partially unknown boundaries deal with optimal dis-
tribution of stresses in a body. They belong to mathematically complicated and very
important problems of optimal projecting. In a general case, these problems are reduced
to nonlinear problems.

Revaz Bantsuri formulated the problems of the plane theory of elasticity and plate
bending for some classes of problems with partially unknown boundaries and reduced
them first to linear problems and then to the problems of the theory of analytic functions
with shifts and called them the Carleman type problems for a circular ring. He elaborated
the second method of factorization whose application allowed us to get a completed theory
of solvability for that class of problems.

Applying the methods of Muskhelishvili and Wiener-Hopf, R. Bantsuri reduced static
problems of cracks, when the crack comes to the boundary or to the interface of a piecewise
homogeneous medium, to the problem of linear conjugation with a Wiener class coefficient.
He constructed effective solutions and studied the question on the stress concentration
at the crack ends. Thus he has obtained significant results in fracture mechanics. The
above-mentioned result of R. Bantsuri is recognized by specialists as one of the best
results.

The problems of crack distribution in a body with constant or varying velocity belong
to such a class of mixed problems when the points of change of boundary conditions
displace in time. R. Bantsuri considered the problems when semi-infinite cracks in a plane
spread linearly with constant or varying velocity. The problems of crack distribution with
constant velocity were reduced by means of variable transformations to the problem of
classical dynamics, while in the problem of crack distribution with varying velocity by
means of Fourier-Laplace transformation we get the generalized Wiener-Hopf problem.
An effective solution of that problem is obtained. The above method is used in contact
problems when a semi-infinite rigid punch moves with varying velocity at the boundary
of a half-plane or a strip. Very interesting and significant results were obtained in this
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group of problems, as well.

The apparatus of the Cauchy type integral turned out to be insufficient for solving the
Carleman type problems for a strip and a circular ring, hence Revaz Bantsuri constructed
new integral representations which in this case have played the same role as the Cauchy
type integrals in problems of linear conjugation. Using the obtained results, R. Bantsuri
constructed for a circular ring a solution for the Riemann-Hilbert problem and for the
mixed problem of the theory of analytic functions, he obtained effective solutions of a
system of infinite convolution type algebraic equations.

R. Bantsuri together with G. Janashiya proved the invariance of algebra of Wiener
functions on the axis with respect to Hilbert transformations.

This allowed him to reduce a solution of convolution type integral equations on the
semi-axis for a summable kernel to the problem of linear conjugation in a class of Wiener
functions.

Relying on the above-said, we can conclude that Revaz Bantsuri has made an in-
ternationally recognized contribution to the development of the theory of elasticity. He
improved N. Muskhelishvili’s method and largely extended an area of application of meth-
ods of the theory of analytic functions in the plane theory of elasticity.

A special mention should be made of Revaz Bantsuri’s contribution to the cause of
education of the young generation. For many years he worked at the Chair of Theoretical
Mechanics of Thilisi State University, delivered lectures in the theory of elasticity and
brought up many candidates and doctors of sciences. Revaz Bantsuri, a great researcher,
remarkable citizen, excellent family man, modest and full of responsibility, passed away
in 2014. He made a major contribution to the science.

Nugzar Shavlakadze
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Professor Merab Mikeladze — 90

'4/;/‘

Honored Worker of Sciences, Doctor of Engineering, Corresponding Member of Geor-
gian Academy of Sciences, Professor Merab Mikeladze was born in 1926 in the family of
outstanding Georgian mathematician Shalva Mikeladze.

In 1948 after the graduation from the Construction Faculty of Georgian Polytechnic
Institute he continued study in Moscow at the Institute of Mechanics Postgraduate School
of the Academy of Sciences of the former Soviet Union. There he defended both candidate
and doctor’s theses. The last one was defended in 10 years after graduation from the
Georgian Polytechnic Institute.

Since June of 1952 till September of 1953 he was working at the Institute of Mechanics
of the Academy of Sciences of the Soviet Union. Since September of 1953 he was a senior
research associate at the Mathematical Institute of Georgian Academy of Sciences. At the
same time (1953-56) he delivered lectures at the Thilisi State University at Mechanico-
Mathematical faculty.

In 1958 he was invited as the head of the Department of Theoretical Mechanics at
Thilisi Institute of Transport Engineers. After merge to Polytechnic Institute he headed
Department of Structural Mechanics (1960-1982).

He devoted nearly 4 decades to studying researches of thin plates and shells of non-
classical problems of Structural Mechanics. Researches in this area of nonlinear behavior
of shells, and first of all at the expense of studying of anisotropic shells, considerably
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extended. The choice of scientific subject was prompted by the fact that in the early
forties huge significance was given to anisotropic materials and the constructions made of
them. In this regard it should be noted that M. Mikeladze was a pioneer of this sphere
by publishing the article in the magazine "*JIAH CCCP", 1954 “On the carrying capacity
initially anisotropic shells”. This work was important also for the reason that instead of
using the theory of Nadai-Henki-Ilushin of small elasto-plastic deformations (which was
used by almost all Soviet scientists during fifties), he used Levi-Mizes theory of a flow
(referred to the version of Mises-Hill for orthotropic bodies). So, the known hypotheses
of Kirhgoff-Liav, - the main relations of the theory of a plastic flow of Mises and model of
a plastic and rigid body, were the basis of the theory offered by M. Mikeladze. Accord-
ingly homogeneous shells of different thickness and also composite layered constructions,
including ideal two-layer models were considered. “Finite relations between stresses and
the bending moments were established in case of a symmetric flow to the middle of a
surface in particular, the known formulas of Ilushin for isotropic shells were followed.
Besides, the Mikeladze’s way of research gave the chance to reveal additional relations
between internal forces thanks to what widening of a class of statically determined prob-
lems became possible.It was possible,in the form of an example,to provide semi-moment
theory of anisotropic cylindrical shells whose thickness for this system of external forces
were defined in each point of the middle of a shell, proceeding from a fluidity condition.
Further M. Mikeladze developed the similar theory for the rotating prefabricated shells
which were made along parallels and meridians jointed by hinges.He considered several ax-
ially symmetric problems about definition of the carrying capacity and one elasto-plastic
problem, in which case explicit solution was enabled. The desire to expand the class of
the studied problems and to resolve burning engineering issues inspired M. Mikeladze to
use a new version of plasto-rigid calculation scheme, according to which not only elastic
but also plastic parts of a shell were considered rigid. As a result of such approach in
six-dimensional space of forces and moments the limited hyper surface of fluidity would
be transformed to a hyper ellipsoid which, together with the corresponding law of the
flow, gave the chance to formulate theorems of limit equilibrium for anisotropic shells as
well. By means of these theorems it became possible to determine carrying capacity of the
shallow rotating shells, the stretched bending circular plates and other structures. Con-
sequently, the calculation models of the anisotropic shells were extended to such shells,
material of which differently interfered with compression and stretching. The main rela-
tions received by M. Mikeladze gave the chance to formulate a general problem about the
law by means of which the optimal thickness of a shell, at which this loading instantly
transferred the entire structure to a fluidity condition, was determined. Such approach
provided the uniform strength and the minimum weight (volume) of a construction. In
works of M. Mikeladze specific problems, which in case of isotropic material were reduced
to results of V. Prager, V. Friberger, B. Tekinalpi and other scientists, were considered.
The scientist using similar approach researched problems regarding shaping of optimal
middle surface of a metal shell and by means of radioactive radiation of a middle surface
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of a shell. These researches of M. Mikeladze were partially reflected in his monographs
(“Statics of anisotropic plastic operations”, 1963; “Introduction to the technical theory
of ideally plastic shells”, 1969) and in many articles which were published abroad. These
results were widely covered in survey works of the Soviet and foreign authors (see, for
example, article of D. Drakker “Plasticity” in English, published in the collection “Con-
struction Mechanics”, New York, 1960; V. Olshak, Z. Mruzis and Pezhina, translation
from English “A Current State of the Theory of Plasticity”, publishing house “Mup”,
1964; article of I. R. Lepik in “The Engineering Magazine” (v. 1V, issue 3, 1964); “Bal-
ance of Elastoplastic and Plastic-Rigid Plates and Shells“; V. Olshak’s translation from
English “Inelastic Behavior of Shells”, publishing house “Mup”, 1969, etc).

In 1965 at the initiative of M. Mikeladze and under his supervision at the Mathematical
Institute of Academy of Sciences of the USSR the Department of Applied Mechanics which
was completed with young scientists — graduates of GPI was created, the main directions
of scientific subject of the Department — research of elastic and elasto-plastic equilibrium
of thin plates taking into account piece-wise defined behavior of their separate physical,
geometrical and kinematic parameters were planned.

The important place in activity of M. Mikeladze was taken by the Department of
Structural Mechanics of the Georgian Polytechnic Institute which was created by his
initiative in 1960 and which was directed by him till 1982.

The reasonable organization of the Department and intelligent use of scientific poten-
tial of staff gave to the scientist the chance to create single strong research team.

In order to reflect the success of M. Mikeladze and his disciples it could be named
several of them: 1. Bending and optimal planning of thin plates, when their thickness be-
haves as a piece-wise defined function; 2. Calculation of elastic and non-elastic structures
consisting of jointed by hinges elements; 3. Planning of structures of equilibrium strength
by radiation exposure; 4. Calculation of elastic and plastic cylindrical shells of noncir-
cular shape; 5. Research of carrying capacity; 6. Optimal planning taking into account
conditions of rigidity and strength; 7. Calculation of continuous structure; 8. Elasto-
plastic bending of the plates and cylindrical shells having discontinuous characteristics
taking into account material hardening. It is worth mentioning the questions, studied by
M. Mikeladze, which concerned continuous casting of steel on radial and oval equipments.
The assumption, accepted by him that in a crystallizer and in a zone of secondary cooling
to consider a crust of a body as a rigid and plastic shell, which fluidity limit at compres-
sion many times over surpasses a fluidity limit at stretching, became a starting point of
these researches. These problems together with the scientist were considered also by his
disciples.

It should be noted separately works in Structural Mechanics of Machines. They were
executed in the early fifties. Generally they concerned to calculations of quickly rotating
disks, cylinders and cores within and out of elasticity. Further these researches were
continued by his disciples.

Researches of M. Mikeladze are partially reflected in Structural Mechanics of Machines
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in his monograph “Elasticity and Plasticity of Elements of Structures and Machines”,
1976.

Besides, M. Mikeladze is the author of five original textbooks in the field of Modern
Structural Mechanics: Bases of the theory of shells, 1974; Theory of plates bending, 1976;
Short course of Structural Mechanics, 1977; Bases of calculations of thin-walled spatial
systems, 1980; Statics of ideally elasto-plastic and plastic and rigid systems, 1980.

At the end of the short characteristic of scientific activity of M. Mikeladze we will
note that he in his scientific area is one of the famous experts both in our country, and
beyond its bounds. Neither one, nor two works were published by him on pages of the
famous foreign scientific magazines, took part in work of several international forums. His
scientific works were characterized by novelty of thought and practical commitment. It
testifies to wide erudition and talent of the author creatively to use modern mathematical
apparatus in the course of studying of complex engineering challenges.

Taking into account that contribution which M. Mikeladze brought in development
of elasto-plastic systems of Structural Mechanics and in preparation of national scientific
staff, the scientist adequately carried a rank of the Honored Worker of Science and the
Corresponding Member of Academy of Sciences of the Georgian SSR.

He perfectly felt that great significance which was attached to pilot studies in the field
of Applied Mechanics. When on his initiative at Mathematical Institute the laboratory
base was creating, in Romania a book of Balan and his disciples “Hromoplasticity” was
issued, in which visual and simple teaching methods of pilot studies of elasto-plastic sys-
tems were described. For the purpose of promoting and development of these methods
in our country M. Mikeladze considered necessary to translate this book from Romanian
and to publish it. Theoretical researches of this scientist and his disciples were always
closely connected with practice. Possibly therefore the fact that young people who under
his supervision defended dissertations in Moscow or Thilisi fruitfully worked both at sci-
entific and pedagogical fields, and in different spheres of a national economy. It should
be noted pedagogical activity of M. Mikeladze especially. Not one generation, graduated
the Georgian Polytechnic Institute, remember his smoothly running, refined in the lan-
guage plan and deeply intelligent lectures. In modernization and perfection of educational
process the significant role was played by the textbooks in the native language written
by him. Besides, within years M. Mikeladze was a member of the scientific commission
“Stregth”, existing at Presidium of Academy of Sciences of the USSR and the member of
the Scientific Methodical Commission of the Ministry of Secondary Vocational Education
of Structure Mechanics and Building Constructions.

As the chairman of society “Knowledge” M. Mikeladze one of the first in Georgia gave
a helping hand to capable youth of mountain areas and gave them the chance to study at
the Georgian Polytechnic Institute. Brought up in a traditional family of the academician
Shalva Mikeladze love for the country to him was imparted since the childhood. He was
ready always and everywhere to protect interests of Georgia. Then under trying con-
ditions of the Soviet management each patriotic step was regarded as primitive-national
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manifestation. The proof to that was noisy performance of the father and son, Shalva and
Merab Mikeladze on enlarged meeting of Academy of Sciences of GSSR in 1973 against
the book, published by Academy of Sciences of the USSR, “Questions of History of Math-
ematics” in which the role of the Georgian mathematicians was not considered. The acute
reaction and repressions of the government of that time was a followed result. Together
with all M. Mikeladze was an approximate son, the husband and the father.

The big scientist and the patriot M. Mikeladze until the end of his life worked on
questions of history of Georgia. He wrote many interesting works and letters which part
was published by the separate book “Totem and Ancient World”, Thilisi, 2001.
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Grigol (Gia) Sokhadze

We are grieved by the sudden death of the well-known
mathematician, Professor of the Iv. Javakhishvili Thilisi
State University, Head of Department of I. Vekua Insti-
tute of Applied Mathematics of TSU, Doctor of physics
and mathematics, Grigol (Gia) Sokhadze.

G. Sokhadze was born on April 29, 1953, in Kutaisi.
In 1970-1974 he was a student of physics and mathemat-
ics faculty at the Kutaisi State Pedagogical Institute.
After graduating from the Institute, G. Sokhadze, being
a young man of special talent, was invited by Profes-

| sor Gvanji Mania to work as a research worker at the

I. Vekua Institute of Applied Mathematics of TSU.

Later he started work at A. Razmadze Institute of Mathematics of the Georgian
Academy of Sciences. Since 1983 he had been Professor and Head of Chair of Higher
Mathematics at Kutaisi Akaki Tsereteli State University. Since 2009 to the end of his life
he had been working at the Faculty of Exact and Natural sciences of TSU.

In 1980 G. Sokhadze successfully defended his candidate’s thesis in Kiev, at the Insti-
tute of Mathematics of Ukraine, and in 1992 -— the doctor’s thesis at the same Institute.

G. Sokhadze had versatile scientific interests. He was a well-educated mathematician,
scientist of high level. Most of his scientific investigations are dedicated to problems of
probability theory and mathematical statistics. He was extremely productive as a re-
searcher — for the last 10 years he had been the author of over 100 scientific papers,
published in different scientific journals. His latest works reveal new and profound rela-
tions between infinite-dimensional analysis and Malliavin calculus, on the one hand, and
stochastic calculus and theory of statistical inference, on the other hand. It should also
be mentioned that for the last five years three scientific projects under his guidance have
obtained funding through grants which is one more proof of the high level of his scientific
investigations and diversity of his interests.

G. Sokhadze was also remarkable as a teacher to many young scientists, author of
many text-books, a favourite lecturer with students and often those wishing to attend his
lectures were more than it was envisaged by the educational course. Many theses were
defended under his guidance both in Kiev and Thilisi. He was guiding the work of five
doctoral students for the last years.

Besides the scientific and pedagogical activities he was also the member of the Council
of the Georgian Mathematical Society, member of the Board of the Georgian Statistical
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Society, accreditation expert of the National Center for Educational Quality Enhance-
ment, trainer at the Teachers’ Training centre, member of the Editorial Board of the
journal “TSU science”, Deputy Editor-in-Chief of the Editorial Board of the scientific-
popular journal “Mathematics”. He exerted himself to the end.

The death of G. Sokhadze, famous scientist, mathematician of international level, a
principal, distinguished person and a reliable colleague, is an irreparable loss to his family,
friends and colleagues.

Vakhtang Kvaratskhelia
Omar Purtukhia
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Holomorphic Functions on the Symmetrized
Bidisk — Realization, Interpolation and Extension
TIRTHANKAR BHATTACHARYYA
Indian Institute of Science, Bengaluru, Karnataka, India

email: tirthankar.bhattacharyya@gmail.com

This talk is about the open symmetrized bidisk G = {(21422, 2122) : |21], |22] < 1}. We
shall start with basic properties of this object and then turn to function theory. The main
aim is to relate function theory with reproducing kernel Hilbert spaces of holomorphic
functions. In particular, three new thing will be discusses.

1. The Realization Theorem: A realization formula is demonstrated for every f in the
norm unit ball of H*(G).

2. The Interpolation Theorem: Nevanlinna—Pick interpolation theorem is proved for
data from the symmetrized bidisk and a specific formula is obtained for the inter-
polating function.

3. The Extension Theorem: A characterization is obtained of those subsets V' of the
open symmetrized bidisk G that have the property that every function f holo-
morphic in a neighbourhood of V' and bounded on V has an H*-norm preserving
extension to the whole of G.

The talk is based on joint work with Dr. Haripada Sau.
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Inequalities on Rearrangements of Summands
with Applications in a.s. Convergence
of Functional Series
SERGEI CHOBANYAN

Niko Muskhelishvili Institute of Computational Mathematics of Georgian Technical
University, Thilisi, Georgia

email: chobanyan@stt.msu.edu

Theorem 1. Let xy,...x, € X be a collection of elements of a normed space X with
> ix;=0. Then

a. For any collection of signs ¥ = (04,...,9,) there is a permutation 7 : {1,...,n} —
{1,...,n} such that

> 2 max
1<k<n

max
1<k<n

+ max
1<k<n

k k k
2w D> Vi pIET
1 1 1

The mapping 9 — my can be written down explicitly .
b. (Transference Theorem) There is a permutation o : {1,...,n} — {1,...,n}

such that
k k
Z To (i) Z Vi o)
1 1

for any collection of signs ¥ = (V1,...,7,).

max
1<k<n

< max
1<k<n

Theorem 1 implies the Maurey-Pisier sign-permutation relationship, as well as Garsia-
Nikishin type theorems on rearrangement convergence almost surely of a functional series.
A particular form of Theorem 1 also was used by Konyagin and Revesz to find conditions
under which the Fourier series of a 27-periodic continuous function f converges a.s. under
some rearrangement. Theorem 1 also finds applications in scheduling theory, discrepancy
theory and machine learning.
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Kolosov-Muskhelishvili’s Method in Problems
of Fracture and Buckling of Thin Planes with Defects

YURI DAHL, NIKITA MOROZOV, BORIS SEMENOV

Saint Petersburg State University, Faculty of Mathematics and Mechanics,
Saint Petersburg, Russia

email: semenov@bs1892.spb.edu

We will develop an analysis of the impact of defects such as cuts and cracks in the loss
of the bearing capacity of thin plates under tension. The loss of bearing capacity of such
plates can be caused by its destruction or buckling. We conduct research in problems
caused by using different nanodevices with elements of nanometer thickness (MEMS,
NEMS and others).

We consider two classes of problems:

1) planes which are weakened by a lattice of parallel cracks

2) planes which are weakened by a circular cut.

The analytical study of the stress state of the plane with a lattice of parallel cuts is
still a tricky task of the theory of elasticity. Articles devoted to this problem use the
calculation of the stress intensity factors at the tips of two, three or four collinear cracks
placed one above the other. This approach seems quite natural when it comes to the
strength of massive quasi-brittle bodies with cracks that are in plane strain state. In the
case of generalized plane stress state typical for stretched thin plates the formation and
development of specific bending of plates in the vicinity of the centers of cuts usually pre-
cedes destruction. The emergence of the latter is caused by compressive stresses, localized
around the edges of the cuts. At certain level of external tensile forces these stresses cause
local buckling of plates, which considerably reduces their load-bearing capacity.

By Kolosov-Muskhelishvili’s method [1] an exact analytical solution to the system of
collinear cracks is built.

The dependence of the failure load and the critical load of the buckling on the ratio
of crack length to the distance between them is analyzed. The dependence of the critical
load on the number of cracks is also studied.

Considering the plates of nanoscale thickness it is shown that the bending stiffness is
significantly affected by the surface stresses. For plate of the nanoscale thickness with
a circular cut the effect of surface stresses on the buckling under uniaxial tension is
evaluated [2].

The considered problems were also solved by the method of finite elements. A good
coincidence of the first critical loads constructed by the method of finite elements and by
the above method is obtained.
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The Mass Gap and Hagedorn Density of States
in QCD at Finite Temperature
V. GOGOKHIA, A. SHURGAIA, M. VASUTH

Deprt. Theor. Phys., WIGNER RCP RMI, Budapest, Hungary;
Deprt. Theor. Phys., A. Razmadze Math. Inst., TSU, Thilisi, Georgia

email: gogohia.vahtang@wigner.mta.hu, gogokhia@rmi.ge

The effective potential approach for composite operators turned out to be a very
useful analytical and perspective dynamical tool for the generalization of QCD to non-
zero temperature and density. In the absence of external sources it is nothing but the
vacuum energy density (VED), i.e., the pressure apart from the sign. This approach is
non-perturbative (NP) from the very beginning, since it deals with the expansion of the
corresponding skeleton vacuum loop diagrams in powers of the Planck constant, and thus
allows one to calculate the VED from first principles. Using this general approach, we
have shown in detail that the low-temperature expansion for the non-perturbative gluon
pressure has the Hagedorn-type structure. Its exponential spectrum of all the effective
gluonic excitations are expressed in terms of the mass gap. It is this which is responsible
for the large-scale dynamical structure of the QCD ground state. The gluon pressure
properly scaled has a maximum at some characteristic temperature 7' =T, = 266.5 MeV,
separating the low- and high temperature regions. It is exponentially suppressed in the
T — 0 limit. In the T" — T, limit it demonstrates an exponential rise in the number of
dynamical degrees of freedom. This makes it possible to identify 7, with the Hagedorn
transition temperature T}, i.e., to put 1, = T.. The gluon pressure has a complicated
dependence on the mass gap and temperature near 7, and up to approximately (4 — 5)T..
In the limit of very high temperatures 7" — oo its polynomial character is confirmed,
containing the terms proportional to 72 and 7. All this will make it possible to transform
such obtained gluon pressure into the full gluon pressure by adding the so-called Stefan-
Boltzmann (SB) term in a self-consistent way. In its turn, this will allow one to analytically
describe SU(3) lattice thermodynamics in the whole temperature range from zero to
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infinity, and thus to understand what is the physics behind its numbers and curves.
Especially this is important for low-temperature region, where all lattice results suffer
from big uncertainties.

Composition Operators for
Sobolev Spaces and their Applications
VLADIMIR GOL’DSHTEIN
Ben-Gurion University, Israel

email: vladimir@bgu.ac.il

The talk is devoted to bounded composition operators ¢* : L'P(Q) — L'(Q) of
uniform Sobolev spaces L'? defined in space domains , Q" C R™ under an additional
assumption that ¢ : Q@ — Q'$ are homeomorphisms. In the case p = n the composi-
tion operators can be induced by quasiconformal homeomorphisms. In the case p # n
the composition operators can be induced by comparatively new class of so-called p-
quasiconformal homeomorphisms. The class of p-quasiconformal homeomorphisms coin-
cide with the class of quasiconformal homeomorphisms for p = n. In this case p = n
composition operators ¢* are invertable. For applications more useful to use composition
operators ¢* : L' (Q') — L"9(Q), ¢ < p that induced by so-called (p, q)-quasiconformal
homeomorphism. In all these cases descriptions of composition operators are exact (nec-
essary and sufficient conditions).

Following applications will be discussed: Embedding theorems for rough domains;
Brennan’s conjecture for composition operators; spectral stability of Laplace—Dirichlet
and Laplace-Neumann operators in plane domains and hyperbolic geometry; lower esti-
mates of the first non-trivial eigenvalue of the spectral Neumann problem for the Laplace
operator and the p-Laplace operator in plane and space domains (the free membrane
problem).

The work is done jointly with Alexander Ukhlov.

References
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embedding theorems. Integral Equations Operator Theory 19 (1994), no. 1, 1-24.
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[3] V. Gol’dshtein and A. Ukhlov, Weighted Sobolev spaces and embedding theorems.
Trans. Amer. Math. Soc. 361 (2009), no. 7, 3829-3850.
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Multiplicative Fourier Transforms and Convolutions

Boris I. GOLUBOV, SERGEY S. VOLOSIVETS

Dept. of Mathematics, Moscow Institute of Physics and Technology (State University),
Moscow, Russia

email: golubov@mail.mipt.ru

Multiplicative Fourier transform (MFT) was introduced by N.Ya. Vilenkin (see [1],
p. 135). MFT Fp(f)(z), z € R, = [0,00), of a function f € L'(R,) depends on the
sequence P = {p;}>2, of natural numbers p; > 2. For any function f € L*(R,) the
analog of Plansherel equality ||Fp(f)||2 = || f]|2 is valid (see [2], p. 83). For each function
f e LP(R;), 1 <p <2 an analog of the Hausdorf-Young inequality ||Fp(f)|l, < || fll,
holds, where 1/p+ 1/p’ = 1 (see [1], p.149). The integrability and uniform convergence
of multiplicative Fourier transforms was studied by us in the paper [3].

In this presentation we assume that the sequence P is bounded.

Theorem 1. Let the function g be non increasing on (0,+00), g € L'0,1) and
lim g(z) =0, 1 < p < 2. Then for existence of a function f € LP(Ry) such that

T—+00
Fp(f)(z) = g(x) almost everywhere on Ry the condition g(x)x'~%/? € LP(R.) is neces-
sary and sufficient. If this condition is valid then the inequality ||f|, < C|lg(z)x*=2/7||,
holds.

This result can be considered as an analog of the Hardy-Littlewood theorem on
trigonometric cosine- and sine-series with monotone coefficients (see [4], Ch. X, p. 657).
There are similar results for the Fourier cosine-transform (see [5], Ch. 4, Theorems 79,
80 and 82).

It is known the notion of P-convolution (f * ¢g)p(z) of two functions (see [2], p. 44).

Theorem 2. Let 1 <p,q<2,3/2<1/p+1/qg<2,1/r=1/p+1/q—1,1/r+1/r" =1.
D Iff e LP(Ry), g€ LURy), then h = (f * g)p € L"(Ry) and [|[Fp(h)[l» < [[fllpllglls-
2) If 0 € (r,2], v € (0,7), then there exist functions fo € LP(R), go € LY(R,) such that
ho = (fo* go)p ¢ L°(Ry) and Fp(ho) ¢ L(R+).
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On Elastic Multi-Layered Prismatic Structures
GEORGE JAIANI

I. Vekua Institute of Applied Mathematics & Faculty of Exact and natural Sciences,
I. Javakhishvili Thilisi State University, Thilisi, Georgia

email: george.jaianiQgmail.com

The present talk is a survey devoted to mathematical and engineering models of elastic
multi-layered prismatic shell-like structures. In particular, it presents a model constructed
by the speaker, based on modifications and a combination of the engineering method of
equivalent single-layered model (see, e.g., [1]) and I. Vekua dimension reduction method
[2] of constructing hierarchical models. The layers may be cusped prismatic shells as well.
In the case of cusps peculiarities of setting boundary conditions (for such peculiarities see
[3]) do not arise if the thickness of the structure does not vanish at the lateral boundary
in spite of the fact that the structures may consist of cusped layers.
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Surface and Edge waves of (General time-Dependence

Jurius KAPLUNOV, DANILA PRIKAZCHIKOV

School of Computing and Mathematics, Keele University, Keele, Staffordshire, UK

j.kaplunov@keele.ac.uk, d.prikazchikov@keele.ac.uk

Well-known surface waves of arbitrary profile [1, 2] are considered together with less
known bending edge waves of general time dependence [3] within a uniform framework,
relying on an implicit travelling wave ansatz arising from the dispersion relations. The
examples include classical Rayleigh wave on elastic half-space, bending edge wave on a
Kirchhoff plate, with extension to edge waves on plates supported by elastic foundations.

A straightforward approach to subsonic regimes of steady-state moving load problems
relying on the eigensolution for surface wave is demonstrated. Finally, slow-time pertur-
bations of surface and bending edge waves of general time-dependence leading to explicit
formulations [4] are discussed.
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Boundary Value Problems for Analytic and
Generalized Analytic Functions within
the Framework of New Function Spaces

VAKHTANG KOKILASHVILI'!, VAKHTANG PAATASHVILI'Z,

'A. Razmadze Mathematical Institute, Thilisi, Georgia
2Georgian Technical University, Thilisi, Georgia

email: kokil@rmi.ge

Our talk deals with the following topics:

Mapping properties of Cauchy singular (generalized Cauchy singular integrals) op-
erators in variable exponent and variable exponent grand Lebesgue spaces;

Variable exponent Hardy classes and Dirichlet problem;

The Riemann and Riemann-Hilbert BVPs for generalized analytic functions with
the coefficients more general than Simonenko’s ones;

The Riemann-Hilbert problem in the class of Cauchy type integrals with densities
of grand Lebesgue spaces;

The Riemann and Riemann-Hilbert BVPs with piecewise continuous coefficients
within the framework of variable grand Lebesgue spaces.

Tools of the Nuclear Effective Field Theory

ALEXANDER KVINIKHIDZE

Department of Theoretical Physics, A. Razmadze Mathematical Institute,
Thilisi State University, Thilisi, Georgia

email: sasha kvinikhidze@hotmail.com

The ultimate theory of strong interaction, Quantum Chromodynamics (QCD), is not
applicable directly to problems of low energy nuclear physics due to large value of coupling
constant making perturbative methods useless. In this range of energies one resorts to
the so called nuclear effective field theory (EFT) where a perturbation theory can be
formulated based on the expansion in powers of low energy. EFT involves many free
parameters which need to be ordered in a systematic way the theory to have predictive
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power. There are methods used in EFT this and other jobs to be done some of which are
discussed in this talk.

Namely we derive so called Renormalization group equations for interaction potential
and currents by demanding that physical observables do not depend of a cutoff parameter.
Note that the cutoff is needed to keep energy low in the intermediate states as well. We also
discuss constrains imposed by invariance with respect to the local transformations (gauge
invariance) and current conservation. The equations also are discussed that describe
exotic systems, e.g. tetraquarks which are the particles composed of three quarks and one
antiquark.

Reality Viewed through the Eyes of
Continuum Mechanics
W. H. MULLER!, W. WEISs!, E. N. VILCHEVSKAYA??3

nstitute of Mechanics, Chair of Continuum Mechanics and Materials Theory, Technical
University of Berlin, Berlin, Germany

2Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences,
St. Petersburg, Russia

3Peter the Great Saint-Petersburg Polytechnic University (POLYTEC),
St.-Petersburg, Russia

email: whmmechanik@yahoo.de

The purpose of this paper is a fundamental one: We wish to draw attention to the fact
that modeling nature by using continuum theory can become quite treacherous. Whilst
we may have some confidence in the applicability of the fundamental laws of classical
physics, such as the conservation of mass, linear and angular momentum, or energy, the
use of constitutive relations requires special care and sound scepticism, even if they follow
from principles of rational thermodynamics. As a matter of fact, many engineers of daily
practice are not even aware of the fundamental difference between conservation laws and
material equations” as the latter are sometimes innocently called. They believe that they
are “true laws of nature”. Surely, there might be limits to their applicability, if strains
become too high or temperatures are too low (say), but very often this is attributed to
numerical inaccuracy rather than a principal internal deficiency. This dilemma is nicely
depicted in a recent textbook [1] and we will illustrate it here for the case of selfgravitating
terrestrial planets.

We start our discussion with a model based on Hookean elasticity formulated in terms
of linear strain measures. In this case the solutions for the stresses, the strains, and the
displacements in a selfgravitating object can be presented in closed form, as was first
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shown by the great (linear) elastician A.E.H. Love around the beginning of last century
[2]. We will, first, present the underlying theory in modern form. Second, solutions
to the resulting equations will be obtained. Third, the equations will be evaluated by
using physical data of various objects, such as terrestrial planets, moons, and asteroids.
This will show that under certain circumstances the displacements may be enormous.
Consequently, the limits of linear strain theory will become evident.

As a special feature we will then leave the canonical pathway of linear elasticity,
where it is conventionally assumed that the body forces are applied to the undeformed
configuration [3]. In contrast to conventional (engineering) literature, we will present an
“extended model” and study the influence of linear terms of displacement gradients in the
body force density. In fact, this approach may serve as a bridge between linear elasticity
at small strains and elasticity at large deformations. Moreover, it has the advantage of
still leading to closed-form solutions.

In an attempt to remedy the problem of large deformations once and for all we will then
choose a nonlinear version of Hooke’s law in the current configuration. More precisely,
the Cauchy stress will be related to the nonlinear deformation measure of the current
configuration, the Euler—Almansi finite strain, which replaces the linear strain tensor of
the ordinary Hooke’s law [4]. However, even this approach has drawbacks: As we shall see,
we will run into modeling and numerical problems again, if the mass of the self-gravitating
object becomes too large. There will even be a limit mass beyond which stresses will go to
infinity, similarly to the case of the Chandrasekhar limit for the mass of white dwarf stars.
However, this phenomenon is an artifact of the constitutive law we chose for the stress-
strain relation [5]: It can lead to a unique, two, three, or no solutions for the problem.
This is a well-known problem of strain energy density functions that are not poly-convex
and we will address this issue.

Finally we will turn to time-dependent modeling of deformation in terms of a defor-
mation-wise linear viscoelastic model of the Kelvin—Voigt type [6]. Surprisingly it allows
for a closed-form solution for a solid as well as for a hollow sphere. As a new result it will
turn out that in the early days of planet formation the so-called Love radius, which is the
demarcation line between the completely compressive interior of a planet from a radially
strain-wise tensile exterior, does not exist initially and requires time for its development.
Interestingly the solution for the solid sphere will not lead to zero deformation in the limit
of initial time. Rather it jumps abruptly to finite values varying linearly throughout the
sphere. If the same limit is considered in the solution for the hollow sphere with a very
small hole at the center one can see the reason for this behavior: The transition from
zero to finite deformation is extremely fast. In other words: If gravitation is “switched
on”, large amounts of mass will start moving and it is inapt to use the static form of the
balance of momentum. Inertial forces should be taken into account. Hence, this time
it is not a fault of the constitutive equation but an inappropriate simplification of the
equations of motion, which creates a problem.



66 Abstracts of Plenary and Invited Speakers Batumi, September 5-9, 2016

References

[1] F. M. Capaldi, Continuum mechanics. Constitutive modeling of structural and
biological materials. Cambridge University Press, Cambridge, 2012.

2] A. E. Love, A treatise on the mathematical theory of elasticity. Vol. 1. University
Press, Cambridge, 1892.

[3] R. Kienzler and R. Schroder, Einfihrung in die Hohere Festigkeitslehre. Springer,
Dordrecht, Heidelberg, London, New York, 2009.

[4] S. C. Bose and P. P. Chattarji, A note on the finite deformation in the interior of
the Earth. Bull. Calcutta Math. Soc. 55 (1963), no. 1, 11-18.

[5] A. Bertram, T. Béhlke, and M. Silhavy, On the rank 1 convexity of stored energy

functions of physically linear stress-strain relations. J. Elasticity 86 (2007), no. 3,
235-243.

[6] P. Haupt, Continuum mechanics and theory of materials. Springer-Verlag, Berlin,
2002.

Recent Developments of Griiss Type Inequalities for
Positive Linear Maps
MOHAMMAD SAL MOSLEHIAN
Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

email: moslehian@um.ac.ir

Griiss showed that if f and g are integrable real functions on [a, b] and there exist real
constants a, (3, v, I' such that o < f(z) < g and v < g(x) <T for all x € [a, ], then

'b_a/f dx——/f o s /()dm

This inequality was studied and extended by a number of mathematicians for different
contents such as inner product spaces, quadrature formulae, finite Fourier transforms and
linear functionals.

For unital n-positive linear maps ® (n > 3), the authors of [3] proved that

1
118 —allr =1,
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for all operators A, B in a C*-algebra.

The Griiss inequality was generalized in the setting of inner product modules over H*-
algebras and C*-algebras in [1]. Several Griiss type inequalities in inner product modules
over C*-algebras are investigated in [2]. In this talk, we investigate several new Griiss
type inequalities for positive linear maps.
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Boundary Element Methods with
Radial Basis Functions

SERGEJ RJASANOW
Institute for Applied Mathematics, Saarland University, Saarbriicken, Germany

email: rjasanow@num.uni-sh.de

Radial basis functions (RBF’s) have become increasingly popular for the construction
of smooth interpolant s : R® — R through a set of N scattered, pairwise distinct data
points. In the first part of the talk we introduce the RBF’s [1] and discuss their properties.

The second part of the talk is devoted to the boundary integral formulation for a mixed
boundary value problem in linear elastostatics with a conservative right hand side [2]. A
meshless interpolant for the scalar potential of the volume force density is constructed
by means of radial basis functions. An exact particular solution to the Lamé system
with the gradient of this interpolant as the right hand side is found. Thus, the need
of approximating the Newton potential is eliminated. The procedure is illustrated on
numerical examples.

In the third part of the talk, an iterative procedure for the numerical solution of
the diffusion equation with variable diffusion coefficient is formulated. For the iterative
solution, we suggest a combination of the fast Boundary Element Method [3] and RBF’s.
We prove linear convergence with a convergence factor depending on the ratio of the
maximal and the minimal value of the diffusivity. Numerical examples illustrate the
functionality and the efficiency of the approach.
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Sobolev Space of Half-Differentiable Functions
and Quasisymmetric Homeomorphisms
ARMEN SERGEEV
Steklov Mathematical Institute, Moscow, Russia

email: sergeev@mi.ras.ru

One of the main goals of the noncommutative geometry is the translation of basic
notions of analysis, geometry and topology into the language of Banach algebras. In our
talk we demonstrate how it is done in the case of quasisymmetric homeomorphisms of
the circle. They are boundary values of quasiconformal homeomorphisms of the disk and
form a group QS(S?) with respect to composition. This group acts on the Sobolev space
HS/ 2(S 1. R) of half-differentiable functions on the circle by reparameterization. We give
interpretations of the group QS(S') and the space HS/ *(S1,R) in terms of the noncom-
mutative geometry.
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On the Formation of Freak Waves
WOJCIECH SULISZ

Polish Academy of Sciences, Institute of Hydroengineering,
80328 Gdansk, Poland

email: suliszQibwpan.gda.pl

Freak waves are unique phenomena that appear unexpectedly on the ocean surface and
are the most dangerous type of extreme waves. Eye witnesses, reporting on individual
extreme waves in coastal or deep water, mention either single very high waves or several
successive extreme waves. These waves are not only a danger to fishermen or yachtsmen,
but are also capable of damaging large vessels and maritime structures. Within the
past 20 years at least 200 supercarriers have been lost, each more than 200 meters long.
In majority of these cases the cause of the accident is believed to be freak waves The
consequences of the attack of freak waves are usually very tragic. Many accidents occurred
in the Black Sea.

The mechanism of the formation of freak waves is still unknown. Neither the occur-
rence of these waves nor their physical structure is well understood by conventional wave
science. A theoretical approach is applied to predict the propagation and transformation
of nonlinear water waves in a wave train. The studies show that the evolution of unstable
waves may lead to the formation of freak waves. The analysis shows that these phenomena
cannot be described properly by the nonlinear Schrédinger equation or its modifications.
Conducted investigations comprise cases characteristic for the Black Sea [1, 2].

Theoretical results are in a fairly good agreement with experimental data. A reason-
able agreement between theoretical results and experimental data is observed also for the
formation and evolution of freak waves.

Keywords: wave trains, evolution of nonlinear waves, extreme waves, freak waves

Acknowledgements. Financial support for this study was provided by the National
Science Centre, Poland, and the Institute of Hydroengineering of the Polish Academy of
Sciences in Gdansk, Poland, under the contract No. UMO-2012/05/13/ST8/01833.
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A Numerical Analysis of Deformed Multilayered
Ellipsoidal Non-Linear Shells
EDISON ABRAMIDZE

N. Muskhelishvili Institute of Computational Mathematics of Georgian Technical
University, Thilisi, Georgia

E-mail: edisoni.abramidze@mail.ru

For the numerical realization of problems of deformed multilayered ellipsoidal geo-
metrically non-linear shells we give a non-linear system of differential equations, which
provides the solution of these class of problems. This system is obtained on the basis of a
version of the refined theory, which takes into account the non-homogenity of shifts along
the layers.
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Correctness of the Boundary Value Problems for
Some Classes of Two-Dimensional Elliptic Systems
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1. Vekua Institute of Applied Mathematics of 1. Javakhishvili Thilisi State University,
Thilisi, Georgia
email: giaakha@gmail.com

2Saint Andrew The First Called Georgian University of Patriarchate of Georgia,
Thilisi, Georgia
email: giorgi.makatsaria@gmail.com

31lia State University, Thilisi, Georgia
email: nino.manjavidze@iliauni.edu.ge

The structure of the solutions of sufficiently wide class of singular elliptic systems in
the neighborhood of singular point are studied. On this basis the correct boundary value
problems are posed and their complete (in some sense) analysis is given.
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On Topology of Proper Quadratic Endomorphisms
TEIMURAZ ALIASHVILI
[lia State University, Thilisi, Georgia

email: aliashvili@yahoo.com

We discuss topological properties of quadratic endomorphism of n-dimensional space.
In particular, a criterion of properness is obtained. Moreover, an explicit estimate for
the topological degree of proper quadratic endomorphism is given and the spectrum of
possible values of topological degree is completely described. In special cases where n = 2
or n = 3, more detailed results are available. In particular, for n = 2 an algebraic
criterion of properness of F' is given in terms of coefficients of components F}, F». More-
over, an algebraic formula for topological degree of map F' using the signature formula
of Khimshiashvili-Eisenbud-Levine. In addition a complete description of the possible
structure of singularity set and bifurcation diagram of F is obtained. The aforementioned
results are used to obtain the criteria of surjectivity and stability of such an endomor-
phism. In special case, when F is the gradient of homogeneous polynomial of third degree,
the structure of the local algebra at the origin is also determined. The proofs are based on
the normal forms of quadratic endomorphisms obtained in a recent paper “Classification
of critical sets and their images for quadratic maps of the plane” (arXiv:1507.02732v1
[math.DS] 9 Jul 2015) by Chia-HsingNien, Bruce B. Peckham and Richard P. McGe-
hee. For n = 3, we present an algebraic formula for the topological degree which enables
one to obtain a criterion of surjectivity.

Keywords: Quadratic maps, endomorphism, singularities, topological degree of map-
ping, surjectivity and stability.

Topological Invariants of Random Polynomials
TEIMURAZ ALIASHVILI
Ilia State University, Thbilisi, Georgia

email: aliashvili@yahoo.com

Random polynomials with independent identically distributed Gaussian coefficients
are considered. In the case of random gradient endomorphism F = (f, g) : R? — R? the
expected value of topological degree is computed and the expected number of complex
points is estimated. In particular, the asymptotics of these invariants are determined as
the algebraic degree of F' tends to infinity.
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We also give the asymptotic of the mean writhe number of a standard equilateral
random polygon with big number of sides and obtain a lower estimate for the mean
Coulomb energy of a standard equilateral random polygon.

Keywords: random polynomial endomorphism, Gaussian distribution, topological
degree, equilateral random polygon, writhe number, Coulomb energy, self-linking number.

Existence and Nonexistence of Global Solutions
for a Class Nonlinear Pseudo-Hyperbolic Equations
with Damping and Source Terms

AKBAR B. ALIEV!?, GUNAY I. YUSIFOVA®

' Azerbaijan Technical University, Baku, Azerbaijan

Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan,
Baku, Azerbaijan

email: alievakbar@gmail.com

3Ganja State University, Ganja, Azerbaijan

Consider the initial-boundary value problem for the nonlinear pseudo-hyperbolic equa-
tion:

U — Ay + A%+ ||y = [uff T u, 60, xeQ, (1)
u(0,2) =@ (x), w(0z)=v(), zei (2)
u(t,z) =Au(t,z) =0, tel0,00), z€l, (3)

where 2 C R" is bounded domain with boundary I'.

We determine suitable relation between m and p, for which there is global existence or
alternatively finite - time blow up. In other words we showed that if p < m the solutions
of problem (1)—(3) exist globally in time and blow up in finite time if p > m and the
initial energy is sufficiently negative.
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Solvability of a Boundary Value Problem
for Second Order Elliptic Differential-Operator
Equations with Quadratic Spectral Parameter

BAKHRAM A. ALIEV

Institute of Mathematics and Mechanics of NAS of Azerbaijan;
Azerbaijan State Pedagogical University, Baku, Azerbaijan

email: aliyevbakhram@yandex.ru

In the notice in the separable Hilbert space H we study the solvability of the following
boundedly value problem for second order elliptic differential equation with a quadratic
spectral parameter

L\, D)u = Nu(x) —u"(z) + Au(z) = f(x), = € (0,1), (1)

Li(Nu = au'(1) + ABu(0) = f1, (2)

Lou :=4/'(0) = fo.
Theorem. Let the following conditions be fulfilled: A is a strongly positive operator in H.
The linear operator B is bounded from H into H and from H(AY?) into H(AY?).a0 # 0

s some complex number.

Then the operator L(A) : u — L(A)u := (L(\, D)u, Ly (N)u, Lou), for sufficiently rather
large |A| from the sector |arg \| < ¢ < % is an isomorphism from W72 ((0,1); H (A), H)
onto

+(H(A),H)1,

1 1
§+g»}7 §+%7P

L,((0,1); H) + (H (A), H)

and for these A, the following estimate is valid for solution of the problem (1), (2)

2
A el o,y + 10" Wy 0,050y + 1A% 1 0,1,

2 L
< O L 0,0, + Z el (ercay,m . A2 | fell
k=1

1 1
§+$,

The boundary value problem similar to boundary value problem (1), (2) was studied
in the paper [1].
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Orthogonality in Finsler C*-Modules
MARYAM AMYARI

Mashhad Branch, Islamic Azad University, Department of Mathematics,
Mashhad, Iran

email: maryam_amyari@yahoo.com

In this talk, we introduce the notion of orthogonality in the setting of Finsler C*-
modules and investigate the relation between this orthogonality and the Birkhoff-James
orthogonality. Suppose that (E, p) and (F, p') are Finsler modules over C*-algebras A and
B, respectively, and ¢ : A — B is a x-homomorphism of C*-algebras. Amap ¥ : £ — F'is
said to be a ¢p-morphism of Finsler modules if p/(¥(x)) = ¢(p(z)) and ¥(ax) = p(a)¥(x).
We show that each (- morphism of Finsler C*-modules preserves the Birkhoff-James
orthogonality and conversely, each surjective linear map between Finsler C*-modules that
preserves the Birkhoff-James orthogonality is a - morphism under certain conditions. In
fact, we state a version of Wigner’s theorem in the framework of Finsler C*-modules.

The talk is based on joint work with co-author (Reyhaneh Hassanniah).
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About Solution of Generalized Problems
of Minimal Set Covering
NATELA ANANIASHVILI

Faculty of Exact and Natural Sciences, I. Javakhishvili Thilisi State University,
Thilisi Georgia

email: natela.ananiashvilil94@ens.tsu.edu.ge

The heuristic algorithm of solution of generalized problems of finding of minimal set
covering is developed. The necessity of solution of generalized problem of minimal set
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covering is revealed, when we search of multiple main centre in the graph [1]. We can
cite many practical problems of optimal location of service points for finding such centers.
The proposed algorithm has selective characteristic and uses a search tree [2]. Algorithm
realization software showed good results for test problems.
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The Algorithm of Mathematical Modeling
of Turbulent Spatial Flows

GEGI APTSIAURI

Georgian Aviation University, Thilisi, Georgia
email: gegiaptsiauri@gmail.com

Mathematical modeling of turbulent flows is one of the most important problems
of continuous body mechanics, which, despite the existence of a number of successful
models, from theoretical to numerical and experimental point of view, but it has to be
fully explored. Recently, the theoretical solution of turbulence problem achieved high
level in Georgia and opens up new opportunities to make important steps towards the
creation of mathematical models, which are based on a solid theoretical basis. At present
in Georgian aviation university are developing a new mathematical model, algorithm and
the program, of complex turbulent flows based on fundamental principles of Continuous
mechanics and tensor accounting equations. Elaborated by us model program is different
from other semi-empirical models in determination of stress tensor and turbulence kinetic
energy are used the exact theoretical solution of initial system of equations.
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Calculation of Hoses on Strength
ZURAB ARKANIA
Department of Engineering Mechanics, Akaki Tsereteli State University,
Kutaisi, Georgia

email: Zurabi.arkania@mail.ru

We have developed a method of determination of axial tensions of absolutely flexible
hung hose shapes and in the hoses. We have received an axial tensions formula in case of
consideration of internal flow of the liquid in the hose. We have developed the algorithm
of the calculation on solidity of absolutely flexible hoses when flexural rigidity, having no
significant influence on shape of hoses and axial tensions, importantly effects on tensions
in the hoses. In any cross-section of the hose the complete normal tension is presented as
a sum of two components, where the first is a normal strain caused by axial tensions and
the second is a strain caused by flexural rigidity. The results give opportunity to evaluate
solidity of the hose, to select parameters of the internal flow of the hose and liquid in it
in order to raise reliability of the hose in the process of maintenance.
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On the Solvability of the Cauchy Problem for
Linear Systems of Generalized Differential Equations
with Singularities

MALKHAZ ASHORDIA, NESTAN KEKELIA, NINO TOPURIDZE

Faculty of Mathematics and Computer Sciences, Sokhumi State University,
Thilisi, Georgia

emails: ashord@rmi.ge; nestkek@mail.ru; topurnino@yahoo.com
Let [a, b be an arbitrary (finite or infinity) subset of R. Consider the singular problem
dx(t) = dA(t) - z(t) + df (t) for t € [a,b], x(b—) =0, (1)

where A = (au)i—, : [a,b[ = R™*™ is a nondecreasing matrix-function, and f = (f)j_; is
a vector-function with bounded variations components on the every closed interval from
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la,b[. The singularity is considered in the sense that A or f maybe has non-bounded
total variation on the whole closed interval [a,b]. We assume that det([,, = d;A(t)) # 0
for t € [a,b] (j = 1,2), where [, is the identity n x n-matrix, d; A(t) = A(t) — A(t—),
doA(t) = A(t+) — A(t). A vector function x € BVj,.(|a,b]; R") is said to be a solution of

the generalized system (1) if z(t) — z(s) = ftdA(T) ~x(1)+ f(t) — f(s) fora < s <t <b,

where the integral is understand in the KuszweilfStieltjes integral sense.
If X € BVie([a,b[; R"*") and Y € BVu.([a,b]; R**™), then

AXY)) =Y () =Y(a) + Y dX ()L — i X(r) "' diY(7)

= ) X (T)(L + X (7)) Y (7).

Theorem. Let dya;(t) <1 (i=1,...,n) and there exist a nondecreasing matriz-function
(bir)ig=1 : [a, 0] — R™™, the spectral radius of which is less than 1, such that

b—

/ (b— 7)daa(r) < (ba(b—) — bis(t))

t

and
b_

[~ PV (e, £0)(7) < (buv-)  ba®)

t
fort € [b—0,b] (i # k, i,k =1,...,n), where § is some small positive number. Let,
moreover,

lim (b — )" "WVart~(A(ay, f;)) =0 (i=1,...,n).

t—b—

Then the problem (1) is uniquely solvable.

In first, analogous problem has been investigated by V. A. Chechik in the paper [1]
for ordinary differential equations. See also [2] and the references therein.
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translation in Differential Equations 32 (1996), no. 2, 173-180.
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On the Cauchy Problem for Systems of Linear
Generalized Differential Equations with Singularities
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Let [a, b[ be an arbitrary (finite or infinity) subset of R. Consider the singular problem
dx(t) = dA(t) - z(t) + df (t) for t € [a,b], z(b—)=0, (1)

where A € BV,.([a,b[; R™™) and f € BVi,.([a,b[; R™), i.e. A and f are, respectively,
matrix and vector functions with bounded variations components on the every closed
interval from [a,b[. The singularity is considered in the sense that A or f maybe has
non-bounded total variation on the whole closed interval [a,b]. We assume that det (In +
d;A(t)) # 0 for t € [a,b] (j = 1,2), where I, is the identity n x n-matrix, d;A(t) =
A(t) — A(t—), doA(t) = A(t+) — A(t). A vector function © € BVj,.(|a, b; R™) is said to be
a solution of the generalized system (1) if z(t) — x(s) = fst dA(T) - x(T) + f(t) — f(s) for
a < s <t <b, where the integral is understand in the Kurzweil-Stieltjes integral sense.

If X € BVie([a,b]; R**™) and Y € BVj,([a,b[; R*™*™), then A(X,Y)(t) = Y(t) —
Y(a) + 3 gcre X (T)(In — di X (7)Y Y (1) — Y acrer X (7)1 + do X (7)) oY (7).

Let Cy Ifo — R™™ be the Cauchy matrix of the homogeneous system dz(t) =
dAo(t) - z(t), where Ay € BVo.([a, b[; R™™).

Theorem. Let there exist the matriz-function Ay € BVj([a,b[; R™*") and constant
matrices By, B € RY™ such that det (I, £ d;Ag(t)) # 0 for t € [a,b] (j = 1,2), the
spectral radius of the matriz B is less than 1, |Co(t,7)| < By fora <t <7 <b—0, and

'/|Co(t;7')|dva7’(¢4(140714—Ao))(T) <B for te[b—46b],

where § is some small positive number. Let, moreover,

=0.

t—b—

lim H 7Co(t, 7)dA(Ao, [)(T)

Then the problem (1) is uniquely solvable.

In first, analogous problem has been investigated by V. A. Chechik in the paper
[Investigation of systems of ordinary differential equations with singularity, 7r. Mosk.
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Mat.  Obshch. 8 (1959), 155-198] for ordinary differential equations. See also [I. T.
Kiguradze, On the singular Cauchy problem for systems of linear ordinary differential
equations. (Russian) Differentsial’nye Uravneniya 32 (1996), no. 2, 215-223; English
transl.: Differ. Equations 32 (1996), no. 2, 173-180] and the references therein.

Boundary Layer Problem for the System
of First Order Ordinary Differential Equations
with General Nonlocal Boundary Conditions
SIAMAK ASHRAFI

Department of Mathematics, Islamic Azad University, Maragheh Branch,
Maragheh, Iran

email: siamak.ashrafi@yahoo.com

One of the important subjects in applied mathematics is the theory of singular per-
turbation problem. The mathematical model for this kind of problem usually is in the
form of either ordinary differential equations (O.D.E) or partial differential equations
(P.D.E) in which the highest derivative is multiplied by some powers of ¢ as a positive
small parameter [1], [2]. The purpose of the theory of singular perturbations is to solve a
differential equation with some initial or boundary conditions with small parameter €. If
the solution of the differential equation

ey + f Yy g, a) = 0

(when € is chosen to be zero) is the same solution as the limit of the solution when e — 0,
then we say our problem is free of boundary layer. In other words, the limit of the solution
i.e. lim. ,oy.(x) = yo(x) satisfies the given boundary conditions.

Otherwise we said that boundary layer exists. Naturally the case of free boundary
layer is more desirable than the other cases. On the other hand, since the structure of
approximate solutions of these problems depend on place of boundary layer, therefore
the determination of points which for them boundary layer formed will be important.
According to these facts, we decided to apply these conditions for determining boundary
layers for singular perturbation problems. In the some works of authors: M. Jahanshahi
and S. Ashrafi and N. Aliev [1], [2], wish to present sufficient conditions for some singular
perturbation problems consisting O.D.E’s which do not have boundary layers. Moreover
In this paper we consider a boundary layer problem (singular perturbation problem) which
consist of first order system of differential equations. For the given problem, we determine
if the boundary layers exist or not. Then by making use of the necessary conditions
and fundamental solution of the given system of differential equations, we obtain some
sufficient conditions such that we have no boundary layer.
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Apply of Graph Extension Function in Nature
IRAKLI AVALISHVILI

Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University,
Thilisi, Georgia

email: Irakli a@yahoo.com

Arbitrary systems, will it be biological, physical, cybernetical, chemical, etc., may
be described by a simple (possible single) mathematical function, namely by a graph
extension function, which we also call hierarchical function (and which mathematically
shows hierarchical nature of science).

This function can be also used to describe mathematical objects themselves, which in
the paper is shown on the example of the action of the graph extension function on the
set of integers. A new theory of graph extensions, similar to group extension theory, is
outlined. A theorem about the equivalence of different extension functions is proved.

There exists an isomorphism between the modified functional graph of the cell (func-
tional block-scheme) and the morphological graph of the cell (the graph expressing topo-
logical membrane intertransformations of the cell) which expresses the most essential
features of for the biology of the cell and captures one of the specific differences between
living and non-living systems.

It is shown that the construction of the graph of a complex organism from the primor-
dial graph given by Rashevsky is nothing, but an extension of the primordial graph by
the graph extension function. It is described, that there exist morphisms from biological
graphs described by various authors to our functional graph.
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On the Solution of the Eigenvalue Problem of Shear
Deformable Functionally Graded Shells

ABDULLAH AVEY!, BILENDER PASAOGLU?

Engineering Faculty, Suleyman Demirel University, Department of Civil Engineering,
Isparta, Turkey

email: abdullahavey@sdu.edu.tr

2Faculty of Arts and Sciences, Suleyman Demirel University, Department of
Mathematics, Isparta, Turkey

email: bilenderpasaoglu@sdu.edu.tr

Functionally graded materials (FGM), as special composites have been widely used in
various structures as optimal strength and stiffness, associated with their design. There-
fore, its applications have been studied and received considerable attention from the
industrial production and modern technologies. As the use of FGMs increases, the study
of FGMs are considered to be the distribution of the volume fraction of metal or ceramics
has been presented for many years [1]. A comprehensive survey of the relevant theoretical
methodologies and numerical modeling and detailed review on the stability performance
of FGM shells can be found in the study of Shen [2]. Mechanical behavior of structural
elements with FGMs gain practical value and play an important role in the analysis, some
studies have been published on the vibration and stability analyses in recent years [3, 4].

The major goal of this research was to obtain a closed form solution for free vibration
of FGM conical shells within the shear deformation theory (SDT). The basic equations of
FGM shells are derived within the SDT. By using the Galerkin method to basic equations
are obtained the expressions for the frequency parameters of FGM shells within the SDT.
In particular, similar expressions within the classical shell theory (CST) are obtained,
also. Our numerical experiments reveal that the proposed solution may offer accurate
frequency parameter for FGM shells as compared with reference solutions available in the
literature. Finally, the calculation and presentation of the effects of many parameters
included in the analysis conclude the goals to be reached in the study.
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On the Statistic of Criteria for the Testing
Hypothesis of Equality Several
Distribution Densities
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Let X® = (Xl(i), o ,X,g?), i=1,...,p, be independent samples with sizes ni, ..., n,,
from p > 2 general population with probability densities fi(z), ..., f,(z) and it is required
to test two hypothesis, based on samples X, i =1,...,p: test of homogeneity

Ho: fi(z) =+ = fp(2)
and goodness-of-fit test

Hy: fi(x) = - = fp(a) = fo(x),

where fo(x) is a fully defined density function. In case of hypothesis Hy the common
density function fy(z) is unknown.

In this abstract the criteria for testing hypothesis Hy and H{ is constructed against a
sequence of “close” alternatives ([1], [2]):

Hy: fi(x) = fo(x) + Oé(no)@z‘(i(;ol)i) + O(Q(no)’Y(no)) (Oé(no)ﬁ(no) - 0)7

/gpl(w) dr =0, ng=min(ny,...,n,) — 00.

We will consider criteria for testing hypothesis Hy and H{j based on statistics

T(ni,...,n,) = EP:N/ [ﬁ-(x) . %zp:zvjfj(x)}r(x) d,



86  Abstracts of Participants' Talks Batumi, September 5-9, 2016

where ﬁ(m) is a kernel estimator of Rosenblatt—Parzen of density f;(z):

RNIEUE . () _G
fi(x)—n—i;K(ai(x—Xj ), Ni_n—i, N=N;+---+N,.

In particular, case p = 2 the statistic T" takes the explicit form

N1 N, ~ ~

Tlnine) = - / (fi(2) = folz)) r(2) de.
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Elastic-Plastic State of Cylindrical Tube
in Elastic Medium
GURAM BAGHATURIA, MARINA LOSABERIDZE
LEPL Grigol Tsulukidze Mining Institute, Thilisi, Georgia

email: marinalosaberidze@Qrambler.ru

The elastic-plastic problem for cylindrical tube in elastic medium has been solved.
The case is considered when the constant pressure, P, acts on the tube internal wall and
on external one-elastic body. We imply that there is no displacement along the cylinder
axis. The equation was obtained which establishes the relationship between the boundary
of elastic and plastic medium and the pressure, which acts on the tube internal wall.
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The General Integrals of Quasi-Linear Equations
and Domains of Propagation of the Solutions
of Non-Linear Cauchy Problems
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"Muskhelishvili Institute of Computational Mathematics of the Georgian Technical
University, Thilisi, Georgia
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Some specific quasi-linear second order equations are considered. These equations are
of hyperbolic type but they also admit a parabolic degeneration. After constructing of first
integrals it become possible to obtain the general solution for each of the given equations.
Using these general solutions The non-linear Cauchy problems with open support of data
are solved. In each case, the solving process of the non-linear Cauchy problem required
the simultaneous definition of a solution together with the domain of its propagation.
Hence, the structures of such domains are also studied in this work.

The presentation is mainly based on the results of the papers [1]-[2].
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Investigation of a Temperature Field of a Beam
under Non-Uniform Nonstationary Heating
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In the present paper dependence of the temperature on time under non-uniform, non-
stationary heating of a cantilevered beam is established. On the basis of the experimental
measurements, diagrams of dependence of the temperature of the surfaces of the beam
on time are constructed. For analytical representation of the experimental curves three-
parametric regression by a power function is used. The experimental results are processed
by means of the mathematical editor Mathcad and regression coefficients are defined too.
As a result the following is established:

1. dependence of the temperature on time for a surface on which heat source is
influencing is given by

To(t) = 20.688 - 19322 4 24.878; (1)

2. dependence of the temperature on time at points of the free surface of the beam is
given by
T(t) = 0.153 - > + 23.929. (2)

The one-dimensional nonstationary temperature problem is solved. On the heated
surface of a beam the boundary condition of the first kind in the form of function (1) is
used, and on the second free surface the boundary condition of the third kind is used. By
numerical calculation the change of temperature of the free surface in time is defined and
it is compared with function (2). It is established that the difference between the experi-
mental data and results of the numerical calculation is about 1% until the dimensionless
time ¢t = 0.8, and the maximal difference took place at the moment ¢ = 1.0.
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Strong Shape and Homology of Continuous Maps
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In the paper [1] the fiber resolution and fiber expansion of continuous map is defined
and it is shown that any fiber resolution is fiber expansion. In this paper we have defined
strong fiber expansion. We have modified some lemmas and theorems of [1] and we have
shown that any fiber resolution is a strong fiber expansion. Besides, we have proved an
analogous lemma of the Main Lemma on strong expansions [6]. Using the methods of
strong shape theory [6] and fiber strong shape theory [3], we have constructed a strong
fiber shape category of maps of compact metric spaces (comp. [3], see Remark 8).

In the second part in this paper, we have constructed the strong homological functor
from the strong shape category of maps of compact metric spaces to the category of
sequences of abelian groups and level mophisms. Using the obtained results we defined the
homological functor H : Morcy — Ab from the category of continuous maps of compact
metric spaces to the category of abelian groups and proved the following theorems [4-5]:

Theorem 1. For each continuous map f : X — X' of compact metric spaces the
corresponding homological sequence

S Hy (XS H, () S Hay (X) B Hu o (X)) — -+

15 exact.

Theorem 2. If any two morphisms (o1, ¢)), (01,¢,) : f — g induce a same strong shape
morphisms, then

(p1,01), = (w1, 91), - H(f) = H(g).

Theorem 3. If a continuous map f : X — X' of compact metric space is the inverse
limit of an inverse sequence £ = {f;, (pi7i+1,p;7i+1> , N} of ANR-maps, then the following
sequence

0 — Lim'H,1(f;) = Ha(f) = Lim H,(f;) —0

1S exact.
Remark 4. Note that by [2] Lim H,(f;) is the spectral homology group H,,(f) of f. There

exists a continuous map f € Morcy of compact metric space for which Lim! Hy(f;) # 0
and so

H,(f) # H.(f).

The authors are supported by grant FR/233/5-103/14 from Shota Rustaveli National
Science Foundation (SRNSF)
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The Proper Shape Theories and Massey
(Co)Homology Groups

VLADIMER BALADZE, KOBA IVANADZE

Department of Mathematics, Batumi Shota Rustaveli State University,
Batumi, Georgia

emails: vbaladze@gmail.com; kobaivanadze@gmail.com

The proper shape and proper fiber shape theories of closed pairs of locally compact
metrizable spaces and proper maps are investigated.

The spectral proper shape invariant extensions of Massey (co)homology functors are
constructed. Besides, it is showed that there exist long (co)homological sequences of
proper maps.

The authors are supported by grant FR/233/5-103/14 from Shota Rustaveli National
Science Foundation (SRNSF).

References

[1] V. Baladze, A proper shape theory and resolutions. Soobshch. Akad. Nauk Gruzii
151 (1995), no. 1, 13-18 (1996).

[2] B. J. Ball, R. B. Sher, theory of proper shape for locally compact metric spaces.
Fund. Math. 86 (1974), 163-192.



92  Abstracts of Participants' Talks Batumi, September 5-9, 2016

[3] B. J. Ball, Alternative approaches to proper shape theory. in: Studies in topology
(Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math.
Sect. Polish Acad. Sci.), pp. 1-27. Academic Press, New York, 1975.

[4] W.S. Massey, Homology and Cohomology Theory. An approach based on Alexander-
Spanier cochains. Monographs and Textbooks in Pure and Applied Mathematics,
Vol. 46. Marcel Dekker, Inc., New York-Basel, 1978.

On Fiber Strong Shape Theory

VLADIMER BALADZE, RUSLAN TSINARIDZE

Department of Mathematics, Batumi Shota Rustaveli State University,
Batumi, Georgia

email: vbaladze@gmail.com; rtsinaridze@yahoo.com

The purpose of this paper is the construction and investigation of fiber strong shape
theory for compact metrizable spaces over a fixed base space By, using the fiber versions
of cotelescop, fibrant space and SSDR-map. In the paper obtained results containing
the characterizations of fiber strong shape equivalences, based on the notion of double
mapping cylinder over a fixed space By. Besides, in the paper we construct and develop
a fiber strong shape theory for arbitrary spaces over fixed metrizable space By. Our
approach is based on the method of Mardesi¢-Lisica and instead of resolutions, introduced
by Mardesi¢, their fiber preserving analogues are used. The fiber strong shape theory
yields the classification of spaces over By which is coarser than the classification of spaces
over By induced by fiber homotopy theory, but is finer than the classification of spaces
over By given by usual fiber shape theory.

The authors are supported by grant FR/233/5-103/14 from Shota Rustaveli National
Science Foundation (SRNSF).
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Hausdorftf Operator in Lebesgue spaces
ROVSHAN BANDALIYEV

Institute of Mathematics and Mechanics of Azerbaijan National Academy of Sciences,
Baku, Azerbaijan

email: bandaliyevr@gmail.com

The investigation of Hausdorff operator can be traced back to 1917 by Hurwith and
Silverman in [2| with summability of number series. Therefore Hausdorff operator have
become an essential part of modern harmonic analysis. In particular, the study of Haus-
dorff operator has attracted resurgent attentions in recent years (see [1]).

For a fixed function ¢ € L!¢(0, 00), the one-dimensional Hausdorff operator is defined
in the integral form by

1)@ = | # F(v) dy.

See [3] for detailed discussion.

In this report we study the boundedness and compactness of Hausdorff operator in
weighted Lebesgue spaces. In the case 0 < p < 1 we prove the boundedness of Hausdorff
operator in weighted Lebesgue spaces. Moreover, we investigate boundedness of Hausdorff
operator in variable Lebesgue spaces.

This is joint work with Przemystaw Gorka.
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New Type Regularities for Some Basic Concepts
in Analysis and Geometry (in Particular for Smooth
Curves, Surfaces and Analytic Functions)

G. BARSEGIAN

Institute of Mathematics of Academy of Sciences of Armenia,
Erevan, Armenia

email: barseg@instamath.sci.am

There is a huge number of investigations relating to different classes of meromorphic
functions, particularly concerning meromorphic functions in the complex plane which
were intensively studied in the classical value distribution theory created by Nevanlinna
in 1920s. Meanwhile regularities related to the general case of arbitrary meromorphic
functions in a given domain were revealed only in works of Cauchy in 19 century and in
created in 1935 Ahlfors theory of covering surfaces.

In this talk we present some other results obtained since end of 1970s concerning the
same meromorphic function in a given domain. Here we mention two of them; both
intertwining with Nevanlinna and Ahlfors’s theories.

One of these results shows that the basic regularities of these theories can be trans-
ferred for all meromorphic functions in a given domain (while these theories themselves
are meaningful only under some additional restrictions). Thus we deal with an “universal
version of value distribution”. The universal version reveals essentially new type phenom-
ena for meromorphic functions in a given domain while for meromorphic functions in the
complex plane it leads to the conclusions quite comparable with the classical ones.

Also it will be shown that similar results occur also in geometry: the so-called “triple
principle” shows that the universal version, formulated for complex function, admits cor-
responding forms for the smooth curves and surfaces in R3.

The work was supported by the “Marie Curie (IIF) Award, 2013-2015".
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Some Applications of Projective Sets in Study
of Absolutely Non-measurable Functions
MARIAM BERIASHVILI
I. Vekua Institute of Applied Mathematics, Thilisi State University, Thilisi, Georgia

email: mariam_ beriashviliQyahoo.com

Descriptive Set theory is an important branch of set theory and plays an important
role to solve many problems and questions in set theory ([2], [4]). When Luzin have
constructed Projective sets hierarchy, he give to the mathematicians a new idea to develop
set theory in new direction ([2], [3]). Descriptive set theory was applied in measure theory
and was clear that, projective sets are very good objects in the sense of Lebesgue measure
and are measurable sets. We discuss a modified version of the concept of measurability of
sets and functions, in particular, we consider the measurability not only with respect to
a concrete given measure, but also with respect to various classes of measures ([1], [3]).
So, for a class M of measures, the measurability of sets and functions has the following
three aspects:

a. absolute measurability with respect to M;
b. relative measurability with respect to M,
c. absolute non-measurability with respect to M.

Definable Sets of real line have a many interesting properties and we consider such sets
in the sense measure extension problem. It is well known, that assuming Martin’s axiom
it can be shown that there exists absolutely non-measurable functions. In particular, It is

proved, that there exists absolutely non-measurable functions whose graph is projective
subset of R.
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Asymptotic Distribution of the Eigenvalues and
Eigenfunctions in Basic Boundary Value
Oscillation Problems in Hemitropic Elasticity
YURI BEZHUASHVILI
Georgian Technical University, Thilisi, Georgia

email: y.bezhuashvili@yandex.ru

The basic boundary value oscillation problems for a three-dimensional elastic medium
bounded by a closed surface are considered. Asymptotic formulas are derived for the
eigenvalue and eigenfunction distributions in the problems.

Fundamental Solution in the Plane Equilibrium
Theory of Thermoelasticity with Microtemperatures
for Microstretch Solids
LAMARA BITSADZE
Institute of Applied Mathematics of 1. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: lamarabitsadze@yahoo.com

In this paper the 2D linear equilibrium theory of thermoelasticity with microtemper-
atures for isotropic microstretch solids is considered and the fundamental and singular
matrices of solutions are constructed in terms of elementary functions. Representation of
regular solution is obtained. Some basic results of the classical theories of elasticity and
thermoelasticity are generalized.

References

[1] D. Iesan, On a theory of micromorphic elastic solids with microtemperatures. J.
Thermal Stresses 24 (2001), no. 8, 737-752.

[2] A. C. Eringen, Theory of thermomicrostretch elastic solids. Internat. J. Engrg. Sci.
28 (1990), no. 12, 1291-1301.

[3] M. Svanadze, R. Tracina, Representation of solutions in the theory of Thermoe-
lasticity with Microtemperatures for microstretch solids. J. Thermal Stresses 34
(2011), no. 2, 161-178.



05017790, 5-9 lgg@9ddgco, 2016 dmbofomgms Imbligbgogools mgdoligde 97

[4] L. Bitsadze, G. Jaiani, Some basic boundary value problems of the plane thermoe-
lasticity with microtemperatures. Math. Methods Appl. Sci. 36 (2013), no. 8,
956-966.

[5] L. Bitsadze, Effective solution of the Dirichlet BVP of the linear theory of ther-
moelasticity with microtemperatures for a spherical ring. J. Thermal Stresses 36
(2013), no. 7, 714-726.

[6] L. Bitsadze, 1. Tsagareli, The solution of the Dirichlet BVP in the fully coupled
theory for spherical layer with double porosity. Mechanica 51 (2016), no. 6, 1457
1463.

[7] L. Bitsadze, The Dirichlet BVP of the theory of thermoelasticity with microtemper-
atures for microstretch sphere. J. Thermal Stresses 39 (2016), no. 9, 1074-1083.

On Initial Problem for One Equation of Oscillation
Taking Place in Magnetohydraulic Pusher

RUSUDAN BITSADZE, SIMON BITSADZE

Georgian Technical University, Thilisi, Georgia

email: bitsadze.r@gmail.com

In the work is studied the initial Cauchy problem for one equation of nonlinear oscil-
lations, which is received by mathematical modeling of processes taking place in magne-
tohydraulic pusher of specific design. There is shown the uniqueness of solution, which is
written in an explicit form and its domain of propagation is established.
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Program of Analysis of Plate with a Certain
Reduced Flexural Rigidity

NikA BoTcHORISHVILI, L1A KipPiaNI, D. CHIKOVANI

Georgian Technical University, Thilisi, Georgia

email: zodeli@yahoo.com, kipianilia@yahoo.com, davidchikovani@yahoo.com

The developed method of plate’s analysis which is taking into account the physical
non-linearity is presented. It gives a possibility to estimate the changes of all components
of mode of deformation, values of critical loadings and shapes of buckling and are more
effective in comparison with other numerical and numerical-analytical methods.

Simplified variants of solution, in particular, a variant of reducing to single-layered
plate with a certain flexural rigidity that leads to significant simplification without loss
of precision of calculation, especially by determination of displacements, are studied.

Pseudo-oscillation Problems
of the Thermopiezoelectricity Theory

without Energy Dissipation

TENGIZ BUCHUKURI!, OTAR CHKADUAM2, DAVID NATROSHVILI®

'A. Razmadze Mathematical Institute of I. Javakhishvili Thilisi State University,
Thilisi, Georgia
2Faculty of Mathematics and Computer Sciences, Sokhumi state University,
Thilisi, Georgia
3Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: t buchukuri@eyahoo.com

We consider the pseudo-oscillation equation of the linear theory of thermopiezoelec-
tricity for bodies with inner structure. The model under consideration is based on the
Green—Naghdi theory of thermopiezoelectricity without energy dissipation. In particu-
lar, this theory permits propagation of thermal waves at finite speed. We investigate
the mixed boundary value problem for homogeneous isotropic solids with interior cracks.
Using the potential method and theory of pseudodifferential equations on manifolds with
boundary we prove existence and uniqueness of solutions and analyze their asymptotic
properties. We also describe the explicit algorithm for finding the singularity exponents
of the thermo-mechanical and electric fields near the crack edges and near the curves,
where different types of boundary conditions collide.
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As it is well known from the classical elasticity theory, in general, solutions to crack
type and mixed boundary value problems have singularities near the crack edges and near
the lines where the types of boundary conditions change, regardless of the smoothness of
the boundary surfaces and given boundary data. It turned out that the same effect can
be observed also in the theory under consideration. Explicit calculations show that the
stress singularity exponents essentially depend on the material parameters, in general.

Parallel Surfaces of Ruled Surfaces

ALl CAKMAK

Department of Mathematics, Faculty of Sciences and Bitlis Eren University, 13000,

Bitlis, Turkey

email: acakmak@beu.edu.tr

In this paper, we investigate parallel surfaces of a ruled surface indicated by M,,
condition that M is denoted by a ruled surface in E3. Besides, we calculate curvatures of
M, and obtain some relationships between curvatures of surfaces M and M,.
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Some Notes on Covarient and Lie Derivatives
of Sasakian Metric on Cotangent Bundles

Hasim CAYIR

Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28100,

Giresun, Turkey

email: hasim.cayir@giresun.edu.tr

In this paper, we define a Sasakian metric °¢g on cotangent bundle T*M, which is
completely determined by its action on complete lifts of vector fields. Later, we obtain
the covariant and Lie derivatives applied to Sasakian metrics with respect to the complete
and vertical lifts of vector and kovector fields, respectively.
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Schwarz Problem for Higher-Order Linear
Equations in C"
AHMET OKAY CELEBI
Yeditepe University, Department of Mathematics, Istanbul, Turkey
email: acelebi@yeditepe.edu.tr

In this presentation, a general higher-order integral representation formula is devel-
oped for solutions of inhomogeneous pluriholomorphic systems in the unit polydisc by
proper iterations of the respective formula for one variable case. Schwarz problem for
inhomogeneous linear equations in C", satisfying the boundary conditions chosen from a
class of pluriholomorphic functions are discussed.

This is a joint work with Umit Aksoy; Atilim University, Department of Mathematics,
Ankara, Turkey.
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Automated Theorem Prover for Unranked Logics

GELA CHANKVETADZE, LIA KURTANIDZE, MIKHEIL RUKHAIA

I. Vekua Institute of Applied Mathematics of I. Javakhishvili Thbilisi State University,
Thilisi, Georgia

email: mrukhaia@logic.at

In the talk we present proof search methods for first-order unranked logic. The un-
ranked languages have unranked alphabet, where function and predicate symbols do not
have a fixed arity. Such languages can model XML documents and operations over them,
thus becoming more and more important in semantic web. We present a version of a se-
quent calculus for first-order unranked logic and describe a proof construction algorithm
under this calculus. We give implementation details of the algorithm. We believe that
this work will be useful for the undergoing work on logic and proof layers of the semantic
web stack.

Acknowledgement. This work was supported by the Shota Rustaveli National Sci-
ence Foundation project no. FR/51/4-120/13.

Theoretical and Numerical Analysis of the Zonal
Flow Structures in Nonuniform Ionospheric Medium

KHATUNA CHARGAZIAY?, OLEG KHARSHILADZE?3

1. Vekua Institute of Applied Mathematics of I. Javakhishvili Thilisi State University,
Thilisi, Georgia

2M. Nodia Institute of Geophysics of I. Javakhishvili Thilisi State University
Thilisi, Georgia

3Physics Department, 1. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: Khatuna.chargazia@gmail.com

Near Earth space (ionosphere, magnetosphere) is characterized by complicated dynam-
ics and for modeling of such processes, especially at conditions of external nonstationary
impact (bow shock) it is very important an estimation of determined and stochastic parts
of the dynamics, as well as the possibility of the generation of large scale wave and fractal
structures. In this work a physical model of the plasma perturbations for experimental
data treatment and their physical and theoretical interpretationis obtained. In this model
a nonlinear mechanism of interaction of the perturbations with spatially inhomogeneous



05017790, 5-9 lgg@9ddgco, 2016 dmbofomgms Imbligbgogools mgdoligdo 103

space flows is considered. From this flows a zonal flow is energetically most important.
Numerical simulation of formation of such large scale flows are carried out. Time series
of velocity flow and magnetic field components of the magnetospheric flows observed by
THEMIS satellite mission are studiedby virtue of nonlinear methods. For numerical treat-
ment of these data a recurrent diagram method is used, which is effective for short data
series. Recurrence is a fundamental feature of the dissipative dynamical systems, which
is used for analysis of relaxation processes in the magnetotail. The results of nonlinear
analysis of plasma perturbations for interpretation is compared with the signals obtained
by Lorentz and Weierstrass function. By virtue of recurrent diagram method a fractal
nature of experimental signals and dynamical chaos parameters. The results of satellite
and numerical simulation data are compared.

About Some Decisions of Nonlinear System
of the Differential Equations Describing
Process of Two-Level Assimilation

TEMUR CHILACHAVA, MAIA CHAKABERIA

Sokhumi State University, Faculty of Mathematics and Computer Sciences,
Thilisi, Georgia

emails: temo_ chilachava@yahoo.com; chakaberiam@gmail.com

Earlier with us mathematical modeling of nonlinear process of two-level assimilation
taking into account demographic factors of three sides is offered.

In the real model it is supposed that the powerful state with a widespread state
language carries out assimilation of the population of less powerful state and the third
population talking in two languages, different in prevalence. Carries out assimilation of
the population of the state formation with the least widespread language to the turn, less
powerful state.

Not triviality of model assumes negative demographic factor of the powerful state-
assimilating and positive demographic factor of the state formation which is under bilat-
eral assimilation. For some ratios between demographic factors of the sides and coefficients
of assimilations, for nonlinear system of three differential equations with the correspond-
ing conditions of Cauchy the first integrals are found.

In particular, in the first case the first integral in space of required functions represents
a hyperbolic paraboloid, and in the second case — a cone. In these cases, the nonlinear
system of three differential equations is reduced to nonlinear system of two differential
equations for which the second first integrals are found and in the phase plane of decisions
are investigated behavior of integrated curves.
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In more general case with application of a criteria of Bendikson the possibility of
existence of the closed integrated curves is proved that indicates a possibility of a survival
of the population finding under double assimilation.

Nonlinear Mathematical Model of Dynamics
of Processes of Cooperation Interaction
in Innovative System

TEMUR CHILACHAVA!, TSIRA GVINJILIA?

!Sokhumi State University, Faculty of Mathematics and Computer Sciences,
Thilisi, Georgia
email: temo_ chilachava@yahoo.com

2Batumi State Maritime Academy, Batumi, Georgia

email: Gvinjilial959@mail.ru

One of the perspective and quickly field of application of mathematical modeling is
dynamics of innovative processes. Researches in this area show that the crisis phenomena
have not the casual, but systematic character defined by the determined mechanisms.
Therefore many features of behavior of innovative processes can be described within the
determined systems of the differential equations. The difficult behavior of these systems,
including self-organization processes, gives in to the description thanks to existence of
the nonlinear members who are present at mathematical models of dynamic systems.
Research of mathematical models of innovative processes in scientific and educational
areas is of a great interest.

In this work the nonlinear mathematical model of dynamics of processes of cooper-
ation interaction in innovative system: fundamental researches — applied researches —
developmental works — innovations is offered.

U

u(t

—

o2 = aqu(t) — fru?(t) + 6y — 0,
W0 — ayu(t) — Bav?(t) + ymult)u(t),
d“;ﬁ“ = azw(t) — Fsw?(t) + vs20(t)w(t),
L0 = ayz(t) — Buz(t) + yasw (1) (1),

u(0) = ug, v(0) =1y, w(0)=wp, 2(0)=2zy, 6 >0, i=1,2,
o; >0, 3;>0, i=1,4, 71 >0, v32>0, 743 >0.

We look for the solution of a task of Cauchy on a segment [0, 7] in a class of continu-
ously differentiable functions u(t), v(t), w(t), z(t).
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u(t) — number of fundamental researches, v(¢) — number of applied researches, w(t) —
number of developmental works, z(¢) — number of innovative works.

Generally Cauchy’s task of an analytically is solved in quadratures. In some private
cases simple analytical formulas are received and the analysis of decisions is carried out.

Three Party Nonlinear Mathematical
Model of Elections

TEMUR CHILACHAVA, LEILA SULAVA

Faculty of Mathematics and Computer Sciences, Sokhumi State University,
Thilisi, Georgia

emails: temo chilachava@yahoo.com; leilasamadash@gmail.com

In this paper, the development of our previously proposed two-party electoral models,
is proposed the nonlinear mathematical model with variable coefficients in the case of
three-party elections, that describes the dynamics of the quantitative change of the votes
of the ruling and two opposition parties from election to election. The model considers
four objects:

1. State and administrative structures, acting by means of administrative resources for
opposition-minded voters with the aim to win their support for the pro-government

party.
2. Voters who support the first opposition party.

3. Voters who support the second opposition party.

4. Voters who support the ruling party.

The model takes into account the change in the total number of voters in the period
from election to election, i.e. the so-called demographic factor during the elections is
taken into account. We have considered two cases: when the elections are held without
falsification and when there are cases of falsification by the Election Commission in favor
of the pro-government party. The model considered the cases with variable coefficients.
In particular, we assume that in the period between elections coefficients of "attracting”
voters are exponentially increasing function of time.

In the particular case we obtain exact analytical solutions. The conditions have been
identified under which the opposition can win the forthcoming elections, and in some
cases, the pro-government party can stay in power.

In general Cauchy problem was solved numerically using the MATLAB software pack-
age.
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We get different variations of the outcome of the election based on voter turnout, the
possible falsification of elections and demographic factors.

The proposed mathematical and computer model has both theoretical and practical
importance. Political opponents (government and opposition) can use our results: to
choose a strategy, to calculate its abilities (selecting parameters) in order to achieve the
set goal.

Antiplane Shear of Orthotropic
Non-Homogeneous Prismatic Shells
NATALIA CHINCHALADZE!?

'Faculty of Exact and Natural Sciences, I. Javakhishvili Thilisi State University, Thilisi,
Georgia
2I. Vekua Institute of Applied Mathematics of I. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: chinchaladze@gmail.com

Antiplane shear of an orthotropic non-homogeneous prismatic shell is considered when
the shear modulus depending on the body projection (i.e., on a domain lying in the plane of
interest) variables may vanish either on a part or on the entire boundary of the projection
(problems of antiplane strain of isotropic non-homogeneous prismatic shell-like bodies are
considered in [1], [2]). The dependence of well-posedeness of boundary conditions on the
character of vanishing the shear modulus is studied.
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A Generalization of the Minkowski and Related
Type Inequalities for the Sugeno Integrals
BAYAZ DARABY
Department of Mathematics, University of Maragheh, Maragheh, Iran

email: bdaraby@maragheh.ac.ir

In this paper, we generalize the Minkowski type inequality for the Sugeno integrals.
In the continue, we prove the related type’s of this inequality for the Sugeno integrals.
Finally, we illustrate the results by some examples.

Definition 1 (Sugeno [1]). A set function p : F — [0, 1] is called a fuzzy measure if the
following properties are satisfied:

(FM1) p(0) =0 and pu(X) = 1;

(FM2) A C B implies u(A) < u(B);

(FM3) A, — A implies pu(A,) — u(A).

When p is a fuzzy measure, the triple (X, F, u) is called a fuzzy measure space.

For any « € [0, 1], we will denote the set {z € X|f(z) > a} by F, and {z € X|f(z) >
a} by F5. Clearly, both F, and Fj are nonincreasing with respect to «, i.e., a <  implies
F, 2 Fg and Fj 2 Fj.

Definition 2 (Daraby [2]|, Sugeno [1]). Let (X, F,u) be a fuzzy measure space, and A
€ F, the Sugeno integral of f over A, with respect to the fuzzy measure p, is defined by

When A=X, then

f tdn=o fan="\ t@nu(r)),

a€l0,1]

Theorem 1. Let (X, F, 1) be a fuzzy measure space and f,g : X — [0, 1] two comonotone
measurable functions. Let x : [0,1]*> — [0,1] be continuous and nondecreasing in both
arqguments. If the seminorm T satisfies

T(axb,c) < (T(a,c)*b) A (axT(b,c)),

then the inequality

</T’A<f*g)8du>i : </TA d sd“f * </TA ffsczu)1

holds for any A € F and for all 0 < s < 00.
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Uniform Boundedness Theorem on Fuzzy
Hilbert Spaces
Bavyaz DARABY
Department of Mathematics, University of Maragheh, Maragheh, Iran

email: bdaraby@maragheh.ac.ir

Let n be a fuzzy subset on R, i.e. a mapping 1 : R — [0, 1] associating with each real
number ¢ its grade of membership 7(t).
In this paper, we consider the concept of fuzzy real numbers (fuzzy intervals) in the sense
of Xiao and Zhu [1].

Definition 1([2]). Let (X, | -||) and (Y, ]| - ||~) be fuzzy normed linear spaces. A linear
operator T': X — Y is said to be weakly fuzzy bounded if there exists a fuzzy interval
0 < 1 € F* such that

[ Tz||” @ [lzll = n, Va(#0) € X.

Definition 2. Let (X, || - ||) and (Y, ]| - ||~) be two fuzzy normed linear spaces. A family
{7} € B(X,Y) is called point-wise bounded if for every z(# 0) € X, there exists fuzzy
number 0 < 9§, € F* such that for all n > 0,

[T (@)™ = 6a,

and is said uniformly bounded if there exists fuzzy number 0 < § € F* such that for each
n >0 and z(# 0) € X,
ITn][ = 0.

Theorem 1 (Uniform Boundedness Theorem). Let {T,,} CB(H, H) such that for each
x € H AT,} is bounded in H, i.e. there exists a fuzzy real number n, such that | T,x| = 0,
for all n. Then there exists a fuzzy real number § such that ||T,| < 9, for all n, where
(H,||-1]) is a complete fuzzy normed linear space for each o € (0, 1].

Remark 1. If T' is weakly fuzzy bounded, then the above theorem is also true.
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Bessel’s Inequality on Fuzzy Hilbert Spaces
BAYAZ DARABY
Department of Mathematics, University of Maragheh, Maragheh, Iran
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Definition 1 ([1]). Let X be a vector space over R. A fuzzy inner product on X is a
mapping (-,-) : X x X — F(R) such that for all vectors x,y,z € X and r € R, we have

IP) (z+y,2) = (x,2) ®(y,2),

(IP1) |

(IP) (rz,y) =7(z,y),

(IPs) (z,y) = < z),

(IPy) (z,z) =

(IP5) infacoay(z, ), > 0if z # 0,
(IP) (x,z) = 0 if and only if = = 0.

The vector space X equipped with a fuzzy inner product is called a fuzzy inner product
space. A fuzzy inner product on X defines a fuzzy number

lz|| = /{z,x), VzelX. (1)

A fuzzy Hilbert space is a complete fuzzy inner product space with the fuzzy norm defined
by (1). Therefore by the above definition, any fuzzy inner product space with origin 0 is
a subspace of a fuzzy normed linear space.

Definition 2 ([2]). Let X be a fuzzy inner product space. A fuzzy orthogonal set M in
1 =

X is said to be fuzzy orthonormal if (x,y) = {J v 4 4 , for all z,y € M.

rT7FY

Y
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Theorem 1. Let X be a fuzzy inner product space and for any x € X there exists
{z,} € X,x,, = . Let {ex} be a fuzzy orthonormal sequence in X then

[z, en)* < [l2]?, =€ X.

WE

i

1

Theorem 2 (Bessel’s inequality). Let H be a fuzzy Hilbert space. If {ex} is a fuzzy
orthonormal sequence in H, then

(o, en)” < |l=ll*, =€ H,

WE

b
Il

1

which is special case of Theorem 1.
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Hydraulic Calculation of Branched Gas Pipeline

TEIMURAZ DAVITASHVILI, GIVI GUBELIDZE, MERI SHARIKADZE

[. Javakhishvili Thilisi State University, Faculty of Exact and Natural Sciences, 1.Vekua
Institute of Applied Mathematics, Thilisi, Georgia

emails: teimuraz.davitashvili@tsu.ge; meri.sharikadze@tsu.ge

As pipelines become one of the main sources of liquid and gas substances transporta-
tion so studying behaviour of gas and liquid substances flow in horizontal and inclined
branched pipelines became topical problem of today. Recently, many gas flow models
have been developed and a number are using by the gas-liquid industry. In spite of the
fact that most of those have been based on the result of gas-liquid flow experiments,
accounting practices have shown none of them are universal, as yet they needs to be care-
fully analyzed, retreated, reworked and checked by the flow pattern. It has been shown
in modern publications that the most complicated part in the practice especially are
connected with branched pipeline networks and as a consequence mathematical models
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describing flow in the pipelines having outlets containing essential mistakes, which are ow-
ing significant simplification of the modelling environment and processes. For this reason
development of the detailed numerical models adequate describing the real non-stationary
not isothermal processes processing and progressing in the branched pipeline systems is
necessary want. And as a consequence study of the problem by analytical methods from
the mathematical point of view is prerequisite and represents a very actual problem. In
the present paper gas pressure and flow rate distribution along the branched pipeline is
investigated. The study is based on the analytical solution of the simplified nonlinear,
non-stationary partial differential equations describing gas quasi-stationary flow in the
branched pipeline. The effective solutions of the quasi-stationary nonlinear partial differ-
ential equations are presented. Preliminary numerical calculations have shown efficiency
of the suggested method.

Heavy Showers Prediction above the Complex
Terrain Based on WRF Modelling

TEIMURAZ DAVITASHVILI', NATO KUTALADZE?, RAMAZ KVATADZE?,
GIORGI MIKUCHADZE?, ZURAB MODEBADZE"

1. Javakhishvili Thilisi State University, I. Vekua Institute of Applied Mathematics
2Georgian National Environmental Agency
3Georgian Research and Educational Networking Association
41. Javakhishvili Thilisi State University, Faculty of Exact and Natural Sciences
Thilisi, Georgia

emails: teimuraz.davitashvili@tsu.ge; cwlamc@gmail.com; ramaz@grena.ge;
gmikuchadze@gmail.com; Zurab@Qtsu.ge

The Weather Research and Forecasting (WRF) model version 3.6 represents a good
opportunity for studding regional and mesoscale atmospheric processes such are: extreme
precipitations, hails, sensitivity of WRF to physics options, influence of orography on
mesoscale atmosphere processes, etc. In the present article the WRF model was ap-
plied to the selected weather events for predicting rainfall with numerous combinations of
physics options. For fulfillment of this plan we have configured the WRF v.3.6 nested grid,
wet model for Caucasus region (Georgian territory), considering geographical-landscape
character, topography height, land use, soil type, temperature in deep layers, vegeta-
tion monthly distribution, albedo and others. The computations were performed by the
Georgian Research and Educational Networking Association (GRENA) GRID system GE-
01-GRENA which is integrated in the European GRID infrastructure. Therefore it was a
good opportunity for running model on larger number of CPUs and storing large amount
of data on the GRID storage element. On the GRENA’s cluster WRF was compiled for
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both Open MP and MPI (Shared + Distributed memory) environment and WPS was
compiled for serial environment using PGI (v7.1.6) on the platform Linux-CentOS. Sim-
ulations were performed using a set of 2 domains with horizontal grid-point resolutions
of 6.6 km and 2.2 km, both defined as those currently being used for operational fore-
casts. The coarser domain is a grid of 94x102 points which covers the South Caucasus
region, while the nested inner domain has a grid size of 70x70 points mainly territory
of Georgia. Both use the default 54 vertical levels. We have studied some particulate
cases of dangerous unexpected heavy showers which have taken place in warm seasons
of 2015 in eastern part of the territory of Georgia and were accompanied with damage
results consequences of the events were hard to foresee. The predicted rainfall by WRF
model was compared with the observed rainfall data. In this study some comparisons
between WREF forecasts was done in order to check the consistency and quality of WRF
model with the heavy precipitations occur on the territory of Georgia. Some results of
the numerical calculations performed by WRF model are presented.

Acknowledgement. The research leading to these results has been co-funded by the
European Commission under the H2020 Research Infrastructures contract no. 675121
(project VI-SEEM).

On One Numerical Method of Solution
of the Problem of Optimal Control

for Linear Differential Equation
DAvID DEVADZE

Batumi Shota Rustaveli State University, Department of Computer Sciences,
Batumi, Georgia

email: david.devadze@gmail.com

The paper deals with the problem of optimal control for simple linear differential
equations of the second order with the Bitsadze-Samarskii boundary condition. Necessary
conditions of optimality are received in the form of principle of maximum. Conjugated
equations are constructed in the differential and integral form

Using necessary and sufficient condition of optimality, the solution of a linear problem
of optimal control is led to the solution of equivalent system of the differential equations.
For receiving the numerical solution of the problem, difference scheme on convergence in
a class of functions, which have absolutely continuous first products, is constructed and
investigated.

For numerical realization, on the basis of necessary and sufficient conditions of opti-
mality, the algorithm for solution of linear problem of optimal control is suggested. There
are given the numerical experiments on modeling problems in MathCAD.
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Second Order Statistical Moments
of the Phase Fluctuations of Scattered Radiation
in the Collision Magnetized Plasma
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Department of Exact and Natural Sciences, Batumi State Maritime Academy,
Batumi, Georgia
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Statistical characteristics of multiply scattered electromagnetic waves in the turbulent
magnetized collision plasma with electron density fluctuations are considered. Analytical
expression for the phase correlation function is derived for arbitrary correlation function
of fluctuating plasma parameters using modify smooth perturbation method taking into
account the diffraction effects. Evolutions of the second order statistical moments are
analyzed analytically and numerically for the anisotropic Gaussian correlation function
of electron density fluctuations in the polar ionospheric F-region using the experimental
data. Investigation of the statistical characteristics of scattered radiation in randomly
inhomogeneous anisotropic media is of great interest. The elongated large-scale plasma
irregularities are observed in the polar ionosphere.

Electric field of electromagnetic wave in the magnetized collision plasma with electron
density fluctuations satisfies the wave equation:

(92
<W - Aéw — k?g{fij(T)>Ej(T> =0.
UL

Analytical and numerical calculations are carried out for the anisotropic Gaussian
correlation function of electron density fluctuation [2,8]:

~ 21 k212 k212 K213

Vn(kma ky7 kz) = UT2L S ! €xXp ( - :E4J_ — D1 y4L — D2 Z4J_

T2

. pgkykzlﬁ).
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Figure 1: Figure depicts 3D picture of the phase correlation function versus distances
between observation points in the principle and perpendicular planes.
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Basic Boundary Value Problems for the Helmholtz
Equation in a Model 2D Angular Domain
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2Andrea Razmadze Mathematical Institute, Thilisi, Georgia
email: roldud@gmail.com

3Ivane Javakhishvili Thilisi State University, Thilisi, Georgia

A model basic boundary value problems for the Helmholtz equation is investigated in
a planar angular domain Q, C R? of magnitude o with the boundary I'y, = R UR,,
where R7 is the real positive semi-axes and R, is the ray turned by the angle o from R*:

The Dirichlet BVP
{ Au(z) + K*u(z) = f(z), =€ Qq,

ut(t) = G(b), t e, @
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the Neumann BVP
{ Au(z) + Ku(z) = f(z), =€ Qq,

(Oyu)™(t) = H(t), tel,
and the mixed BVP

Au(z) + K*u(z) = f(x), T € Qq,
ut(t) = g(t), t € Ry, (3)
(O,u)t(t) = h(t), teRT,

is considered in a non-classical setting (the setting is classical for s =1 and p = 2): u €
Hy (%), f € Hy2(Q) NHy (Q0), G € Wy P(La), H € Wy ' T7(Ta), g € Wy P(Ra),
he W, THPRY) 1 < p < oo, % <s<l+ ]la. The subset Hy'(Qq) C H(Q,) consists

of functions ¢ € H™'(2,) for which (g, 1) # 0 for some ¢ € CL(2).

The problems (1)—(3) are investigated using the potential method by reducing them
to an equivalent boundary integral equation (BIE), which is of Mellin convolution type.
By applying the recent results on Mellin convolution equations in Bessel potential spaces
obtained by V. Didenko & R. Duduchava, conditions of the unique solvability of BVPs
(1)—(3) are found.

The research was supported by Shota Rustaveli National Science Foundation grants
no. 13/14 and 31/39.

On the Application of Uncertain Measure to Find
the Uncertain Weighted Stable Set
MEHDI DJAHANGIRI
University of Maragheh, Maragheh, Iran

email: mehdi86math@gmail.com

In the real world applications the data about problems is indeterminate. There exist
two axiomatic methods to model indeterminacy. Probability theory and Uncertainty
theory. The probability theory is usable when the samples for indeterminate quantity was
collected and their size is large enough. Unfortunately in many cases the preparations
to use the probability theory is not provided. In these cases, it can be usefull to utilize
the believes of some domain experts. To apply these believes, the uncertainty theory was
founded by Liu [1,2]. Let I' be a nonempty set and £ be a c-algebra over £. A set
function M over L is said to be uncertain measure if it satisfies the following four axioms:
1 : M{I'}=1 for the universal set I'.
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2 : M{A}+M{A}=1 for any A.
3 : For every countable sequence of A;’s, we have M{UJ;~, A} <> o) M{A;}.
4 M{TLZ, Akt = Ny Mu{Ag} for k=1,2,....

The function f : (I', £, M) — R where the R is the set of real numbers, is said to be
measurable if for any Borel set B of real numbers we have f~1(B) = {v|f(y) € B} € L.
An uncertain variable £ is a measurable function on an uncertainty space.

Given a graph G(V, E), a stable set is a set of vertices any two of which are nonadjacent.
The maximum size of a stable set in G is called the stable set number of G, and is denoted
by a(G). If each vertex v; has the weghit w;, then the problem is called weghited stable set
and its parameter is shown by «,,(G). A linear integer programming model for uncertain
weighted stable set problem could be as:

mln{zgxZ | zi+2; <1 V(i,j) e E ,z;, €{0,1}, izl,?,...,n},
i=1

where ¢;’s are uncertain variables. Since an uncertain objective function Y. | &a; can
not be directly minimized, we give two following equivalent deterministic models.

min{Z(b‘l(ai)xi |z +2; <1 V(i,j)e E ,x; €{0,1}, 2':1,2,‘..,71},

=1

mln{ZE(@)xz ’ $i+$j <1 V(Z,]) el , T € {0,1}, 1= 1,2,...,71},

i=1

where ¢~ 1(a;) and E(&;) are the inverse uncertain distribution and uncertain expectation
of &; respectively.
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Rule-Based Programming with Regular Constraints
BESIK DUNDUA
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PpLog is a rule-based system [1], that extends Prolog with strategy conditional se-
quence transformation rules. These rules (basic strategies))define transformation steps on
finite (possible empty) sequences. Strategy combinators help to combine strategies into
more complex ones in a declaratively clear way. Transformations are nondeterministic
and may yield several results, which fits very well into the logic programming paradigm.
Strategic rewriting separates term traversal control from transformation rules. This al-
lows the basic transformation steps to be defined concisely. The separation of strate-
gies and rules makes rules reusable in different transformations. Transformation rules
are equipped with four different kinds of variables (individual, sequence, function, and
context variables) together with regular constraints. These variables allows to traverse
sequences in single/arbitrary width (with individual and sequence variables) and terms
in single/arbitrary depth (with functional and context variables). Regular constraints are
useful to restrict possible values of sequence and context variables by regular sequence
expressions and regular tree (context) expressions, respectively. These features facilitate
flexibility in matching, providing a possibility to extract an arbitrary subsequence from
a sequence, or to extract subterms at arbitrary depth.These capabilities enable PpLog to
have highly declarative programming style that is expressive enough to support concise
implementations for: specifying and prototyping deductive systems, solvers for various
equational theories, tools for XML querying and transformation, etc. In this talk we give
an overview of the P Log system and underline some of its applications [2], [3].
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Single Fourier Series of Several Variable
Functions
OMAR DZAGNIDZE
A. Razmadze Mathematical Institute of I. Javakhishvili Thilisi State University,
Thilisi, Georgia
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Let the function f(x), x = (z1,...,2,), be summable in an n-dimensional cube [0, 27]"™
and be 27 periodic with respect to each variable z;, 1 < j <n.

For the function f we consider a single Fourier series with respect to some variable,
say, with respect to the variable z,. It is obvious that the coefficients of this series will
be dependent on the rest of the variables x4, ..., z,_1.

So, we consider the single Fourier series of the function f with respect to the variable x,,

1 (o]
Slf] = 5 do + Z(ak cos kx,, + by sinkx,,),
k=1
where the variable coefficients ay, = ax(x1,...,2,-1) and by = b(x1,...,x,_1) are given
by Fourier formulas.
Theorem. If the function f is differentiable at some point 2 = (29,...,22), then the

series S[f] converges at the same point z° to the value f(z°), symbolically S[f](z°) =
f(=0).

This theorem is a particular case of the general theorem where the function f is smooth
in the Riemann sense at the point z°.

Guidelines for the Study of the Course
“Mathematical and Computer Modeling” on
a Specialty “Computer Technology”
TSIALA DZIDZIGURI

Faculty of Mathematics and Computer Sciences, Sokhumi State University,
Thilisi, Georgia

email: cialadzidziguriQrambler.ru

In this course, the mathematical model of the classic of Ecology (interaction of popu-
lations) are considered mainly.
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In the proposed guidelines that will facilitate the development of mathematical and
computer modeling of these problems.

For practical exercises chosen problem for fixed values of model parameters. In lab-
oratory studies using suitable computer modeling program going and a comparison with
the result of mathematical analysis for specific parameters.

To develop common requirements for laboratory work, as well as issues specific labs
and requirements of their registration.
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On Deflections of a Prismatic Shell Exponentially
Cusped at Infinity
MIRANDA GABELAIA

I. Vekua Institute of Applied Mathematics of 1. Javakhishvili Thbilisi State University,
Thilisi, Georgia

email: mirandagabelaia@yahoo.com

In the N = 0 approximation of hierarchical models the well-posedness of boundary
value problems for an equation of deflections of a prismatic shell exponentially cusped at
infinity is studied. The thickness of the shell has the form

h = hoe *@H93) o = const >0, « = const >0, x; € (—00, +00), 3 > 0.

The solution of the posed boundary value problem is given in an integral form.

On Two-Weighted Estimates for Riesz Potentials
M. GABIDZASHVILI
Georgian Technical University, Thilisi, Georgia

email: gabdato@gmail.com

The goal of our talk is to give some conditions assuring two-weighted inequalities for
Riesz potentials both in classical Lebesgue spaces and grand Lebesgue spaces.
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On the Approximation of Periodic Functions
in Variable Exponent Lorentz Spaces

INGA GABISONIA', VAKHTANG KOKILASHVILIZ, DALI MAKHARADZE?

1Sokhumi State University, Thilisi, Georgia
2A. Razmadze Mathematical Institute of I. Javakhishvili Thilisi State University,
Thilisi, Georgia
3Batumi Shota Rustaveli State University, Batumi, Georgia

emails: kokil@rmi.ge; dalimakharadze@mail.ru

We consider results on approximation by trigonometric polynomials in Lorentz spaces
with variable exponents. The inequalities are obtained, which establish the connection
between the best approximation by trigonometric polynomials and the generalized modu-
lus of smoothness so that the exponents of space metrics are different on both sides of the
inequalities. The analogues of Jackson’s and inverse inequalities are proved in variable
exponent Lorentz spaces.

Some Contact Problem in Elasticity with Natural
Nonpenetration Condition

AVTANDIL GACHECHILADZE, ROLAND GACHECHILADZE

A. Razmadze Mathematical Institute, I. Javakhishili Tbilisi State University,
Thilisi, Georgia

emails: avtogach@yahoo.com; r.gachechiladze@yahoo.com

In the recent work the contact problem of an elastic anisotropic unhomogeneous body
with a rigid body (frame) is considered. Usually, such contact is described by Signorini
boundary conditions including normal displacement and normal stress (also the tangen-
tial components of the stress if the friction arise between bodies). These conditions are
derived from the Natural Nonpenetration Condition (NNC) after some linearizations and
simplification procedure. We consider the mentioned contact problem by the initial NNC
aiming to avoid the simplification procedure. If the contact part of the surface of rigid
frame is described by the concave and continuous function, then we give the variational
formulation of the problem and prove its unique solvability and stability results under the
Dirichlet condition on some part of the boundary of the elastic body.Also, we consider
the situation when the frame linearly goes back under the pressure of the elastic body
and prove the existence of solution, but the uniqueness we prove under some conditions.
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Fermat’s Great Theorem
LEVAN GAVASHELI

email: levan_ gavasheli@yahoo.com

There don’t exist integral numbers z,y, z different from zero for which:

where n > 0 (it is well known, that at n = 2 such numbers exist).

Comment. Let’s propose, that the solution of equation (1) is whole, different from
zero numbers, exist. It’s obvious that without losing the commonality, we can consider
that it consists of pair positive co-primes. Further, it’s obvious that if Fermat’s theorem
is correct for n index, than it automatically turns out to be correct and for any an index,
multiple n, as if the equation

uan + ,Uan — wan

has integral solution w, v, w, than the equation (1) will have integral solution u®, v®, w®.
That’s why it’s enough to prove Fermat’s theorem for n = 4 (this was done by Fermat
himself) and for n > 3 - arbitrary prime number. May be consider as well that = < y < z.

(If + = y, when 2z™ = 2" or (%)n = 2; Z - rational number. It’s known that there

exist rational numbers n-th degree that is equal to 2. As in any multitude of natural
numbers exist the smallest number, among all such solutions exist the primitive solution
the smallest value z. Let’s review this solution more precisely:

@ —x)+ W —y)=2"—(r+vy), z+y>-=z
Due to the small theorem of Fermat:

n:

x x modn; y"=y modn=z"=2x+y modn.
On the other hand, 2" = zmod n = z 4+ y = zmod n, * + y — z - even number,
r+y—z=2An (2)
number n is odd and the number X is even, (A = 2k),
r=M+(z—y)=A+z;, where x;=2-—y>0.

Similarly y = An + y1, where y; = z — x > 0; and, consequently,

z:)\n+x1+y1.
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Numerical Modelling of a Mesoboundary Layer
of Atmosphere Taking into Account of Some
Moments of Solar Radiation

GEORGE GELADZE, MANANA TEVDORADZE

Faculty of Exact and Natural Sciences of 1. Javakhishvili Thbilisi State University,
I. Vekua Institute of Applied Mathematics, Thilisi, Georgia

email: givi-geladze@Qrambler.ru; mtevdoradze@gmail.com

It is provided the two-dimensional problem (in the vertical plane x — z) about the
mesometeorological boundary layer of atmosphere (MBLA) by means of which a number
of ecometeorological processes is simulated:

Fog- and cloud formation against a background of MBLA thermohydrodynamics;

Forming of ensemble of fog and clouds and their mutual transformation;

Investigation of a role of turbulence in forming of ensemble of humidity processes.

The problem about MBLA taking into account cooling on borders of a cloud and fog
is set and is at a stage of numerical realization. From experimental data it is known that
the cloudy and cloudless atmospheres have various optical properties. Therefore because
of solar radiation on the upper bounds of a cloud and fog a number of the abnormal
phenomena takes place: local temperature inversions, cooling of the atmosphere, squally
processes, change of dynamics, strengthening of humidity processes, obviously expressed
distortion of an anvil form of a cloud etc. We especially are interested in temperature
inversions as their research is very actual from the point of view of both meteorology, and
ecology - they are just responsible for any formation of smogs.

Poincare Conjecture, Classical Nonintegrability and
Quantum Chaos on the Example of 3 Bodies
ASHOT GEVORKYAN

Institute for Informatics and Automation Problems, NAS of Armenia;
Institute of Chemical Physics, NAS of Armenia,
Yerevan, Armenia

email: g ashot@sci.am

We obtained the system of stochastic differential equations, which describes the clas-
sical motion of the three-body system under influence of quantum fluctuations. Using
SDEs, for the joint probability distribution of the total momentum of bodies system were
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obtained the partial differential equation of the second order. It is shown that the equa-
tion for the probability distribution is solved jointly by classical equations, which in turn
are responsible for the topological peculiarities of tubes of quantum currents, transitions
between asymptotic channels and, respectively for arising of quantum chaos.

Reduction of the Classical Three-Body
Problem to 6th Order System

ASHOT GEVORKYAN

Institute for Informatics and Automation Problems, NAS of Armenia;
Institute of Chemical Physics, NAS of Armenia
Yerevan, Armenia

email: g ashot@sci.am

In the framework of an idea of separation of rotational and vibrational motions, we
have examined the problem of reducing the general three-body problem. The class of
differentiable functions allowing transformation of the 6D Euclidean space to the 6D
conformal-Fuclidean space is defined. Using this fact the general classical three-body
problem is formulated as a problem of geodesic flows on the energy hypersurface of the
bodies system. It is shown that when the total potential depends on relative distances be-
tween the bodies, three from six ordinary differential equations of second order describing
the nonintegrable Hamiltonian system are integrated exactly, thus allowing reducing the
initial system in the phase space to the autonomous system of the 6th order. In the result
of reducing of the initial Newtonian problem, the geometry of reduced problem becomes
curved. The latter gives us new ideas related to the problem of geometrization of physics
as well as new possibilities for study of different physical problems.

Boundary Value Problems for the
Navier—Stokes Equations in the Half-Space

LEVAN GIORGASHVILI!, MATA KHARASHVILI', REVAZ MELADZE?

Department of Mathematics, Georgian Technical University, Thilisi, Georgia
?David Agmashenebeli University of Georgia, Thilisi, Georgia
emails: lgiorgashvili@gmail.com; maiabickinashvili@yahoo.com; r.meladze@yahoo.com

In this paper we consider boundary value problems for the Navier—Stokes equations in
the half-space, when limiting values of the tangential components of the stress vectors and
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the normal components of the velocity vectors are given on the boundary. We consider
also BVPs when limiting values of the normal components of the stress vectors and the
tangential components of the velocity vectors are given on the boundary. Uniqueness
theorems are proved. Solutions are represented in qaudratures.

Mathematical Problems of Thermoelasticity of
Bodies with Microstructure and Microtemperatures

LEVAN GIORGASHVILI, SHOTA ZAZASHVILI

Department of Mathematics, Georgian Technical University, Thilisi, Georgia

emails: lgiorgashvili@gmail.com; zaza-ude@hotmail.com

The purpose of this paper is to construct explicitly in terms of elementary functions,
fundamental matrices of solutions to the differential equations of the linear theory of ther-
moelasticity for elastic materials with microstructure and microtemperatures. We derive
the corresponding Green’s formulas and construct the integral representation formulas of
solutions by means of generalized simple layer, double layer and Newtonian potentials. We
formulate the basic boundary value problems in appropriate function space and prove the
uniqueness theorems. The existence theorems of regular solutions of the external BVPs
are proved using the potential method and the theory of singular integral equations.

Crane-Transport, Building and Road Machines
Working Equipments’ Structural Research
VAzHA GOGADZE
Akaki Tsereteli State University, Kutaisi, Georgia

email: Vazha.gogadze@atsu.edu.ge, vajagogadze@rambler.ru

In this work, crane transport, building and road machines working equipments’ kine-
matical analysis is discussed. Researches showed that in some working equipments of
above machines extra ties take place.

As the result moving of rings is possible only in the case of existence of slots in the
joints or with extra tension of metal constructions.
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Periodic Field Configurations in a Theory
of Scalar Fields with Brocken SU(2) Symmetry
V. GOGOKHIA, A. SHURGAIA

Deprt. Theor. Phys., WIGNER RCP RMI, Budapest, Hungary;
Deprt. Theor. Phys., A. Razmadze Math. Inst., TSU, Thilisi, Georgia

email: gavsh@rmi.ge

The periodic field configurations have been of interest regarding phase transitions
from classical regime of field theory to a quantum one. It has been turned out that these
configurations interpolate between the stable vacuum configurations and sphalerons which
are unstable sitting on the top of the potential barrier. In this process the transition from
false vacuum to the true one takes place and at the finite energies below the potential
barrier temperature assisted quantum tunneling is dominating whereas at higher energies
(above the potential barrier) the process is pure classical (thermal activation) — this means
that as the energy (temperature) varies the phase transition from classical regime to the
quantum tunneling takes place at which periodic field configurations are significant.

The talk is devoted to simple model which lets find a periodic field configurations
such that some aspects of phase transitions can be studied. A scalar triplet with broken
SU(2) symmetry is considered. Classical equations studied and a set of particular solu-
tions obtained. The solutions are analyzed in view of phase transitions. Charged and
neutral solutions are presented. The quantum properties of those solutions are studied.
It has been shown that the quantum fluctuations obey an equation which has a negative
eigenvalue due to which the system is unstable.

On Estimation of the Two Dimensional Regression
Function
DAvID GOGOLASHVILI
I. Vekua Institute of Applied Mathematics, Thilisi, Georgia

email: dgogolashvili@yahoo.com

On the square [0;1]? consider two dimensional regression function of Bernoulli type
Y(z;y); P(Y(xi3y;) = 1) = p(ziyy;), P(Y(2i5y;) = 0) = 1 — p(z4;y;). On base sample
Yii = Y(xiy;), i,j = 1,2,...,n, is constructed an estimation of unknown regression
function p(z,y). Consistency and asymptotic normality of the estimation are proved.

This investigation is based and extended the results of paper [1].
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Electroelasticity Equilibrium of an Elliptical Cylinder
DAviD GORGIDZE
Georgian Technical University, Thilisi, Georgia

email: dgorgidze@yahoo.com

We consider the elastic equilibrium of a figure bounded by coordinate surfaces in an
elliptic cylindrical coordinate system 6, «, (. It occupies the following area: 2 = {6y <
0 <61, oy <a<ag (<(<C(} On b = const surfaces, one of four basic boundary
conditions can be performed: on ( = const surfaces, the symmetric continuous extension,
w =0, 7¢o = 0, 7¢p = 0, the antisymmetric continuous extension o, = 0, u = 0, v = 0,
on o = const surfaces, the symmetric continuous extension has the form v = 0, 7, = 0,
Tap = 0 and the latter as follows o, = 0, u = 0, w = 0. According to N. Khomasuridze’s
method, within theory of electroelasticity, there are general solutions for boundary value
type of problems in elliptic cylindrical coordinates system.

Derivation of the System of Equations of Equilibrium
for Plates Having Double Porosity
BAKUR GULUAM, ROMAN JANJGAVA!?Z

1. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Thilisi State University,
Thilisi, Georgia

2Faculty of Exact and Natural Sciences, Iv. Javakhishvili Thilisi State University,
Thilisi, Georgia

3Sokhumi State University, Thilisi, Georgia

emails: bak.gulua@gmail.com; roman.janjgava@gmail.com

In the report we consider three-dimensional elastic static equilibrium system of equa-
tions of bodies with double porosity. From this system of equations, using a reduction
method of I. Vekua, we receive the equilibrium equations for the plates having double
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porosity. The systems of equations corresponding to approximations N =0 and N =1
are written down in a complex form and we express the general solutions of these systems
through analytic functions of complex variable and solutions of the Helmholtz equation.
The received general representations give the opportunity to solve analytically boundary
value problems about elastic equilibrium of plates with double porosity.

Acknowledgement. The designated project has been fulfilled by a financial support
of Shota Rustaveli National Science Foundation (Grant No. FR/358/5-109/14).

Solution of Boundary Value Problems
of Spherical Shells by the Vekua Method
in the Approximation N =2

BAKUR GULUAM, MANANA TEVDORADZE!

1. Vekua Institute of Applied Mathematics and Faculty of Exact and Natural
Sciences of 1. Javakhishvili Thilisi State University, Thbilisi, Georgia

2Sokhumi State University, Thilisi, Georgia

email: bak.gulua@gmail.com

I. Vekua has constructed several versions of the refined linear theory of thin and shallow
shells by means of his method of reduction of three-dimensional problems of elasticity to
two-dimensional ones [1]. This method for nonshallow shells in case of geometrical and
physical nonlinear theory was generalized by T. Meunargia [2].

In the present paper by means of the I. Vekua method the system of differential
equations for the geometrically nonlinear spherical shells is obtained. Using the method
of a small parameter,in the approximations of order N = 2 the complex representations
of the general solutions are obtained. Some concrete problems are solved.

Acknowledgment. The designated project has been fulfilled by a financial support
of Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14).
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[2] T. V. Meunargia, On one method of construction of geometrically and physically
nonlinear theory of non-shallow shells. Proc. A. Razmadze Math. Inst. 119 (1999),
133-154.
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About One Method for Splitting
of the Semi-discrete Schemes for the Evolutionary
Equation with Variable Operator

Davib GuLua, JEMAL RoGAva

Department of Computation Mathematics, Georgian Technical University;
Department of Mathematics, I. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: d gulua@gtu.ge
We study the semi-discrete schemes for the following evolutionary problem in the
Hilbert space H:

du(t)
dt

+ A(t)u(t) = f(t), t€]0,T], u(0)= up, (1)

where A(t) is the self-adjoint positively defined operator in H with domain of definition
D(A) does not depend on t; f(t) is a continuously differentiable function with values in
H; uyg is a given vector from H; u(t) is the sought function.

On the interval [0,T], we define the grid t, = k7, k = 0,1,...,n, with the step 7 =
T'/n. Using the difference formula of second order approximation for the approximation
of the first derivative equation (1) can be represented at the point ¢ = t;; as:

Au(tk) + ZA2u(tk_1>

- 9 -2 + A(tk+l)u (tk+l) = f(tk:—‘rl) + TQRIH—I(T? U), Rk(Tu u) S Ha (2>

where Au(ty,) = u(tps1) —u(ty), 7> Ri(7,u) is the approximation error of the first derivative
at the point ¢ = t;. Using the perturbation algorithm on the basis of representation (2)
we obtain the following system of equations:

Auf) ; 1A%y | | -
b Al = ften) + =5 k=it lon =01 u U =0.
Let the vector v, = u,(f) + Tu,(cl) (k = 2,...,n) be an approximate value of the exact

solution of problem (1) for t = t;, vx &~ u(tx). The following theorem is valid.

Theorem. Let A(t) be a self-adjoint positively defined operator in H with domain of
definition D(A) not depending on t. Let solution u(t) be sufficiently smooth function. If

D(A™(t)) = D(A™(0)) (m = 2,3),

[(A™ (") — A™(" N AT (s)|| < ot = ¢"|, V¢, s€[0,T], m=1,2,
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and
[(Althr) = 2A(0) + Alts1)) A (o) || < er®, k=1,...,n—1,

then there holds that
Hu(tk) _Uk” 20(7—2)7 k= 17"'7”'

On the Kinematical Invariants in Line Space
OsSMAN GURSOY
Maltepe University, Istanbul, Turkey

email: osmangursoy@maltepe.edu.tr

As known the geometry of a trajectory surfaces tracing by an oriented line (spear) is
important in line geometry and spatial kinematics. Until, early 1980s, although two real

integral invariants, the pitch of angle A\, and the pitch ¢, of an x— trajectory surface
were known, any dual invariant of the surface were not. Because of the deficiency, the
line geometry wasn’t being sufficiently studied by using dual quantities.

A global dual invariant, A, of an z— closed trajectory surface is introduced and shown
that there is a magic relation between the real invariants, A, = A\, —el, , [1]. It gives

suitable relations, suchas A, =27r—A, = § G, or A\, =27—a, = § g,ds and (, =
at = [ $(d, + d,)dudv which have the new geometric interpretations of an x—trajectory
surface where a, is the measure of the spherical area on the unit sphere, described by the
generator of x—closed trajectory surface and 9, and 0, are the distribution parameters
of the principal surfaces of the X (u;v)—closed congruence.

Therefore, all the relations between the global invariants, A\, , 4, , a., ai, 9., g5, K,
T, 0 and sy of x— c.t.s. are worth reconsidering in view of the new geometric explana-
tions. Thus, some new results and new explanations are gained. Furthermore, as a limit
position of the surface, some new theorems and comments related to space curves are
obtained [2, 3].

References
[1] O. Giirsoy, On the integral invariants of a closed ruled surface. J. Geom. 39 (1990),
no. 1-2, 80-91.

2] O. Girsoy, Some results on closed ruled surfaces and closed space curves. Mech.
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Parametrization of Euclidean Nearly Kahler
Submanifolds
ABBAS HEYDARI, NIKROOZ HEIDARI
University of Mohaghegh Ardabilbi, Ardabil, Iran

email: nikrooz.heidari@modares.ac.ir

At now one of the most important problem about Nearly Kahler manifolds Was raised
by Butruile in 2008. when he was trying to complete the proof of the Wolf-Gray conjecture
(this conjecture said that “Every nearly Kahler homogeneous manifold is 3-symmetric
space with its canonical almost complex structure [2]”) was faced this question “is possible
that every compact Nearly Kéahler manifold is a 3-symmetric space”? [1] to close this
conjuncture we studied in [3, 4, 5] isometric immersions f : M** — Q?"? from Nearly
Kéhler manifolds to a space forms of curvature ¢ with co-dimension p, for partially answer
this problems. in [3] furthermore of introduce of complex and invariant (under torsion of
intrinsic Hermitian connection) umbilic foliation we shown that each leaf of this foliation
is itself a 6-dimensional locally homogeneous Nearly Kéahler manifolds and in suitable
direction of complex and invariant umbilic distribution each leaf of related foliation on a
open set of complete base manifold M is Homothetic with 6-dimensional term in Nagy
decomposition (at least locally and up to a finite cover). In [4] with further study of each
leaf of complex and invariant umbilic foliation we put suitable condition and a almost
complex with compatible metric on induced foliation space such that this space convert
a Nearly Kahler manifolds. then we can find a condition that under satisfying it the
submanifolds can be decomposed. this decomposition like Nagy decomposition but in
this new decomposition the 6-dimensional term is locally homogeneous.

In this article and [5] our goal to more recognize of isometric immersions like f that
this map immersed isometrically a nearly Kéhler manifolds in Euclidean space. at first
for this purpose we introduce a complex and compatible metric on foliation space related
to complex and invariant umbilic foliation. this new structure under suitable condition
define a Quasi-kéhler on this foliation space. with used this foliation f parametrized on
leaves and foliation space.this parametrization separately do in codimention p =1, p = 2
and p > 3. this describtion of f abels us to construct new example of Nearly Kéhler
Euclidean submanifolds in a certain codimension. for example in this article was shown
how to build a 18-dimensional Nearly Ké&hler Euclidean heypersurface, Nearly Kéahler
Euclidean submanifololds of codimension two and some general sample.
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S(2, D)-Equivalence Conditions of Control Points

of Dual Planar Bezier Curves

MUHSIN INCESU, OSMAN GURSOY

Department of Mathematics Education, Mus Alparslan University, Mus, Turkey

email: m.incesu@alparslan.edu.tr

Let D = {A=a+c¢ea*:a,a* € R;e* =0} be set of dual numbers and D* = DzD
be the dual vector space. Then in this study we investigated the S(2, D)— equivalency
conditions of control points given in dual plane D? in terms of results of the first funda-
mental theorem with similarity transformations’ group S(2, D) in dual plane. Finally the
similarity conditions of dual planar Bezier Curves are expressed.
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Boundary Value Problem of the Vallee—Poussin
for the Differential Equations Unsolved
with Respect to Highest Derivative

S. V. IsraiLov?, A. A. SAGITOV?

'Chechen State Pedagogical University (Petrozavodsk State University), Grozny, Russia
2Chechen State University (Chgu), Grozny, Russia

email: segitov@mail.ru

For a differential equation

F(z,y,y,...,y™) =0, (1)
we consider the problem with the terms

o =0, i=1,...7m k=012... ,m+1, (2)
a:a0<a1<a2<...<am<am+1:b’ To+ T+ 4 Tme1 =,

me{0,1,....n—2}, n€{1,2,....,.n—2} (k=0,1,...,m—1).

It is believed that the function F' is continuous in all arguments and there exist continuous

partial derivatives ‘?9—5 , % ,k=0,1,...,n, and % #0.
In place (1) take the differential equation
N OF (i) . OF
; ayu)y( '+ 5
y(n+1) = —— oF - (I)(xayayla"'7yn)> (3)
ay("L)
is equivalent to the integro-differential
m_ [ / (") dt 4
y(z) <x7y7y7"'7y ) ) ( )

a

with the condition yég)) = 0. For (4) we study the task conditions (2) and proved the

theorem of existence and uniqueness of solution [1] with specific restrictions on the &,

F, %—5, %, i = 1,...,n. The solution of the problem (2),(3) will be the solution of

equation (1).
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A Numerical Method for Solving Integral
Equations by Modified Hat Functions

YOUSEF JAFARZADEH

Sama Technical and Vocational Training College, Islamic Azad University,
Karaj Branch, Karaj, Iran

email: Mat2j@yahoo.com

In this paper, modified hat basis functions is proposed for solving system of linear and
nonlinear Fredholm integral equations of the second kind. This proposed method can be
applied to Voltra integral equations. We briefly describe some properties of Modified Hat
Functions. we indicate a new numerical method to solve the system of Fredholm integral
equations of the second kind The convergence rate of this method in the nodal points
is too high so, it also allows us to get approximate values at other points by another
methods based on interpolation. Numerical examples are given to illustrate the efficiency
and accuracy of the method.

Keywords: Integral equations, Modified hat functions, Fredholm system of integral
equation.

Error Analysis of Fuzzy Fredholm Integral
Equations by the Splines Interpolation
YOUSEF JAFARZADEH

Sama Technical and Vocational Training College, Islamic Azad University,
Karaj Branch, Karaj, Iran

email: Mat2j@yahoo.com

In this paper,a numerical procedure is proposed to solve the fuzzy linear Fredholm
integral equations of the second kind using splines interpolation. Error analysis is investi-
gated. Numerical examples of this approach have been shown advantages compared with
the Lagrange method.
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Non-Classical Problems of Statics of
Linear Thermoelasticity of Microstretch Materials
with Microtemperatures

ASLAN JAGHMAIDZE, GIORGI KARSELADZE, GURAM SADUNISHVILI

Department of Mathematics, Georgian Technical University, Thbilisi, Georgia

emails: omari@gmail.com; gkarseladze@Qgmail.com; g.sadunishvili@mail.ru

In this paper considers the static case of the theory of linear thermoelasticity of mi-
crostretch materials with microtemperatures. The representation formulas derived in the
paper for a general solution of a homogeneous system of differential equations are ex-
pressed in terms of four harmonic and four metaharmonic functions. These formulas are
very helpful in solving a lot of particular problems for domains of concrete geometry. An
application of such a formula to a (IIT)" and (IV)" type boundary value problem for the
ball is demonstrated. Uniqueness theorems are proved. Explicit solutions are constructed
in the form of absolutely and uniformly convergent series.

A Condition of Existence of Neutral Surfaces
for the Shells Consisting of Binary Mixtures
ROMAN JANJGAVA
I. Vekua Institute of Applied Mathematics of 1. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: roman.janjgava@gmail.com

In the present paper the shells consisting of binary mixtures are considered [1]. Based
on I. Vekua’s work [2], the question of existence of neutral surfaces in such shells is
studied. By neutral surface is called a surface which belongs to a shells but is not subject
to tensions and compressions by the deformation of the elastic body.

Acknowledgement. The designated project has been fulfilled by a financial support
of Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14).
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Field of Stresses in Cylindrical Specimen

of the Rocks and Other Hard Materials
at Indirect Test of Tensile Strength

LEVAN JAPARIDZE
Gr. Tsulukidze Mining Institute, Thilisi, Georgia

email: levanjaparidze@yahoo.com

In this work is analyzed the fields of stresses in a cylindrical specimen of hard materials
in the indirect, so called Brazilian test.

Brazilian test, developed by Carneiro and Barcellos (1953), has found widespread
application because of its practical convenience. The International Society for Rock Me-
chanics (ISRM, 1988) officially suggested the indirect method for determining the tensile
strength of rock materials. The standard test method can be followed according to Amer-
ican Society for Testing and Materials (ASTM, 2008) for different kinds of anisotropy and
homogeneity of testing rocks, concretes, glass, and many other brittle and not quite brit-
tle materials (e.g. nuclear wastes (ASTM C1144-89, 2004), asphalt concrete etc.). The
European standard for testing the tensile strength of concrete specimens was approved
by the European Committee for Standardization (CEN 12390-6: 2000).

In the vast majority of different analytical and numerical solutions and improved
schemes of indirect test of tensile strength of materials, main attention of researchers is
placed on the tensile and compressive normal stresses, or deformations in the diametrical
section of disk specimen. As for the deviatoric shear stresses in the nearby off-diametrical
chordal sections, their role in the formation of cracks in the sample long has been seen
qualitatively, but they hardly was studied quantitatively, although, as is known, deviatoric
stress controls the distortion, and many of the criteria for failure are concerned with
distortion.

This study underlines this problem on the basic of the results of experimental and
analytic investigations and presents the quantitative assessment of principal normal and
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shearing stresses in diametrical as well as nearby chordal sections of a cylindrical specimen,
where they can reach critical intensity and create initial local tensile-shear cracks.

The contact width and pressure between loading jaws and cylindrical specimen, ob-
tained through solution of the contact problems, are used as boundary conditions. Ana-
lytic solutions are derived in two dimensional closed form, applying N. Muskhelishvili com-
plex potentials method. Numerical examples solved using computer program MATLAB.
The results are compared with those of an experimental study of mechanical behavior of
brittle, isotropic, homogenous rock materials.

About Reserved Systems with Repair and
Replacement Bodies

REVAZ KAKUBAVA!, SOLOMON KURTANIDZE?, GRIGOL SOKHADZE?,

!Georgian Technical University, Thilisi, Georgia
21. Javakhishvili Thilisi State University, Thilisi, Georgia

emails: r.kakubava@gmail.com; solokurtanidze@hotmail.com; grigol.sokhadze@tsu.ge

Reserved system with one repair and one replacement bodies is considered. General
task is raised and studied, particular cases are given.

Short Review of Scientific and Pedagogical
Activity of Merab Mikeladze

MURAD KALABEGASHVILI
Agricultural University of Georgia, Thilisi, Georgia

email: m.kalabegashvili@agruni.edu.ge

Merab Mikeladze first started to investigate anisotropic plastic shells on the basis
of Kirchhoff-Liav hypothesis and a rigid-plastic model. The way offered him gives the
chance to establish additional dependences between internal forces that it considerably
expands a circle of statically solvable tasks. On the basis of his version the rigid-plastic
model theorems of extreme balance for the shallow rotating shells and the stretched bent
circular plates were stated. The received model of anisotropic shells was developed for the
brittle-plastic shells, that gave him possibility to state a problem for the design of evenly
strong shells.
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Merab Mikeladze directed department of Applied Mechanics in the Mathematical In-
stitute from the moment of the basis of the department until the end of his life. Subject of
department were researches of elastic and elastoplastic thin plates and shells taking into
account piecewise changes of separate physical, geometrical and kinematic parameters.
Many non-classical problems of thin plates and shells were solved in the department.

In 1960-1982 Merab Mikeladze was a head of the Department of Construction Me-
chanics (Construction Mechanics Chair) at the Georgian Polytechnical Institute. In mod-
ernization and improvement of educational process the significant role was played by the
textbooks written by him in Georgian.

Blow up of Solutions of Nonlinear Wave
Equations with Positive Initial Energy
VARGA KALANTAROV
Department of Mathematics, Ko¢ University, Istanbul, Turkey

email: vkalantarov@ku.edu.tr

We will discuss the problem of blow up of solutions with arbitrary positive initial en-
ergy of the Cauchy problem and initial boundary value problems for damped and strongly
damped nonlinear wave equation, damped Boussinesq equation and related systems of
equations. Recent results on blow up of solutions of initial boundary value problems for
generalized Korteweg de Vries equation and nonlinear Schrodinger equation will be also
discussed.

The Plane Problems of the Theory of Elasticity
for a Doubly-Connected Domain Bounded
by the Convex Polygons
GIORGI KAPANADZE

I. Vekua Institute of Applied Mathematics & A. Razmadze Mathematical Institute
of 1. Javakhishvili Thilisi State University, Thbilisi, Georgia

email: kapanadze.49@mail.ru

In the present paper we consider a plane problem of elasticity for a doubly-connected
domain bounded by the convex polygons. The problem is solved by the methods of
conformal mappings and boundary value problems of analytic functions. The sought
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complex potentials are constructed effectively (in the analytical form). Estimates of the
obtained solutions are derived in the neighborhood of angular points.

Acknowledgment. The designated project has been fulfilled by a financial support
of Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14).

The Approximate Solution of a Boundary
Value Problem by Grid Method
Using Sh. Mikeladze Formula
LiANA KARALASHVILI
University of Georgia, Thilisi, Georgia

email: liana.qaralashviliQyahoo.com

On the basis of the general formula of Sh. Mikeladze a difference scheme of Dirichlet
problem for the Poisson equation is received. This approach generates centrosymmetric
matrices of certain properties. The approximation and convergence order of the difference
scheme, which depends on the number of knots according to both variables, is established.

On Some Measurability Properties of Additive
Functions
TAMAR KASRASHVILI

Department of Mathematics, Georgian Technical University
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Thilisi State University
Thilisi, Georgia

email: tamarkasrashvili@Qyahoo.com

Let E be a ground set and let M be a class of measures on £ (we assume, in general,
that the domains of measures from M are various o-algebras of subsets of E).

We shall say that a real-valued function f is absolutely non-measurable with respect
to M if there exists no measure p € M such that f is gy-measurable (about this definition
see [1], [2]).

It is well known that every additive function f which is not of the form
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for all z € R, is nonmeasurable with respect to the Lebesgue measure.
The next statement is true, which is generalization of above-mentioned property from
a certain point of view.

Theorem. There exists additive function f : R — R such that:
(a) f is absolutely monmeasurable with respect to the class of nonzero sigma-finite
diffused measures;

(b) f nonmeasurable with respect to every translation invariant measure on the real
line R, extending the Lebesque measure.
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About a Safety Issue of Computer System

NuGzAR KERESELIDZE, BEQA TOKLIKISHVILI

Mathematical and Computer Science Department, Sokhumi State University,
Thilisi, Georgia

email: nkereselidze@sou.edu.ge; toklikishvili.beqa@mail.ru

The computer system included in a World Wide Web - the Internet, with a high
probability is exposed to attacks from malefactors. Therefore abilities and knowledge of
how to protect the computer system are extremely important.

In work the possibilities of protection a Host file which is most vulnerable in case of
attacks of hackers are considered. The software product for control of a correctness of
content a HOST file is offered. Efficiency of the offered protection method a HOST file is
compared to work known and popular ant viruses.

References
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About Blocking and Unblocking Websites

NuGzAR KERESELIDZE, GEORGE SANAIA, BEQA TOKLIKISHVILI

Department of Mathematical and Computer Sciences, Sokhumi State University,
Thilisi, Georgia

emails: nkereselidze@sou.edu.ge; giooosanaia@gmail.com; toklikishvili.beqa@mail.ru

Today the Internet resources in the educational process has become common prac-
tice. More and more schools and teacher training materials on a variety of the Internet
resources, such as for example: youtube; social network — facebook; free hosting ucoz,
hostinger and more.

In addition, some campuses are being blocked by the employees working time under
the pretext of misuse of the Internet resources. The restriction of access to resources
of students can not obtain the relevant knowledge. Therefore, it becomes necessary to
be able to block the removal of at least - the teacher, the students in order to pave the
necessary access to the resource. Here we encounter a problem, because the majority of
pupils and students are not aware of how resources are being blocked on the Internet and
how you can access them.

The report concerns the methods of blocking the Internet resources, and removing
their decision ways. Proposed as commonly practiced, as well as our own new methods
and programs.
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Using Graphing Calculators in the Mathematics
Teaching Process
MARINA KHARAZISHVILI
[lia State University, Thilisi, Georgia

email: marina.kharazishviliQiliauni.edu.ge, kharaz777@Qgmail.com

Nowadays in many foreign countries a graphing calculator is widely used in the pro-
cesses of teaching and examination students. Moreover, during some exams in mathemat-
ics one of necessary requests is extensive usage of graphing calculators, because quite often
the contents of suggested tasks substantially need their application. In fact, a graphing
calculator is a handheld calculator that is capable for plotting graphs, solving diverse
systems of equations, and performing many other tasks with variables.

Graphing calculators are optimal tools of information technologies. Their technical
characteristics have many advantages, namely, calculators are of small size and weight,
are actually independent of powerful energy sources, are easy in usage, and do not need
any special software in the form of computer mathematical systems. Besides, for applica-
tions of graphing calculators a computer-equipped classroom is not necessary for practical
lessons and seminars.

As a long-term experience shows, students encounter essential difficulties when they
are concerned with functions and their graphs, with functional relations between dates
and variables, with solving polynomial and transcendental equations, etc. The implemen-
tation of graphing calculators in the above-mentioned process enables students to make a
visualization of the required results and to easily vary initial parameters of the suggested
tasks. This circumstance, in its turn, leads to an essential improvement of the effective-
ness of the studying process and its quality, by involving in it a lot of new tasks and the
methods of their solving.

On the Cauchy Integrals with the Weierstraf3 Kernel

NINO KHATIASHVILI

[. Vekua Institute of Applied Mathematics of 1. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: ninakhatia@gmail.com

We consider the integral of the type

W(z) = - / S(H)C(E— )i, (1)

T 2mi
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where Ly is a piece-wise smooth line, ¢ is the Weierstral zeta-function [1].The function
W (z) is the Cauchy type integral [2] and was investigated in [3, 4]. The integral (1)
has various applications in hydrodynamics [5, 6]. The inversion formula for the integral
equation W(ty) = f(to), f € H*, ty € Ly, was obtained in [7, §].

Here is discussed the problem of existence of the solution of the class H* of the
nonlinear integral equation A[W (ty)] = ¢(to), to € Lo, where A is the nonlinear operator.

Keywords and phrases: Cauchy integrals, Weierstrafl functions.
AMS subject classification: 45E05, 45G05.
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Optimal Forecasting for Risky Asset Price
Evolution in the Models Represented
by Gaussian Martingale
ZAZA KHECHINASHVILI

Department of Probability and Statistics, I. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: khechinashvili@Qgmail.com

We have considered two models of risky asset price evolution in discrete time, which are
driven by Gaussian martingale. One of these schemes is characterized by so called disorder
moment, that is random moment in which distribution law change occurs. Properties
of both models are studied and optimal in mean square sense forecasting formulas are
obtained.

Topology of Stable Quadratic Mappings
into the Plane
GIORGI KHIMSHIASHVILI
Ilia State University, Thilisi, Georgia

email: gogikhim@yahoo.com

We deal with the topological properties of pairs of real quadratic forms considered as
mappings into the plane. First, we present algebraic criteria of stability and properness
for such mappings in terms of minors of a certain explicitly constructed matrix. Next,
using these criteria we show that both stability and properness properties are fulfilled for
a dense open subset in the space of pairs of quadratic forms, and the same holds for re-
strictions of quadratic mappings to algebraic submanifolds of the source space. The latter
fact enables us to obtain some new results in an important special case of numerical range
of complex non-singular matrix considered as a mapping from an odd-dimensional sphere
into the plane. In particular, our results combined with the Whitney’s classification of sin-
gularities of stable mappings imply that, for a generic non-singular matrix, the numerical
range mapping has only singularities of the fold and cusp type. A natural and seemingly
unexplored problem is to find formulae for the number of such cusps for a concrete matrix
and obtain exact upper estimates for the number of cusps of all non-singular matrices
of fixed size N. We deal with this problem in a wider context of estimating topological
invariants of stable quadratic mappings not necessarily coinciding with a numerical range
mapping. Specifically, we concentrate on the calculation and estimation of the number
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of cusps of stable pairs of quadratic forms. Explicit formulae for the number of cusps are
given using the so-called signature formulae for topological invariants developed in our
previous papers. Moreover, we give a general upper estimate for the number of cusps and
show that it is exact for N = 2. The same estimate appears exact for numerical range of
complex non-singular (2 x 2)-matrices.

Morse Functions on Concentric Configurations
of Points

GIORGI KHIMSHIASHVILI, NATIA SAZANDRISHVILI

Ilia State University, Thilisi, Georgia

email: gogikhim@yahoo.com

We consider configurations of N points belonging to a system S of N concentric circles
in the plane under the assumption that each circle contains one of the given points.
The totality X (S) of such configurations is naturally identified with the N-dimensional
torus T'N and we are concerned with the investigation of critical points of certain smooth
functions on X (5). Specifically, we are interested in the two functions P and A defined
as the perimeter and oriented area of configuration. Our main results can be formulated
as follows.

Theorem 1. For any system S of concentric circles functions P and A are Morse
functions on X(S).

Theorem 2. For each of these functions, the number of critical points can be calculated
as the signature of a certain algorithmically constructible quadratic form.

Theorem 3. Morse index of a critical configuration can be calculated from the combina-
torial structure induced on any of diameters of the outer circle.

Theorem 4. For ecach of these functions, the critical values can be calculated as the real
roots of a certain algorithmically constructible polynomial with real coefficients.

These results arose from certain conjectures suggested by general paradigms of critical
theory on configuration spaces developed by the first author. We will also present much
more detailed results for N = 3 and N = 4 obtained by the second author. Some
generalizations and related results will also be outlined.
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On the Strong Summability of Fourier-Laplace Series
VLADIMIR KHOCHOLAVA
Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: ladob54@mail.ru

Let R* be a k-dimensional Euclidean space and let S¥1 = {x : z € RF;|z| = 1} be
the unit sphere.

If fe L(S*1), k > 3, then the series S(f;x) = Y. YA(f; ) is called the Fourier—
n=0

Laplace series of f, where Y(f;x) is a hyperspherical harmonic of f of order n, A = k—gZ

is a critical exponent.
The Cesaro (C, «)-means of the series S(f;x) are defined as follows

n

A(fra) = Ai S AL SA (),

m=0

where S (f;x) is a partial sum of the series S(f;x).
A Fourier-Laplase series is (H, g, a)-strong summability in the point z if following
assertion is valid:

tim 3" o (fi) — Fl)] =0

Let f € L,(S*). We call that the point x € S* is a D,-point of f if

. 1 h B p
e [ |, )= s ) =0

We call that the point z € S* is a Dy-point of f if points z and z* are D,-points,
where z* is diametrically opposite point of z.

Theorem. If f € L,(S*), p > 1, then Fourier-Laplase series is (H, q,«)-strong summa-
bility for each Dy -point, where % + % =1landa>\— %.
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Determination of the Parameters of Refracted
Wave Stress in the Rock

S. KHOMERIKI, D. KHOMERIKI, G. SHATBERASHVILI, E. MATARADZE,
M. LOSABERIDZE

LEPL Grigol Tsulukidze Mining Institute, Tbilisi, Georgia

email: marinalosaberidze@rambler.ru

For preservation of natural structure of facing stone blocks, mined by explosion tech-
nologies, the most efficient decision is attained by the transfer from the stone quasi-static
load to the dynamic one by means of the linear charge of the explosive which detonate
by rate of (7-7,5) km hour-1 and are characterized by very small critical diameter or
by the use of original construction of mean-power external charges, which transfer the
explosion impulse to the rock by means of the blast-hole filling water column. In any
case when the shock wave reaches the interface of two media (in this case, the blast-hole
wall), then its reflection and refraction takes place. For determination of the parameters
of the refracted wave at the rock dynamic load by means of the equations, describing its
state, the equations set is derived on the basis of hydrodynamic main equations, of the
laws of momentum and mass conservation, which yields the parameters of the refracted
wave when the angle of incidence, & = 0°. The analytical expressions were derived for the
parameters of the refracted wave by means of the prefrontal parameters of undisturbed
part of the body when « varies in the range from 0° to 90°. The equations are readily
solved if the elastic characteristics of exploded rock are known.

The work was financed by Shota Rustaveli National Science Fundation (Grant Project
NFR/171/3-180-14).

On the MADM Problem Based on TOPSIS
with Triangular Hesitant Information
IRINA KHUTSISHVILI

Department of Computer Sciences, 1. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: irina.khutsishviliQtsu.ge

The present work proposes an evaluation methodology for multi-attribute decision-
making (MADM) problem based on the TOPSIS (Technique for Order Performance by
Similarity to Ideal Solution) method in fuzzy environment. In proposed approach both
the values and weights of the attributes take the form of triangular fuzzy numbers, given
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by all decision makers. For the processing of the triangular hesitant information the
triangular hesitant fuzzy TOPSIS is developed. The ranking of alternatives is made in
accordance with the proximity of their distance to the fuzzy positive-ideal and fuzzy
negative-ideal solutions. In this work the hesitant weighted Hamming distance is used.
The report provides an example clearly illustrating the process of decision-making based
on the proposed methodology.

Keywords: Multiple-attribute decision-making, fuzzy TOPSIS approach, hesitant
fuzzyset, triangular fuzzy number.

About Application of Data Mining Methods Teaching
Research Methods for Managements Faculties
ABEN KHVOLES
Bar Ilan University, Ramat Gan, Israel

email: abenkh@gmail.com

In the report I will tell how to use Data Mining methods during teaching research
methods for management and finance

Analysis of Rotating Circular Ring Disk
with a Constant Thickness with Rigidly Fixed
Internal Circuits
G. KipiaNI', D. JANKARASHVILI?, A. TABATADZE?

'The Georgian Aviation University, Thilisi, Georgia
2Georgian Technical University, Thilisi, Georgia

email: gelakip@gmail.com

Dynamic studies of modern high-speed electro-mechanical actuators are interfaced
with the following view of the elastic properties of mechanical transmission elements,
which, in turn, requires further improvement of methods and technologies related to
the optimization of parametric and structural synthesis of the systems studied. This
article discusses the methodological approaches and original mathematical relationships,
to further improve the dynamic synthesis methods of drive systems with elastic ties to
the mechanical parts. Bending elastic circular disk in the centrifugal force field reduces to
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the solution of two differential equations with variable coefficients. The solution of these
equations is more convenient to carry out by the method proposed by M.Sh. Mikeladze.
Rotary disc rigidly fixed in the centrifugal force field leads to two differential equations
with variable coefficients. These differential equations are reduced to a single integral
equation of Volterra type of the second kind proposed by M.Sh. Mikeladze. Numerical
analysis revealed that the limiting ratio between the angular speed of the disc and the
intensity of a load stage in view of the elastic tensile centrifugal forces and without them
is within 2.42.

Plate’s Optimization in As ircrafts

GELA KIPIANI', AKAKI PARESISHVILIZ, NINO CHORKHAULI®

1Georgian Aviation University, Thilisi, Georgia
email: gelakip@gmail.com

2Georgian Technical University, Thilisi, Georgia
email: akakifaresishviliQyahoo.com

3Georgian Technical University, Thilisi, Georgia

The optimization of structures, in particular, arrangement of reinforcing elements
(edges) and distribution of material between this ribs and the plate is not less important
than the estimation of their reliability.

The optimization problem is extremely important in such structures as aircrafts, whose
weight reduction with maintaining the reliability is very important.

In the present paper for structurally orthotropic plates are considered the discrete as
well as the continual schemes. Studies have been carried out on the basis of the theory
of nonlinear buckling that takes into account the interaction between general buckling
of plate edges and local buckling. The results of the experimental research of reinforced
plates are also presented.
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Stability of Thin-Walled Spatial Systems
with Discontinuous Parameters

GELA KiIPIANI', LERY ZAMBAKHIDZE?, GIORGI REKHVIASHVI®?

1Georgian Aviation University, Thilisi, Georgia
email: gelakip@gmail.com

2Georgian Technical University, Thilisi, Georgia
email: leri.zamba@mail.ru

3Georgian Technical University, Thilisi, Georgia
email: malnikol@rambler.ru

In the paper in the method of calculation of plates and shells with holes and cuts
under conditions of linear and nonlinear deformation that gives the possibility to define
with same accuracy stresses and moments in the continual area, as well as in the adjacent
of cut edges and vertices areas, is proposed.

The obtained formulas for calculation of shells having ribs and cuts give the possibility
to describe the change of singularities of all components of mode of deformation in adjacent
of the violation of regularity to reflect in loading process changes and re-distribution of
the stresses and moments.

A simplified version of solution is developed and investigated.

On a Classification of Sets and Functions from
the Point of View of Their Measurability

ALEKS KIRTADZE
Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: kirtadze2@yahoo.com

It is natural, instead of the question of investigating the measurability of sets and
functions with respect to a concrete measure p on ground set F, to turn attention to
the more general question of investigating the measurability of sets and functions with
respect to a given class M of sigma-finite measures on E.

This approach seems to be a natural and helpful generalization of the classical defini-
tion of the measurability of real-valued functions and sets with respect to a fixed single
measure i on F. According to this general approach, if M is a given class of o-finite
measures on F, then all real-valued functions f defined on E can be of the following three
categories:
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— absolutely non-measurable functions with respect to M (i.e., all those functions f
which are not measurable with respect to every measure from M);

— relatively measurable functions with respect to M (i.e., all those functions f for
which there exists at least one measure y from M (certainly, depending on f) such that
f turns out to be p-measurable);

— absolutely (or universally) measurable functions with respect to M (i.e., all those
functions f which are measurable with respect to any measure from M).

About of this approach be found [1], [2].
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Fundamental Inequalities for Trigonometric
Polynomials in New Function Spaces
and Applications
VAKHTANG KOKILASHVILI}?, TSIRA TSANAVA?

'A. Razmadze Mathematical Institute of 1. Javakhishvili Thilisi State University, Thbilisi,
Georgia

2International Black Sea University, Thilisi, Georgia
3Georgian Technical University, Thilisi, Georgia
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Our talk deals with the fundamental inequalities for single variable trigonometric
polynomilas in new function spaces (variable exponent Morrey, weighted grand Morrey
spaces, etc.) and their applications to the trigonometric approximation in appropriate
vanishing new function spaces.
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Adaptive Forecasting With Alternative Techniques

TeEA KORDZADZE!, NINO GOGOLADZE!, PETRO I. BIDYUK?

Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia
Institute for Applied System Analysis, National Technical University of Ukraine “Kyiv
Polytechnic Institute”, Kyiv, Ukraine

emails: tea kordzadze@yahoo.com; gogoladze.nino73@mail.ru; pbidyuke 00@ukr.net

Today there exists a growing necessity for development of modern decision support sys-
tems (DSS) that would help decision makers (DM) in processing statistical /experimental
data and expert estimates, adequate model constructing, estimating of quality forecasts
for a given horizon and generating decision alternatives on the basis of the forecasts
generated. Appropriately developed DSS provides wide possibilities for adequate mod-
els development and computing high quality forecasts with the most different techniques
and combine the estimates generated by different methods. Another important task that
could be performed is system identification and taking into consideration possible proba-
bilistic and level uncertainties that usually create difficulties with mathematical modeling
of selected processes and computing forecasts as well as generating alternative decisions
1, 2].

Modern DSS are complex multifunctional computing systems with architecture of
hierarchical type. Define DSS formally as follows:

DSS = {DKB, PDP, DT, SE, PE, FG, DQ, MQ, FQ, AQ)},

where DK B - data and knowledge base; PDP - a set of procedures for preliminary data
processing; DT - a set of statistical tests for determining possible effects contained in
data; SE - a set of procedures for estimation of mathematical model structure; PE -
a set of procedures for estimation of mathematical model parameters; FG - forecasts
generating procedures; DQ, MQ, FQ, AQ the sets of statistical quality criteria for
estimating quality of data, models, forecasts, and alternatives, accordingly.

The DSS proposed has an architecture consisting of the following elements: the lan-
guage subsystem, the main processing unit that performs all necessary computations, data
and knowledge base (DKB), and subsystem visualizing intermediate and final results of
computing [2]. One of the possibility for solving the short-term forecasting problem in ran-
dom environment provide for such methods as various Kalman filtering techniques, hierar-
chical (in parameters) models, nonparametric and Bayesian regression, modern immune
and genetic algorithms based methodology. Very promising results could be achieved
with combined application of regression analysis techniques and modern intellectual data
analysis approaches.
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Cofinitely E-Supplemented Modules
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In this work, cofinitely e-supplemented modules are defined and some properties of
these modules are investigated. It is proved that any sum of cofinitely e-supplemented
modules is cofinitely e-supplemented. It is also proved that every factor module and every
homomorphic image of a cofinitely e-supplemented module are cofinitely e-supplemented.

Key words: Cofinite Submodules, Essential Submodules, Small Submodules, Sup-
plemented Modules.

Results

Definition 1. Let M be an R-module. If every cofinite essential submodule of M has a
supplement in M, then M is called a cofinitely e-supplemented module.

Proposition 2. Let M be a cofinitely e-supplemented module. Then M /RadM have no
proper cofinite essential submodules.

Lemma 3. Any sum of cofinitely e-supplemented modules is cofinitely e-supplemented.

Lemma 4. Fvery factor module a cofinitely e-supplemented module is cofinitely e-
supplemented.

Corollary 5. Every homomorphic image of a cofinitely e-supplemented module is cofinitely
e-supplemented.
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Proposition 6. Let R be a ring. Then g R is e-supplemented if and only if every R-module
is cofinitely e-supplemented.
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Unconditional Convergence of Random Series
VAKHTANG KVARATSKHELIA

N. Muskhelishvili Institute of Computational Mathematics of the Georgian Technical
University;
Sokhumi State University, Thilisi, Georgia

email: v_ kvaratskhelia@yahoo.com

Let X be a real Banach space, (2,4, P) — be a probability space. By a random
element with values in X we mean a separably valued Borel measurable mapping €2 to
X. Let (&), be e sequence of random elements with values in X.

Definition. A random series ) & is called a.s. unconditionally convergent in X, if there
k=1
exists a set g € A of full probability (P(£2) = 1), such that the series ) & (w) converges

k=1
unconditionally in the norm topology of X for any w € €. (i.e. for every permutation 7

of the integers the series ) & (w) is convergent for all w € Q).
k=1

It is easy to see that under the proposed definition the equivalence between a.s. uncon-
ditional and absolute convergence of random series in the finite dimensional case remains
valid, but for the infinite dimensional case according to the well-known Dvoretzky-Rogers
theorem this is not true.
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oo

It is clear that if the series ) & converges a.s. unconditionally then every its per-
k=1

mutation is a.s. convergent as well. The converse assertion is not true even in the one

dimensional case, because the a.s. unconditionally convergence of all permutations does

not provide the existence of a set of convergence with full probability. The corresponding
(o]

example is the series ) %ek, where (g;);-, is a sequence of independent random variables
k=1

with distribution Ple, = —1] = Plep = 1] = 3, k = 1,2,.... It is obvious, that every

oo o0
permutation of the series Y 1ej is a.s. convergent since Y 75 < 00, at the same time
k=1 k=1

oo o0
this series is not a.s. unconditionally (absolutely) convergent since Y. |1ex| = 3 = oc.
k=1 k=1

The presentation is mainly based on the results of the paper [1].7Here the a.s. uncon-
ditionally convergent random series are investigated. The connection of the a.s. uncon-
ditionally convergence with the geometry of spaces is established as well.

References

[1] V. Kvaratskhelia, Unconditional convergence of random series and the geometry of
Banach spaces. Georgian Math. J. 7 (2000), no. 1, 85-96.

On Statistical Estimation of Coefficients of the
Ornstein—Uhlenbeck Processes
LEVAN LABADZE
Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: levanlabadze@yahoo.com

We consider stochastic differential equation in Hilbert space of Ornstein—Uhlenbeck
type. For estimation of the coefficients of drift and volatility we use the method of
maximal likelihood estimation and minimum of second moment method. Consistency
and asymptotic normality are proved.
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Numerical Modeling of Fires in the Road Tunnels
and Dynamic of Distribution of Damaging Factors
O. LancHAvA'?, G. NOZADZE?

!Georgian Technical University, Thilisi, Georgia
2Gr. Tsulukidze Mining Institute, Thilisi, Georgia

emails: o.lanchava@yahoo.com; g nozadze@yahoo.com

The article discusses fire security issues in road tunnels with the longitudinal ven-
tilation system. Heat Release Rate of fire is 5-30 Mw., as it’s required by normative
documents of European Union.

In present paper the dynamic of spreading of fire damage factors (temperature, con-
centrations of toxic gases, visibility) for different boundary condition of ventilation system
was studied. In this case, we have considered the quickly flammable fuel fire,that quickly
take maximal value of HRR.

Modeling has been fulfilled by software Pyrosim 2015, which was based on FDS
method. This software gave possibility to calculate characteristic values for damage fac-
tors of fire and obtain 3 D dynamic map of distribution for each factor in the tunnel.

The analysis of calculations give possibility, for scenarios programming of the devel-
opment of specific fire hazards, calculate the spatial and time scale of spread of damage
factors, which gives the possibility to define the critical time of evacuation of people from
each factors, which is necessary for right planning of effective rescue service.

This work was supported by Shota Rustaveli National Science Foundation of Georgia
AR/61/3-102/13.
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Strong Coupling Constant from 7 Decay
BADRI MAGRADZE

Department of heoretical Physics, A. Razmadze Mathematical Institute of
I. Javakhishvili Thilisi State University, Thilisi, Georgia

email: magr@Qrmi.ge

We extract numerical value for the strong coupling constant «a; from final ALEPH(2013)
T-lepton decay data on vector non-strange spectral function. The distinguished feature of
our procedure is that we employ the global quark-hadron duality in the limited interval
of the energy squared variable s. < s < m?, \/s. > Aqcp, where s, is the onset of the
perturbative QCD continuum and Aqcp denotes the QCD scale. On this duality interval,
we write Finite Energy Sum Rules (FESRs) taking standard “spectral weights” wy(s)
(k,1=10,1...) determining spectral moments of the invariant mass distribution [1]. The
non-perturbative contributions from the QCD condensates are ignored. These sum rules
are used together with the chirality constraint, the sum rule that follows from the absence
of the dimension d = 2 operator in the chiral correlator. We have performed several
determinations of the strong coupling constant a, and the duality point s. combining
different wy; based FESRs with the chirality sum rule. The error analysis is performed
using covariance matrixes provided by ALEPH. The numerical values for the parameters
obtained from different determinations are found to be consistent among themselves. Us-
ing the FESR with the kinematic weight, wg o, we obtain (in the MS scheme at N3LO)
the following values: as(m?) = 0.322 £ 0.011eyp. (8. = 1.69 + 0.03 GeV?) using Contour
Improved Perturbation Theory and a,(m?) = 0.298 £ 0.012,,, (s. = 1.69 & 0.03 GeV?)
using fixed order perturbation theory.
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Description of Income and Substation Effect by
Using Slutsky Identity
DALT MAGRAKVELIDZE
Department of Computing Mathematics, Georgian Technical University, Thilisi, Georgia

email: dali.magraqvelidze@Qgmail.com

The income effect Az, is a process of changing demand on goods 1, when changing
amount of income from m’ to m and living the price p} of goods 1 intact Az} = x1(p}, m)—
x1(pl,m’).

The overall change of demand Az is a price change related to the change of demand
while income is the same Ax; = z1(p}, m) — z1(p1,m). It can be written also as Ax; =
Ax] + Axf.

r1(p',m) — x1(p1,m) = [xl(Pﬁam/) - 951(1?177”)] + [1’1(29/177”) - Jfl(pﬁam/)]'

This equality shows, that total change of demand equals to the sum of substitution
effect and income effect. This equality is called Slutsky identity [1].

When we are presenting Slutsky identity using relatively changes, it turns out that it
is convenient to define Az]" as a reciprocal number of a income effect:

Azt = z1(py,m) — z1(ph, m) = —Aaf
If we use this definition, the identity of Slutsky will look as: Az; = Az — Az]".
If we divide both sides by Ap;, we obtain:
Azy  Axf  Aap

Apy B Apy Ap,

or
Azry Az Azl

Apy N Ap; - Am o
this is identity of Slutsky expressed in terms of relatively changes.
It is possible to express Slutsky‘s identity by using differentials. Let x1(p1, m(p1)) be
demand function on goods 1, when the price of goods 2 is fixed and we know that income
is depending on goods 1°s price in such way: m(p;) = piw; + paws. Then we will have:

da(py, m(p1)) _ Oxy(p1,m) n Ox1(p1,m) dm(py)
dp op1 om dp
om(p1)
T 1
3p1 w1 ( )
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We know from Slutsky equation how demand is changing due to price changes, when

cash income is fixed.
0x1(p1, m) _ dzi(p1)  Oz(p1,m) . 2)
op1 opy om r

After substituting equation (1) into (2) we will obtain:

Ox1(pr,m)  Oxf(p1) = Ox(pi,m)
op1 - Op;y + om (= 21).

This is a suitable Slutsky’s identity.
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Bernoulli Type Time Series
NINO MAKATSARIA
Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: nini_makatsaria@yahoo.com

The sequence of random values is considered. The distribution of this data is un-
known. A method of construct the estimation of the distribution is given. Corresponding
asymptotical theorems are proved. Simulation results are given.
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The Analysis of Hydrodynamic and Mechanical
Processes Impact on Pressure Pipeline Durability
and Exploitation Reliability During Hydro

Aero-Mixtures Motion with Abrasive Solid
and Loose Admixtures in It

LEON MAKHARADZE
LEPL Grigol Tsulukidze Mining Institute, Thilisi, Georgia

email: lmakharadze@Qrambler.ru

Today total length of worldwide hydrotransporting system pipelines is up to several
thousand kilometers. These systems are used not only for one-phase liquid transportation,
but also for multi-phase hydro mixtures as well, which is the cause of the difficulties
in pipeline processes due to exploitation specific conditions. The condition of pipeline
internal surface and accordingly the strength of pipeline depend on their development
a lot, which also means its durability and reliability. Many theoretical researches and
also practical experiments are done by G. Tsulukidze Institute about hydrodynamical
processes and hydroabrasive wear, foreseeing all characteristics of analogical systems.
Namely, these processes definitely impact on the pipeline durability and exploitation
reliability, because during exploitation intensive wear of pipeline walls take place. During
hydrodynamical processes permanent changes of loading ranges on pipeline walls causes
their structural damage. All these have negative impact on pipeline reliability, accordingly
on its durability and generally on system exploitation safety. Therefore, the present talk
is devoted to reviews and analyses of the research results concerning above mentioned
processes.

Homotopy Groups of Infinite Wedge
LEONARD MDZINARISHVILI
Georgian Technical University, Thilisi, Georgia

email: l.mdzinarishviliQgtu.ge

In 1959 S. T. Hu for X VY wedge sum of pointed spaces (X, zo) and (Y, o) proved
that for n > 2 there is an isomorphism

7Tn<X7 \/Y7 UO) ~ Wn(Xa 1'0) S Wn(}/a yO) D 7Tn+l<X X YaX \ Y7 u0)7 (1)

where uy = (0, yo)-
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C. J. Knight in 1963 defined the weak product LY, of pointed topological spaces
(Yo, 90), w € Q, and proved that for n > 2 there is an isomorphism

LYw,y Zﬂ'n waw

where /0 is a base point of LY.
In the present work we consider an infinite wedge VY, w € 2, of pointed spaces
(Y,,4°) and prove that for n > 2 there is an isomorphism

(VYo 0°) m Y (Yo 1) ® ngr (LYo, VY, 40).
weN

In particular, if 2 is a finite set, then there is an isomorphism (1).

On the Forced Vibration of the Bi-Material Elastic
System Consisting of the Hollow Cylinder

and Surrounding Elastic Medium

MAHIR ALIGULU MEHDIYEV!»?, SURKAY AKBAROV!?

nstitute Mathematics and Mechanics of NAS Azerbaijan, Baku, Azerbaijan
2Azerbaijan State Economics University, Dept. Mathematics, Baku, Azerbaijan

3Yildiz Technical University, Dept. Mechanical Eng., Istanbul, Turkey

Mathematical modelling of the problems related to the study of dynamics of tunnels
and similar type constructions in many cases can be reduced to the study of the forced vi-
bration of the bi-material elastic system consisting of the hollow cylinder and surrounding
elastic medium. As an example for such modelling and study, in the present paper the
forced vibration of the aforementioned system caused by the radial time-harmonic forces
which act on the internal surface of the cylinder is considered. It is assumed that the
forces are point-located with respect to the central axis of the cylinder and the axisym-
metric problem is analyzed, according to which, the following field equations are satisfied
within the framework of the volume of each constituents of the system.

(k) (k) 2, (k) (k) 2, (k)
dorr n Doy’ n l(()'(k) G I p(k)(’) Uy dor n lo_(k) _ p(k)a&
or 0z r 60 otz Or r " oz’
ch) =R (err (k) 4 5(k) + E(k)) + 20 SZ), it =1rr,00,22; oF ) =2uPe 5’?, (1)
(k) (k)
0w _w? o _oud gy 1(0u | ou”
" or % r oz " 2\ Or 0z
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In (1) a conventional notation is used and the case where k = 1 (k = 2) relate to the
surrounding media (cylinder). Note that before writing the equations in (1) we introduce
the cylindrical system of coordinates associated with the central axis of the cylinder.
Assuming that the cylinder (surrounding media) occupies the region R — h < r < R
(R <r < o0)under —oo < z < +00 the corresponding perfect contact conditions on the
surface r = R and the following boundary conditions on the surface r = R — h are added
to equations in (1):

o) = —Poc™'8(z), o2 =0 at r=R—h. 2)

The foregoing mathematical problem is solved analytically by employing the Fourier trans-
formation with respect to z and using the corresponding algorithm developed in [1] the
originals of the sought values are found numerically. Numerical results on the frequency
response of the normal and shear stresses acting on the interface surface between the
constituents are presented and discussed.
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Some Algorithms of Solving the Systems of
Nonlinear Algebraic Equations on
Parallel Computing Systems
HAMLET MELADZE!, TINATIN DAVITASHVILI?

1St. Andrew the First Called Georgian University, Thilisi, Georgia
21. Javakhishvili Thilisi State University, Thilisi, Georgia
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Nowadays the use of computing systems with parallel processing of information for
numerical modeling of applied complex problems is a perspective direction. The systems
of the nonlinear algebraic equations are arising in the course of solution of many ap-
plied problems and a scope of application of numerical methods of nonlinear algebra is
rather wide, for example, the intermediate and final stages of the solution of practical
problems, described by nonlinear differential and integral equations. They can also arise,
as intermediate stages in problems of minimization or approximation of functions. The
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solving of such systems is one of complex problems in computational mathematics and it
demands, as a rule, essential computing resources. One of the ways to reduce the time of
the solution of such tasks is to use parallel calculations on the computing systems with
multiprocessors.

In the present work the iterative algorithm for solving the systems of nonlinear alge-
braic equations is constructed, taking into account the features of parallel calculations.
Speed of convergence of the offered iterative method is estimated.
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Solution of the Non-classical Problems of Statics of
Two-Component Elastic Mixtures for a Half-Space

DAviD METREVELI, DAVID BURCHULADZE

Department of Mathematics, Georgian Technical University, Thbilisi, Georgia

emails: datometreli@hotmail.com; dburchula@yahoo.com

In this paper we consider boundary value problems of statics of two-component elastic
mixtures for a half-space, when the normal components of partial displacement vectors and
the tangent components of partial rotation vectors are given on the boundary. Uniqueness
theorems of the considered problem are proved. Solutions are represented in quadratures.

Integral Functionals of Distribution Densities
and Their Derivatives
TINA MGELADZE
Department of Probability Theory and Statistic, Thbilisi State University, Thbilisi, Georgia

email: tikuna.mgeladzel3@gmail.com

In this work we study integral functionals of distribution densities and their derivatives.
We work on the problem of constructing recurrence Estimates for such functionals. To
estimate density and it’s derivatives, we use classical Rosenblatt-Parzen kernel estimates
and for functionals we make plug-in-estimator type argument. We study limit properties
of constructed recurrence.
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Management Tasks Formulation in Geopolitics
(Neural approach)
MIRANDA MNATSAKANIANI
Akaki Tsereteli State University, Department of Mathematics, Kutaisi, Georgia

email: mira mna@mail.ru

Recently a new neural type models were created, which make the current processes
formulation and international relationships prediction in society.

The work raises the problem of optimization, which can be solved by using this type
of models.

For example, N states are linked by definite interests. Fach of them is characterized by
parameters- capacity in the given moment. The dynamic of the system will be described
by sigmoid function. The system is influenced by internal factors like links between
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these states historically developed and assessed by the experts, historically sustainable
situations (for example, formations), sustainability towards certain internal processes of
the state, as well as external factors (for example change of geopolitical, economic, or
environmental situation) and joint (states conclude an agreement, the partial distribution
of states capacity within this union takes place, and etc.) factors.

From the states included in the system State A is interested in increasing own capacity
at the expense of other states weakening.

The control parameters in the given module can be the links matrix with the limi-
tations as follows: A- State in the definite period of time, can not change sharply the
attitude towards other states of the union), and it may be a matrix of joint factors (for
example: domestic product shares or investment matrix transferred by A State by other
States.)

Quality criteria for the operation of the State A represent generalization of the criterion
function reviewed in [1].

Note that this type of neural model can be used in so-called Cooperative option, when
the State unions want to increase their total joint capacity.
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Knapsack Problem over Time

SHAHRAM MOROWATI-SHALILVAND, SEDAGHAT SHAHMORAD, KAMAL MIRNIA

University of Tabriz, Tabriz, Iran

email: Sh Morowati@QTabrizu.ac.ir

In this abstract we study a variation of the well known knapsack problem [1], [2] called
“Knapsack Problem Over Time(KPOT)”. In KPOT there exist n items (liquids) namely
J=1{1,2,...,n} and each item j € J corresponds a weight per unit w;, a value per unit
vj and a traverse (pumping) time 7;. Note that when an item j starts to load or pump at
time 6, it arrives into container (knapsack) at time 6 + 7;. Using these notations, given
a time horizon T, a total capacity W, KPOT aims to maximize the value of liquids in
the container (knapsack) up to time 7" without exceeding its weight capacity W. This
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problem can be formulated as follows

T—7;
ij/ 0)do < W,
n T—7j
max v; x;(0)do T 7 ;o (1)

; ]/0 ’ / 2;(0)d0 < uj, jel,

0
OSJZ'](@)S?”]J, QE[O,T], jEJ,

(

\ V

where u; and 7; denote the availability and maximum possible pumping rate of item j,
respectively; and z;(6) : [0,7] — [0,7;] is a Lebesgue-integrable function which measures
the rate of pumping item j € J at time moment #; moreover z;(§) = 0 must hold for
(T' — 7;,T]. The complicated problem (1) can not be solved by existing methods in
literature. Therefore we attempt to simplify (1) to a solvable problem.

By the well known “mean value theorem for integrals” there exists at least one £ €
(0,7 — 7;) such that fT " 2;(0)d0 = (T — 7;)z;(£). Therefore substituting fOT_Tj x;(0)d6
by (T'—71;)z;(§), the problem (1) converts to the following linear programming problem.

n

n D wi(T = 1) <W,
max vi(T — 1)y | 7=1 ) (2)
jzl ! I (T — Tj),uj < Uy, ] eJ
OSManj? QG[O,T],jEJ

where p; = z;(€).

Due to taking the time factor into account, KPOT has many variations categorized
as continuous time KPOT and discrete time KPOT. Discrete time category includes two
types of “carne loading” and “conveyor loading”. Some of the variations of KPOT are
NP-complete which most of them are solved but a few of them still remain open.
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On Burnside Varieties
Yu. M. MOVSISYAN

Department of Mathematics and Mechanics, Yerevan State University,
Yerevan, Armenia

email: yurimovsisyan@yahoo.com

The following algebraic problem is classical: what are all (idempotent) varieties of
algebras that do not contain finitely generated infinite algebras? This is an unsolved
hard problem even for varieties of classical algebraic structures. Such varieties are called
Burnside varieties of algebras (W. Burnside). For instance:

1) A finitely generated distributive lattice is finite;

2) A finitely generated Boolean algebra is finite;

)
)

3) A finitely generated De Morgan algebra is finite;

4) A finitely generated Boole-De Morgan algebra is finite;
)

5) A finitely generated algebra with two binary, one unary and two nullary operations,

satisfying the hyperidentities of the variety of Boolean algebras is finite;

6) A finitely generated algebra with two binary and one unary operations, satisfying
the hyperidentities of the variety of De Morgan algebras is finite;

7) A finitely generated idempotent semigroup is finite.

In the main result of the current talk we give a general version of the last result
concerning idempotent algebras with an associative hyperidentity. As a consequence we
obtain new infinitely many idempotent varieties of binary algebras in which every finitely
generated algebra is finite.
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On Division and Regular Algebras with
Functional Equations

YURI MOVSISYAN!, SERGEY DAvVIDOV!, ALEKSANDAR KRAPEZ?

Department of Mathematics and Mechanics, Yerevan State University,
Yerevan, Armenia

Mathematical Institute of the Serbian Academy of Science and Arts,
Belgrade, Serbia

emails: yurimovsisyan@yahoo.com; davidov@ysu.am; sasa@mi.sanu.ac.rs

Functional equations are equations in which the unknown (or unknowns) are functions.
We consider equations of generalized associativity, mediality (bisymmetry, entropy), para-
mediality, transitivity as well as the generalized Kolmogoroff equation. The usefullness
of all of them were proved in applications both in mathematics and in other disciplines,
particularly in economics and social sciences. We use unifying approach to solve these
equations for division and regular operations generalizing the classical quasigroup case.

Prismatic Shell with the Thickness Vanishing
at Infinity in the N =0 Approximation
of Hierarchical Models
NATIA MTCHEDLIDZE

I. Vekua Institute of Applied Mathematics of 1. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: natia92@yahoo.com

The work is devoted to the prismatic shell with the thickness vanishing at infinity in
the N = 0 approximation of hierarchical models. The thickness of the plate has the form

2h = 2hoe "@1HT2) - ho = const > 0, k= const >0, x>0, x> 0.

Two cases are considered:
I. Projection of the plate on Oxz5 is the following square

wl:{(‘r17$2):0§x1§l; OSIQSZ}

The existence and uniqueness theorems are proved in the Hilbert Space X"(w;) =

Wy (wr).
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II. Projection of the plate on Oxyx is the following quadrant
w:={(r1,22) : 0 <21 < 00; 0< 29 < 400}

The solutions of the set problems are given in integral forms, in some concrete cases they
are given in explicit forms.

On Estimations of Distribution Densities in
Functional Spaces
EL1ZBAR NADARAYA, GRIGOL SOKHADZE

Faculty of Exact and Natural Sciences, Department of Mathematics, . Javakhishvili
Thilisi State University, Thilisi, Georgia

emails: elizbar.nadaraya@tsu.ge; grigol.sokhadze@tsu.ge

The problems of estimation of functionals of probability distribution densities and
it’s derivatives in various functional spaces are considered. Asymptotic properties of this
estimations are given.

On Selection of Copulas
VADOUD NAJJARI

Young Researchers and Elite Club, Maragheh branch, Islamic Azad University,
Maragheh, Iran

email: vnajjariQiau-maragheh.ac.ir; vnajjari@gazi.edu.tr

In choosing the right copula, existing methods pose numerous difficulties and none of
them is entirely satisfactory. In this study, the main endeavor is to propose a simple and
reliable new method to choose the right copula family. Hence, we propose goodness of fit
test statistic to be a function of copula parameters and then we investigate the minimum
of this function. Hereby we are able to estimate copula parameters and also select the
right copula between copula families. With an example the new method will be compared
with the existent nonparametric method.
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Some Statically Definable Problems
for Cylindrical Shells

MIRANDA NARMANIA!, ROMAN JANJGAVA?

YUniversity of Georgia, Thilisi, Georgia
email: miranarmal9@gmail.com

21. Vekua Institute of Applied Mathematics of I. Javakhishvili Thilisi State University,
Thilisi, Georgia
email: roman.janjgava@gmail.com

In this paper we consider some statically definable problems for cylindrical shells with
constant thickness [1]. The middle surface of the shell expanded in the plane is the
rectangle. Hooke’s law is not applicable in this case. We assume the transverse stress
field as known in advance, and for the other components of the stress tensor we obtain a
system of equations, for which we set the physical boundary conditions.

Acknowledgement. The designated project has been fulfilled by a financial support
of Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14).
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The General Solution of the Non-Homogeneous
Problem
NATAVAN NASIBOVA

Institute of Mathematics and Mechanics of NAS of Azerbaijan,
Baku, Azerbaijan

email: natavan2008@Qgmail.com

Consider the following Riemann problem in H;“(,)’p X mH[:('LP classes:
Fr(r)=G(r)F ()= f(7), T€0w, (1)

where f € Ly, is some function. By the solution of problem (1) we mean a pair of
analytic functions (F*(z); F~(2)) € H;(.) , X mil, ) ,, boundary values of which satisfy
the relation (1) almost everywhere. Introduce the following functions X:;*(z), which are

analytic inside (with the + sign) and outside (with the - sign) the unit circle, respectively:

s

XF(2) =exp :I:%/IH|G(6“)‘

—Tr

et + 2

et — z

dt S

s

i e+ z
XF (2) = exp :I:E/H(t) eit—zdt

—Tr

where 0 (t) = argG (e") . Define

_ ) Xi(a), 2| < 1,
Zi2) = {[Xi(z)]_l, 2| > 1, i=1,2.

Assume
7% (2) = ZE(2) Z5 (2).

Theorem. Let {f;}] be defined by

m 1 '
Br = _cixiuy (arg ) + 5 ZO hixgy (si), k=0,1,

i=1

. ”» 1 1 _ T 1 1 -
and the inequalities — < ap < ooy k= 1,m, —w < By < 4=, k = 0,7, be

p(7x) p(tk)’
satisfied. Then the general solution of the Riemann problem (1) in classes H;(,)’p Xmsz(%p

can be represented in the following form

F(2) = Py (2) 2 (2) + F1(2)
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where Z(+) is the canonical solution of homogeneous problem, Fy (z t)dt,

is the particular solution of non-homogeneous problem (1), and Py, () is a polynomzal of
order mg < m.

This work was supported by the Science Development Foundation under the President
of the Republic of Azerbaijan — Grant NeEIF/GAM-3-2014-6(21)-24/03/1.

A Numerical Method for Solving Integral
Equations by Modified Hat Functions

BABAK NASRINPAY, YOUSEF JAFARZADEH

Islamic Azad university, Central Tehran Branch, Tehran, Iran
Sama Technical and Vocational Training College, Islamic Azad University,
Karaj Branch, Karaj, Iran

email: Mat2j@yahoo.com

In this paper, we use hat basis functions to solve the system of Fredholm integral
equations (SFIEs) of the second kind. This method converts the system of integral equa-
tions into a nonlinear system of algebraic equations. Also, we investigate the convergence
analysis of the method. Some examples show its accuracy and efficiency.

Keywords: Integral equations, Hat functions, Convergence analysis, fix point method.

Weakly E-Supplemented Modules

CELIL NEBIYEV

Department of Mathematics, Ondokuz Mays University, 55270
Kurupelit-Atakum /Samsun /Tiirkiye-Turkey

email: cnebiyevQomu.edu.tr

In this work, weakly e-supplemented modules are defined and some properties of these
modules are investigated. Let M be an R—module and M = M; + My +---+ M,,. If M;
is weakly e-supplemented for every i = 1,2, ..., n, then M is also weakly e-supplemented.
It is proved that every factor module and every homomorphic image of a weakly e-
supplemented module are weakly e-supplemented.

Key words: Essential Submodules, Small Submodules, Radical, Supplemented Mod-
ules.
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Results
Definition 1. Let M be an R—module. If every essential submodule of M has a weak

supplement in M, then M is called a weakly e-supplemented module.

Proposition 2. Let M be a weakly e-supplemented module. Then M /RadM have no
proper essential submodules.

Lemma 3. Let M be an R—module, U be an essential submodule of M and M, < M.
If M is weakly e-supplemented and U + M, has a weak supplement in M, then U has a
weak supplement in M.

Lemma 4. Let M = M, + M. If My and My are weakly e-supplemented, then M is also
weakly e-supplemented.

Proposition 5. Let R be a ring. Then rR is weakly e-supplemented if and only if every
finitely generated R—module is weakly e-supplemented.
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E-Supplemented Lattices

CELIL NEBIYEV!, HASAN HUSEYIN OKTEN?

! Ondokuz Mayis University, Department of Mathematics, Kurupelit-Atakum,
Samsun, Turkey
email: cnebiyevQomu.edu.tr

2 Amasya University, Technical Sciences Vocational School, Amasya, Turkey
email: hokten@gmail.com

In this work, e-supplemented lattices are defined and some properties of these lattices
are investigated. Let L be complete modular lattice and my Vmy V-V m, = 1. If m;/0
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is e-supplemented for every ¢ = 1,2,3,...,n then, L is also e-supplemented. All lattices
in this paper are complete modular lattices.

Theorem 1. Let L be a lattice, my € L and u be an essential element of L. If my/0 is
e-supplemented and u NV my has a supplement in L, then u has a supplement in L.

Lemma 2. Let L be a lattice and my V my = 1. If my/0 and ms/0 are e-supplemented,
then L is also e-supplemented.

Corollary 3. Let L be a lattice and mqy ¥V ma V ---V m, = 1. If m;/0 is e-supplemented
for each 1 =1,2,...,n, then L is also e-supplemented.
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Mathematical Modeling of Immunopathogenesis
of Rheumatoid Arthritis

KAKHABER ODISHARIA', VLADIMER ODISHARIA%*, PAATA TSERETELIM,
NONA JANIKASHVILI®

nformatics, Mathematics and Natural Sciences School, St. Andrew the First-Called
Georgian University, Thilisi, Georgia

2Faculty of Exact and Natural Sciences, I. Javakhishvili Thilisi State University, Thilisi,
Georgia

3Department of Immunology, Thilisi State Medical University, Thilisi, Georgia
4Georgian Association of Biomathematics, Thilisi, Georgia
email: paata.tsereteli@gmail.com
Rheumatoid arthritis is a systemic autoimmune disease characterized by the joint

inflammation and the cartilage destruction. Autoreactive B lymphocytes represent inte-
gral elements of the pathophysiology of rheumatoid arthritis. Immune balance between
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the effector and the regulatory T cell subsets guide the production of autoantibodies by
B lymphocytes and, therefore, play a cardinal role in disease severity. While targeted
therapeutic approaches are successfully emerging in medical practice, refined personal-
ized analysis of T and B lymphocyte subsets in patients with rheumatoid arthritis are
critically needed for rigorous disease management.

Mathematical models of immune mediated disorders provide an analytic framework
in which we can address specific questions concerning disease immune dynamics and the
choice of treatment. Herein, we present a novel mathematical model that describes the
immunopathogenesis of rheumatoid arthritis using non-linear differential equations. The
model explores the functional dynamics of cartilage destruction during disease progression,
in which a system of differential equations deciphers the interactions between autoreactive
B lymphocytes and T helper cells. Immunomodulatory relation between pro-inflammatory
and regulatory T lymphocyte subsetsis also solved in these equations. Of importance, our
model provides a mechanistic interpretation of targeted immunotherapy which deals with
the intervention of pathophysiological immune processes in rheumatoid arthritis.

In conclusion, we propose a novel mathematical model that best describes the im-
munopathogenic dynamics in patients with rheumatoid arthritis and, therefore, may take
a rapid pace towards its implementation in biomedical and clinical research.
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On Construction of Full-Strength Holes for the
Mixed Problem of Plate Bending

NANA ODISHELIDZE

Iv. Javakhishvili Thilisi State University, Faculty of Exact and Natural Sciences,
Interdisciplinary (Mathematics, Computer Science) Department, Thilisi, Georgia

email: nana_georgiana@yahoo.com

The paper addresses a problem of bending of an isotropic elastic plate, weakened with
a required full-strength hole. Rigid bars are attached to each component of the broken
line of the outer boundary of the plate. This plate bends under the action of concentrated
moments applied to the middle points of the bars. Unknown part of the boundary is
free from external forces. Using the methods of complex analysis the plate deflection and
required full-strength contours are determined. The corresponding plots are constructed
by Mathcad.

The Process of Semi-Markov Random Walk
with Two Delaying Screen
KoNuL OMAROVA

Institute of Control Systems of Azerbaijan National Academy of Sciences,
Baku, Azerbaijan

email: omarovakonulk@gmail.com

Let {&, nk}k207 & > 0 be a sequence of independent and identically distributed ran-
dom variables. By given random variables is constructed process of semi-Markov random

walk as
k+1

k k
Xi(t) =) m, it Y &G<t<) &,
i=0 =1 =1

where & = 0, ny = z.
By the A. A. Borovkov’s method [1] the process is delayed screen at zero as

X(t) = Xa(t) - oinf (0, Xi(s)) -

In the general case a integral equation for the distribution process X (t), if X(0) =2 >0
is obtained.

Detailed we reference to [2].

Let n,, k > 1, are gamma distributed random variables and &, k£ > 1, are exponen-
tial distributed random variables. In this case obtained integral equation is reduced to
fractional differential equation with constant coefficients.
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Representation of the Dirac Delta Function
in C(R™) in Terms of the
(1,1,---)-Ordinary Lebesgue Measure

GocaI PanTsuLAiA, Givi GIORGADZE

Georgian Technical University, Department of Mathematics, Thilisi, Georgia

emails: g.pantsulaia@gtu.ge; g.giorgadze@gtu.ge
Let A be an (1,1,---)-ordinary Lebesgue measure in R (cf. [1]). For ¢ > 0, we

set ax(e) = 6_2’%6/2 and A, = [][—ax(e),ar(e)]. We set n.(z) = e=1** if z € A, and
k=1
n-(z) = 0, otherwise. 7.(z) is called a nascent delta function.

Let f be a continuous real-valued function on R*. We define a Dirac delta integral
as follows

(6) / 5(@) (@) dAx) = lim | n.(a)f(adA(z).

e—~>0O+
R> R>

We define a Dirac delta functional 6 : C(R>*) — R by (1,1,---)-ordinary Lebesgue
measure A as follows: §(f) = (6) [ §(z)f(x)d\(x).
Roe

In the present talk we will demonstrate the validity of the following properties of the
Dirac delta functional §:

Property 1. § is a linear functional such that §(f) = f(0) for each f € C(R>), where
0 denotes the zero of R™.

Property 2. For a non-zero scalar o, § satisfies the following scaling property

(5)/5(ax) d\(z) = |a|™*.
Roo

Property 3. § is an even distribution provided that

(6) / 5(—)f(x) dA(z) = (5) / 5(2)f(x) dA(z) for f € C(R),
A

R
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which is homogeneous of degree —1.

Property 4 (sifting property). The following equality

(6) / 5z — T)f(x) dA\(z) = £(T)
holds for f € C'(R>).

Property 5. For e > 0, let (Y,(¢€))nen be an increasing family of finite subsets of A,
which is uniformly distributed in the A. (cf. [2]). Then the following equality

o) =l fim D S@/#(E)
YEYn(e)
holds true for each f € C(R™).

Acknowledgment. The research for this paper was partially supported by Shota
Rustaveli National Science Foundation’s Grant no. FR/116/5-100/14.
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Numerical Solution for a Two-Point
Boundary Value Problem with a

Second Order Non-Constant Coefficient
Ordinary Differential Equation by Means of

Operator Interpolation Method

ARCHIL PAPUKASHVILIY?, MERI SHARIKADZE!?, EKATERINE NAMGALAURI?,
MARIA GORGISHELI?

1. Vekua Institute of Applied Mathematics of I. Javakhishvili Thilisi State University,
Thilisi, Georgia
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emails: archil.papukashvili@tsu.ge; meri.sharikadze@tsu.ge; eka.namgalauri@yahoo.com;
maria.gorgisheli2014@ens.tsu.edu.ge

Functional series and interpolation algorithms for solving identification problems are
used in the theory of nonlinear systems. It’s constructed interpolation formula of the
Newton type and obtained evaluation of residual term in V. Makarov’s and V. Khlobis-
tov’s works for nonlinear operators functional (see for example [1]). This approach is
based on “continual” knots from interpolation conditions in the definition of kernels of
functional (operator) polynomials. These “continual” knots represent linear combination
of Heaviside functions. The abovementioned works have theoretical and practical impor-
tance in applied problems of the theory of operators’ approximation. Issues of realization
of interpolation approximations on the electronic computers haven’t been discussed by
the abovementioned authors. Calculating algorithms for approximate solution for bound-
ary value problems of ordinary differential equations with non-constant coefficients are
subscribed in the works [2], results of calculations of test problems are given, convergence
issues are studied by the numerical-experimental way.

Issues of approximate solutions for two-point boundary value problem with non-
constant coefficient by the use of operator interpolation polynomials of the Newton type
are also discussed in the given work. Besides, the Green function of the differential
equation of the boundary value problem)as a non-linear operator with respect to the non-
constant coefficient, is replaced by the known kernels of operator interpolation polynomial
of the Newton type. Formulas of approximate solution of different type are constructed
for finding the solution for two-point boundary value problem. Description of realization
algorithm sand the calculation results of test problems are given. The convergence with
respect to m parameter from the series of numerical experiments is exposed (m-degree of
the operator interpolation polynomial of the Newton type).
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On One Method of Approximate Solution of the
J. Ball Nonlinear Dynamic Beam Equation
GIORGI PAPUKASHVILI

V. Komarovi No. 199 Public School, Georgian Technical University,
Thilisi, Georgia

email: gagapapukashviliQgmail.com

Let us consider the initial boundary value problem

utt<x7 t) + 5Ut(l', t) + YUzzzat (l’, t) _I' aumxxx(xy t)a
L L

— (5 + p/ui(m,t) da:) Uy (2, 1) — 0(/ux(x,t)uxt(x,t) da:) Upe(1,t) =0, (1)

0
O<zxz< L, 0<t<T,

u(z,0) = u’(z), w(z,0)=u'(z),

w(0,t) = u(L,t) =0, u(0,1) = upe(L,t) =0, (2)

where «, 7, p, o, § and ¢ are the given constants among which the first four are positive
numbers, while v°(x) and u!(z) are the given functions.

The equation (1) obtained by J. Ball [1] using the Timoshenko [3] theory describes
the vibration of a beam. The problem of construction of an approximate solution for this
equation is dealt with in [2].

An initial boundary value problem for a J. Ball nonlinear dynamic beam equation
is studied. For approximate solution of the problem projection method, symmetrical
difference scheme and iteration process have been used. The accuracy of the algorithm is
investigated.

The author express hearing thanks to Prof. J. Peradze for his active help in problem
statement and solving.
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Dilation, Functional Model and Spectral Problems
of Discrete Singular Hamiltonian System
BILENDER PASAOGLU
Suleyman Demirel University, Department of Mathematics, Isparta, Turkey

email: bilenderpasaoglu@sdu.edu.tr

A space of boundary values is constructed for minimal symmetric operator, generated
by discrete singular Hamiltonian system, acting in the Hilbert space /4 (No; E® E) (Ny =
{0,1,2,...}, dim £ = m < oo) with maximal deficiency indices (m,m) (in limit-circle
case). A description of all maximal dissipative, maximal accumulative, self-adjoint and
other extensions of such a symmetric operator is given in terms of boundary conditions
at infinity. We construct a self-adjoint dilation of a maximal dissipative operator and
its incoming and outgoing spectral representations, which make it possible to determine
the scattering matrix of the dilation. We establish a functional model of the dissipative
operator and construct its characteristic function in terms of the scattering matrix of the
dilation. Finally, we prove the theorem on completeness of the system of eigenvectors
and associated vectors (or root vectors) of the maximal dissipative discrete Hamiltonian
operator.
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Spectral Problems of Singular Sturm—Liouville
Boundary Value Transmission Problem
in Limit-Point Case
BILENDER PASAOGLU
Suleyman Demirel University, Department of Mathematics, Isparta, Turkey

email: bilenderpasaoglu@sdu.edu.tr

In this paper, we consider a dissipative singular Sturm—Liouville boundary value prob-
lem in limit-point case and with transmission conditions in interier point. We construct a
selfadjoint dilation of the dissipative operator and its incoming and outgoing spectral rep-
resentations, which makes is possible to determine the scattering matrix of the dilation in
terms of the Weyl-Titchmarsh function of selfadjoint operator. Constructing a functional
model of the dissipative operator, we also determine its characteristic function in terms
of the scattering function of the dilation. The theorems verifying the completeness of the
root functions of the dissipative boundary value transmission problem are proved.
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On Possibility of Static and Dynamical Calculations
of Extended Bodies with Application
of a Solid Deformable Body Discrete Model and
Successive Approximation Algorithm
DAVID PATARAIA
LEPL Grigol Tsulukidze Mining Institute, Thbilisi, Georgia

email: david.pataraia@gmail.com

Developed by us method of solid deformable body modeling and calculation [1, 2],
which is based on discrete presentation and a special algorithm of calculating, except the
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static calculations was also applied and examined for the dynamical calculation of ex-
tended bodies, such as cableways, space antennas and other similar bodies. For example,
we consider the originated as result of cableway carriage transition on support vibration
of the traction cable. We also consider vibrations of bilateral fixed cable, when a concen-
trated force instantly will be applied or removed at a certain point. The present work
provides the basis for further inquiry the proposed approach which also will be able to
use for dynamical calculation of non-extended bodies, such are buildings and bridges.
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On Functionals of a Probability Density

MZEVINAR PATSATSIA, GRIGOL SOKHADZE
[. Javakhishvili Thilisi State University, Thilisi, Georgia

emails: mzevipb4@mail.ru; grigol.sokhadze@tsu.ge

A probability density functional (nonlinear and unbounded, generally speaking) has
been considered. Consistency and asymptotic normality conditions have been established
for the plug-in-estimator. A convergence order estimator has been obtained.
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On an Integro-Differential Equation of
a Nonlinear Static Plate
JEMAL PERADZE!?
1. Javakhishvili Thilisi State University, Thilisi, Georgia
2Georgian Technical University, Thilisi, Georgia

email: j_peradze@Qyahoo.com

Let the static behaviour of a plate be described by the system of equations [1]
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Here w; = u;(xy1, z5) are longitudinal, i = 1,2, and w = w(x1, z5) transverse displace-
ments of points of the plate midsurface , p; = p;i(z1,22), i = 1,2, ¢ = q(x1,22) are
external force components, A is the Laplace operator, F and 0 < v < % are respectively
Young’s modulus and Poisson’s ratio, D is the plate flexural rigidity, h is the thickness.

Assuming that € is the rectangle and for u;(x1,23), ¢ = 1,2, the first and second
kind conditions are fulfilled on the boundary 02 of €, from (1) we obtain the following
nonlinear equation for the function w(xy, z5)
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where the integrand coefficients A;;, B;j, Cij, diij, doi; and ayj, bij, ¢;; depend on xq, 29
and &, &, ds is an element of the boundary 0f2.
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In the European Union with the Georgian Language
— the Long-Term Project “Technological Alphabet
of the Georgian Language” and the Threats
in which is Georgian Language
KONSTANTINE PKHAKADZE

Georgian Technical University, Scientific-Educational Center for Georgian Language
Technology, Thilisi, Georgia

email: gllc.ge@gmail.com

From 2012 in the Center of the Georgian Language Technology at the Georgian Tech-
nical University there is launched a long-term project “The Technological Alphabet of the
Georgian Language” [1], [2]. Thus, in confine of the project there is already financed 5
subprojects [1-5]. They are: 1 “Internet Versions of a Number of Developable (Learnable)
Systems Necessary for Creating The Technological Alphabet of the Georgian Language”;
2. “Foundations of Logical Grammar of Georgian Language and Its Application in In-
formation Technology”; 3. “In the European Union with the Georgian Language, i.e.,
the Doctoral Thesis — Georgian Speech Synthesis and Recognition”; 4. “In the Euro-
pean Union with the Georgian Language, i.e., the Doctoral Thesis — Georgian Grammar
Checker (Analyzer)”; 5. “One More Step Towards Georgian Talking Self — Developing
Intellectual Corpus”.

At the presentation it will be briefly overviewed this long-term project and its direct
relation to the national aim of defence Georgian language from the digital extintion in
the digital age and, accordingly, to the aim of join European Union or, more generally,
the future cultural world with the Georgian language.

Publication prepared in the Center of the Georgian Language Technology at the Geor-
gian Technical University with AR/122/4-105/14 grant support of the Shota Rustaveli
National Science Foundation.
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On a Constructive Theory of Enumerable Species
VALERII PLISKO

Faculty of Mechanics and Mathematics, Moscow State University,
Moscow, Russia

email: veplisko@yandex.ru

An analogue of the notion of a set in intuitionistic mathematics is a species as an
exact condition on the mathematical objects (see [1]). One of the simplest way of defining
a species whose members are natural numbers is to describe an algorithm which allows
us to make sure that a given number is a member of the species. Thus the collection of
the members of such a species is a recursively enumerable set. In addition, the condition
defining a species should be understood intuitionistically, i.e., x € y iff there is a witness
of the fact that z satisfies the condition. Thus, in fact, a number x can be considered as a
member of a species y only together with a number e coding a justification of the sentence
x € y, so it it is necessary to speak about the ordered pair (e, z). This idea is a base of
the following constructive semantics for the language of the set theory with atoms.

Let 7 : N> — N be a one-to-one primitive recursive function, the inverse projection
functions 7y and 7, being primitive recursive, too. By (z,y) denote 7(x,y). Let W,, be the
range of a unary partial recursive function ¢, whose Godelean index is n. The language
of the set theory with atoms ZFA contains the usual binary predicate symbols = and €
and the unary predicate symbol A for the property to be an atom. For convenience let
us suppose that the constants 0,1, 2, ... for the natural numbers are also in the language.
The relation e r ® for a natural number e and a closed formula ® is defined inductively. For
the atomic formulas the definition is following: er A(k) = mo(k) = 0; erlk =1 = k = [;
erlkel] = [m(k) < mo(l) & (e, k) € Wr,»y]. The case of more complicated formulas is
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treated in the manner of Kleene’s recursive realizability (see [2]). For example,

er[®g— O] = Valar®y = Fb(p.(a) =b&brdy)];
erVa ®o(z) = Yk b [p(k) = b& br Py (k)].

A closed formula @ is realizable iff Je [er ®].

Specific axioms of the theory ZFA are the axiom of the empty set x E(x) and the aziom
for atoms Va [A(x) = —E(z) & =N(z)], where E(z) is =A(x) & =3y [y e x|, N(x) is Jy [y e z].
The other axioms are slightly modified usual axioms of the Zermelo—Fraenkel set theory.
E.g., the regularity aziom is stated as Va [N(z) = Jy[yex & -T2z [zex & zey]]].

Theorem.

1) The following axioms of ZFA are realizable: the axiom of the empty set, the axiom
for atoms, the pairing axiom, the union axiom, and the axiom of choice.

2) The following axioms of ZFA are not realizable: the extensionality axiom, the power
set axiom, the infinity axiom, the replacement axiom.

3) The reqularity aziom is not realizable, but its weakened variant
Vo [N(z) = ~—Jyyex & —-Iz[zex & zey]]]
is realizable.
4) In general, the separation aziom Yu,z3y[-A(y)&Vz[zey = zex & D(z,u)]] s
not realizable, but is realizable if ®(z,u) is a X-formula.
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Dynamic Stress Intensity Factor for
Break-Line Shaped Crack at
Harmonic SH-Wave Interaction
VSEvVOLOD Porov

Department of Higher Mathematics, National University “Odessa Maritime Academy”,
Odessa, Ukraine

email: vs_popov@math.onma.edu.ua

The problem of the stress intensity factor (SIF) estimation is solved for the break-line
shaped crack which consists of the segments. The crack is situated in the unbounded
elastic isotropic body and the plane harmonic waves of the longitudinal shear (SH-waves)
interact with it. It is supposed that the edges of the crack are unloaded.

The method of the solution is based on the use of the Helmholtz’s equations discon-
tinuous solutions. The diffraction fields displacements are presented as the sum of the
discontinuous solutions which are constructed for each cracks segment. As a result of the
boundary conditions realization the system of the singular integro-differential equations
relatively to the displacements on the segments of the crack is obtained. The numerical
solution of this system is complicated by the presence of the fixed singularities in the
kernels of the integral operators. It influences at the exponent of power singularity of the
systems solution, which is different from. The disadvantages of the known methods of the
singular integral equations solving are consisted or in the ignoring of the solutions real
exponent of the power singularity or in the formal using of the Gauss—Jacobi quadrature
formulas for the integrals with the fixed singularity. Therefore one of the main results of
the report is the numerical method for the obtained integro-differential equations systems
solving. This collocation method takes into consideration the solutions real exponent of
the power singularity and use as the collocation points the second order Jacobi functions
zeros. Also it uses the special quadrature formulas for the singular integrals with the fixed
singularity. The final result of the numerical solving is the approximation formulas for
the SIF calculation.

As an example, the cracks which are consisting of the two and three segments are
examined. The results of the methods practical convergence studies and the influence of
the cracks geometry and the propagated waves frequency at the SIF values are given.
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Stress State of a Cylindrical Body with a Crack
under Oscillations in the Plane Strain Conditions

V. G. Porov, O. I. KIRILLOVA

National University “Odessa maritime academy”, Department of Higher Mathematics,
Odessa, Ukraine

email: vs_popov@math.onma.edu.ua, 0l007ga@math.onma.edu.ua

The problem about the determination of the stress state in an infinite elastic cylindrical
body with a tunnel crack is solved. The side surface of the cylinder is under the influence
of self-balancing normal harmonic loading. Under these conditions the plane strain in the
cylinder is realized and the radial and angular components of displacements that satisfy
the equations of motion to be determined. The crack surface is considered free of the
loading. Also on the crack surface the displacements are discontinuous. The problem is
reduced to solving two-dimensional equations of motion in planar regions bounded by any
closed smooth curves, with the described boundary conditions. The method of solution
is based on the use of discontinuous solutions of two-dimensional equations of motion
of an elastic medium with jumps of displacements on the surface. Displacements in the
cylinder are represented as the sum of discontinuous solutions, built for the crack, and
the unknown function, which provides the satisfaction of the boundary conditions of the
body. These functions are searched approximately as a linear combination of linearly
independent solutions of the equations of the elasticity theory in the frequency domain
with unknown coefficients. This representation makes possible to separately satisfy the
boundary conditions on the crack surface and on the boundary of the body. The conditions
on the crack are realized as a set of systems of singular integro-differential equations,
which differ only in the right-hand sides. The approximate solutions of these systems are
obtained by the method of mechanical quadratures. After that, the conditions on the
boundary of the body are satisfied, from which by the collocation method the unknown
coefficients of the above functions are determined.

The approximate formulas for calculating SIF by which are studied the influence of
the value of the oscillation frequency, geometric cylinder size and the location of crack in
it are obtained.
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Hedging of European Option
with Nonsmooth Payoff Function

OMAR PURTUKHIA

A. Razmadze Mathematical Institute of Iv. Javakhishvili Thilisi State University,
Thilisi, Georgia

Faculty of Exact and Natural Sciences, Department of Mathematics, Iv. Javakhishvili
Thilisi State University, Thilisi, Georgia

email: o.purtukhia@gmail.com

We consider the European Options in the case of Black—Scholes financial market model,
which payoff functions is a certain combination of the Binary and Asian options payoff
functions and investigate the hedging problem. In spite of the fact that Clark—Ocone
formula is the effective tool for solution of the hedging problem there are some prob-
lems with its practical realizations. We generalized the Clark—Ocone formula in case,
when functional is not stochastically smooth. It has turned out that the requirement
of smoothness of functional can be weakened by the requirement of smoothness only of
its conditional mathematical expectation ([1]). It is well-known, that if random variable
is stochastically differentiable in Malliavin sense, then its conditional mathematical ex-
pectation is differentiable too ([2]). In particular, if F' € Dy, then E(F | V) € Dy,
and Dy[E(F | Q¥)] = E(DF | S¥)Ij,4(t). On the other hand, it is possible that con-
ditional expectation can be smooth even if random variable is not stochastically smooth
([1]). For example, it is well-known that If,, <z} & D1 (indicator of event A is Malliavin
differentiable if and only if probability P(A) is equal to zero or one ([2])), but for all
tel0,T):

E|Lw,<ay | SY] = @[(# —wy)/VT —t] € Dy
T
In present work we consider the functional of integral type [ u;(w) d¢ (with nonsmooth
0

integrand us(w)), whose conditional mathematical expectation is not stochastically dif-
ferentiable too (in spite that vy = E(u; | S¥) € Dy;). We prove that if ug(w) is not
differentiable in Malliavin sense, then the Lebesgue average (with respect to ds) also is
not differentiable in Malliavin sense. On the other hand, in this case even the conditional
mathematical expectation of mentioned functional is not smooth, because it represents

as sum . .
E(/ ur(w) dt | %;”) = / u(w) dt +/ vy (w) dt,
0 0 s

where the first summand is not differentiable, but the second summand is differentiable
in Malliavin sense (if v;(-) € Dy for almost all ¢ and v.(w) is Lebesgue integrable for a.a.

w, then fsT v(w)ds € Dayy).



212 Abstracts of Participants' Talks Batumi, September 5-9, 2016

References

[1] O. A. Glonti and O. A. Purtukhia, On one integral representation of Brownian
functional. Teor. Veroyatnost. i Primenen. 61 (2016), no. 1, 158—164 (in Russian).

[2] D. Nualart, The Malliavin calculus and related topics. Probability and its Applica-
tions (New York). Springer-Verlag, Berlin, 2006.

Approximately Dual for Continuous Frames in
Hilbert Spaces

ASGHAR RAHIMI, ZAHRA DARVISHI

Department of Mathematics, University of Maragheh, Maragheh, Iran

email: rahimi@maragheh.ac.ir

In this manuscript, the concept of dual and approximate dual for continuous frames
in Hilbert spaces will be introduced. Some of its properties will be studied.

Definition 1. A weakly-measurable mapping F' : Q — H is called a continuous frame
for H with respect to (€2, ) if there exist constants 0 < A < B < oo such that

AP < [ (. F@)f dutw) < BISI?, 7€ B
Q

The constants A and B are called continuous frame bounds. The mapping F' is called

tight continuous frame if A = B and if A = B =1 it called a Parseval continuous frame.

The mapping is called Bessel if the second inequality holds. In this case, B is called Bessel

constant. If F': Q — H is a Bessel mapping and ¢ € L*(Q, p1), then [ p(w)F(w)du(w)
Q

defines an element of H. In fact, the operator Tr : L*(Q2, u) — H weakly defined by
(Trpg) = [ o)(F).ghdute). ¢ € L@up), g H.
Q
is well defined, linear, bounded with bound v/B and its adjoint is given by
Th: H— L), (Taf)w) = (f.FW), weQ, heH.

The operator T is called the synthesis operator and 77 is called the analysis operator
of F. For continuous frame F' with bounded A and B, the operator Sy = TrT} is called
continuous frame operator and this is bounded, invertible, positive and Aly < Sp < Bly.
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Definition 2. Two Bessel mappings F' and G are called approximately dual continuous
frames for H if ||y — TcTy| < 1or ||[Ig — TpTE| < 1.

Theorem 1. If F' and G are approzimately dual continuous frames, then F and G are
continuous frames for H with respect to (€0, ).
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About a Center of a Biparabolic
of Subalgebra of si(n)
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In this paper we investigate the dimension of a center Z(Q) of a biparabolic subalgebra
@ of a special linear Lie (simple) algebra si(n) over the field of complex numbers C'; it
is well known, that Z(Q) ~ H°(Q, Q). A subalgebra P of a semisimple Lie algebra L is
parabolic, if it contains a Borel subalgebra (i.e. a maximal solvable subalgebra) of L. A
subalgebra @ of a semisimple Lie algebra L is biparabolic, if @ = P() P, there P and
Py are such a parabolic subalgebras of L that P+ P, = L. It is clear that a biparabolic
subalgebra of sl(n) is determined by a pair of compositions n = a3 + as + -+ + a, =
by + by + - - - + b, there a; and b; are natural numbers. Let d be the maximum number of
equal partial sums of this compositions (for example, for compositions 10 = 2+3+2+5 =
3+ 2+ 2+ 1+ 4 the maximum number of equal partial sums is 3). The main result of
this work is

Theorem. In the above notations, dim(Z(Q)) = d — 1.
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Basic Properties of Controlled Frames
in Hilbert C*-modules

MEHDI RASHIDI-KOUCHI

Department of Mathematics, Kahnooj Branch,
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Weighted and controlled frames in Hilbert spaces have been introduced in [1] to im-
prove the numerical efficiency of iterative algorithms for inverting the frame operator on
abstract Hilbert spaces, however they are used earlier in [2] for spherical wavelets. The
concept of controlled frames has been extended and generalized to g-frames in [3].

Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces.
Frames and their generalization are defined in Hilbert C*-modules and some properties
have been studied for example see [4].

Here we investigate basic properties of controlled frames in Hilbert C*-modules. Also
we present a characterization of controlled frames for Hilbert C*-modules and show that
any controlled frame in Hilbert C*-module is frame in Hilbert C*-module.
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Numerical Solution of the Eikonal Equation with
Applications to an Automatic Piping
KERSTIN RJASANOWA
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The procedure of positioning of pipes, for example for automobile exhaust construc-
tion, by the use of 3D-CAD-systems is difficult and time consuming because of the pres-
ence of obstacles in an engine compartment. There are also further strong technical
requirements and restrictions. An automatic generation procedure based on the level set
method and the numerical solution of the Eikonal equation is proposed. The positions of
pipes which fulfill the technical requirements are obtained using spline functions.
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On an Existence of Dynamical Systems
in Polish Topological Vector Spaces
NINO RUSIASHVILI
Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: nino.rusiashvili@gmail.com

The investigation and study of various topics of mathematical analysis in infinite-
dimensional topological vector spaces are often realized within concrete dynamical systems
of the form (E, G, S, u), where E denotes an infinite-dimensional topological vector space,
S denotes the o-algebra of all Borel subsets of E, G denotes a group of transformations
of E and u stands for a G-invariant o-finite measure on E. In this direction, there is a
deep methodology which enables to investigate some important properties of dynamical
systems (see, for example, [1-4]).

The next statement is valid.

Theorem. Let E be a complete metric topological vector space. Then following two
assertion are equivalent:

(1) there exists a dynamical system in F;

(2) E is separable.

Acknowledgement. The research has been partially supported by Shota Rustaveli
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Modular Spaces Associated to
Semi-Finite von Neumann Algebras
GHADIR SADEGHI

Department of Mathematics and Computer Sciences, Hakim Sabzevari University,
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Non-commutative Orlicz spaces can be defined either in an algebraic way [2] or via
Banach function spaces [3]. Al-Rashed and Zegarliéski [1] established the theory of non-
commutative Orlicz spaces associated to a non-commutative Orlicz functional. Their non-
commutative Orlicz functional is related to those introduced by [4] where the author used a
specific Young function ¢(z) = cosh (z)—1, which has a particular importance in quantum
information geometry. They investigated a theory associated with a faithful normal state
on a semi-finite von Neumann algebra. In [5] Sadeghi consider another approach based
on the concept of modular function spaces. Using the generalized singular value function
of a 7-measurable operator, He define a modular on the collection of all 7-measurable
operators. This modular function defines a corresponding modular spaces, which is called
the non-commutative Orlicz space. Recently, Sadeghi and Saadati introduce the notion
of a non-commutative modular function space and look at some geometric properties of
such spaces as modular spaces, and generalizes the idea of a function modular [6]. In
this talk, we investigate some geometrical properties of noncommutative modular spaces
associated to semi-finite von Neumann algebras.
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Numerical Solution of Natural Convective
Heat Transfer for Dilatant Fluids

SERPIL SAHIN', HUSEYIN DEMIR?

Faculty of Sciences and Arts, Department of Mathematics, Amasya University,
Amasya, Turkey

2Faculty of Sciences and Arts, Department of Mathematics, Ondokuz Mayis University,
Samsun, Turkey
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In this study, we consider flow properties of Dilatant fluids motion generated by ther-
mal gradients in an enclosed cavity region. Pseudo time derivative is used to solve the
continuity, momentum and energy equations with suitable initial and boundary condi-
tions. Therefore, the governing equations of fluid of vorticity-stream function and tem-
perature formulations are solved numerically using finite difference method. The stream
function, vorticity and temperature results are obtained for the steady, two-dimensional,
incompressible Dilatant flow. These results are presented both in tables and figures. The
stream function, vorticity and energy equations are solved separately with the numerical
method. Each equation with pseudo time parameter on very fine grid mesh is solved step
by step with a pair of tridiagonal system. The advantage of this process is that it gives
the solution of the flow problems effectively and accurately.

Key Words: Dilatant fluid, heat transfer, pseudo time parameter, finite difference
method.
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Intrinsic Equations for a Generalized

Relaxed Elastic Line on an Oriented

Surface in the Pseudo-Galilean Space
TEVFIK SAHIN

Faculty of Sciences and Arts, Department of Mathematics, Amasya University,
Amasya, Turkey

email: tevfik.sahin@amasya.edu.tr

In this work, we study the elasticity theory in pseudo-Galilean space, a special type
of Cayley—Klein spaces. In particular, we derive the intrinsic equations for a generalized
relaxed elastic line on an oriented surface in the 3-dimensional pseudo-Galilean space G3.
These equations will give direct and more geometric approach to questions concerning
about generalized relaxed elastic lines on an oriented surface in G3.

Key words: Pseudo-Galilean space, generalized relaxed elastic line, variational prob-
lem, intrinsic formulation, geodesic.
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Some Remarks on the Geometry
of Anti-Kahler—Codazzi Manifolds

ARIF SALIMOV

Department of Mathematics, Faculty of Science, Atatiirk University,
Erzurum, Turkey

email: asalimov@atauni.edu.tr

In [1] we introduced the notion of an anti-Kahler-Codazzi manifold, for which a twin
anti-Hermitian (also known as a twin Norden) metric of neutral signature satisfies the
Codazzi equation. We introduced also the notion Ricci* tensor field for Levi-Civita con-
nection of an anti-Hermitian metric and give a characterization of an anti-Kahler-Codazzi
manifold in terms of a Ricci* tensor field [2]. Such torsion-free metric connection also em-
phasise the importance of anti-Hermitian metric connections with torsion in the study of
anti-Kahler-Codazzi geometry. With the objective of defining new types of anti-Hermitian
metric connections, we consider properties of anti-Hermitian manifolds associated to these
connections.
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Some Aspects of Teaching Sensitivity Analyses
of Economic Problem
TSITSINO SARAJISHVILI

Department of Computer Sciences, Batumi Shota Rustaveli State University,
Batumi, Georgia
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One of the important issues, that we find in teaching mathematical modeling study
course in economics students (and not only them), is to show the practical applications of
the subject and proving its practical importance. We should demonstrate the possibilities
of the subject on specific examples. In this regard the sensitivity analysis of economics
problems’ solution is important.

As it is known, linear programming is one of the well-studied areas in operations
research, therefore same stands for economic problems that are described by linear cor-
relations. The paper deals with the specific model problems and economic analysis using
duality theory elements. In particular, by using of dual assessment we show students
the opportunity of improving solution; Show them how the changes of each parameter of
problem might affect the optimal solution of the initial problem.

Although today the preference is given to the usage of end-product program packages
and linear programming problems are easily solved using computer resources, but we
can clearly discuss the sensitivity analysis if we use the tabular form of simplex method
in solving problems. By using the tabular simplex-algorithm and the analysis of the
corresponding final tab, we can demonstrate to students, how the change of parameters
in problem affects the optimal solution.red in [1], [2]). The dependence of well-posedeness
of boundary conditions on the character of vanishing the shear modulus is studied.
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Using the Wald’s Method for Prove of Consistency

of Generalized Estimation of Maximal
Likelihood Estimation

ALEKSANDR SBORSHCHIKOV

Department of Mathematics, I. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: a.sborshchikov@gmail.com

We consider a problem of estimation unknown parameters in a censored case. Gener-
alized maximal likelihood estimator is constructed. Consistency of the estimator is proved
using Wald’s method. Applications are given.

Hochstadt’s Result for
Inverse Sturm—Liouville Problems
Using m Transmission and Parameter Dependent

Boundary Conditions
MOHAMMAD SHAHRIARI
Department of Mathematics, University of Maragheh, Maragheh, Iran

emails: shahriari@maragheh.ac.ir; mohamad.shahriari@yahoo.com

This paper deals with the boundary value problem involving the differential equation

ty = —y"+qy =Ny, (1)
subject to the parameter dependent boundary conditions

Li(y) == My (0) + hay(0)) — hay'(0) — hay(0) = 0,
Ly(y) := A(yl(ﬂ) + Hly(ﬂ)) - H2y/(7f) — Hyy(m) =0,
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along with the following discontinuity conditions at the points d; € (0, )

Ui(y) :=y(d; +0) — ay(d; — 0) =0, 3)

Vily) = y/(d; + 0) = biy/ (di — 0) — ciy(d; — 0) = 0,
where q(z), a;, b, ¢;'for i = 1,2,...,m are real, ¢ € L?(0,7) and \ is a parameter
independent of z. For simplicity we use the notation L = L(q(x); h;; Hj;d;), for the
problem (1)—(3). We develop the Hochstadt’s result [1] based on the transformation
operator for inverse Sturm—Liouville problem when there are finite number of transmission
and parameter dependent conditions [2]. Furthermore, we establish a formula for ¢(z) —
¢(z) in the finite interval where ¢(x) and g(z) are analogous functions.

Theorem If L(q(x); h;H;d;), z@(x), h; H; d;) have the same spectrum and X\, = o for
all n € A, (where Ag C N be a finite set and A = N\ Ay), then
q—q= Z@Vn(;pn)lw7
Ao
m—2 .
a.e. on[0,dy) | (d;, diz1) U (dp—1, 7], where g, and @, are suitable solutions of ly = A,y

i=1
and by = \,y, respectively, and

) 0§£L‘<d1,

—_—, dy < x < do,

y o <x <.
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Reconstruction of the Discontinuous
Potential Function for Sturm—Liouville
Problems with Transmission Conditions

MOHAMMAD SHAHRIARI, BEHZAD ABBASI
Department of Mathematics, University of Maragheh, Maragheh, Iran

emails: shahriari@maragheh.ac.ir; mohamad.shahriari@yahoo.com

We consider the Sturm—Liouville problems with discontinuous potentials having jump
and transmission conditions. As the main result we obtain a procedure of recovering the
location of the discontinuity and the height of the jump.

We consider the boundary value problem

ty == —y" +qy = Ny,
subject to the Robin boundary conditions along with the following discontinuity conditions

T T T v e
y(5+0) =ay(5-0). v(5+0)=ay(5-0) +ay(5 -0).

where ¢(z), ai, ay are real, ¢ € L?*(0,7) and A is a parameter independent of z. In this
work we suppose that the potential function ¢(z) have the special following form

q(x)+0b, 0<z<a;
q(z) =
a1 (z), a<x<m;

where ¢;(z) € AC[0,n] and ay = 0. By using the asymptotic form of eigenvalues of
two types of the spectrum Dirichlet {\,},>1 and Dirichlet~Neumann {u,},>1 boundary
conditions from [2] we have the following relation

A < i < Apg1 < Py < ---y, n=1,2,3,...
i.e. the eigenvalues of two spectrum are alternating. So that b,, and ¢, can be obtained by

)\k—(k)2, )\k—(k’)Z—A, 7122/{3—1,
_ 2 Cp = 2
Nk—(kﬁt@), un—<k+(_1)“) —A =2, k=12 ...

T ™

n

is known for all k and
2N

: . b,
A= Ji b=l D
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Let us define the following function

pn(z) = Z cane™ x €0, ).
N

Theorem. The following relation holds
pr(x) = py(z) +o(1), N —= o0
where
b ei(2N+1)(x—a) _ eiN(x—a)

pN(x) = N 4 1 ’ ei(x_a) - 1

The function py(z) obtained the discontinuous point and height of jump point in the
potential function.
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Complex Regimes Arising in a Heat-Conducting
Flow Between Horizontal Porous Cylinders
Lu1zA SHAPAKIDZE

A. Razmadze Mathematical Institute of I. Javakhishvili Thbilisi State University,
Thilisi, Georgia
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The report presents the results of investigations of stability of heat-conducting lig-
uid motion between two horizontal stationary porous cylinders which is driven under a
constant azimuthal pressure gradient acting around the cylinders. The liquid is under
the action of a radial flow through the porous cylinder walls and of a radial temperature
gradient.

Numerical analysis shows that when the stationary flow losses its stability under the
certain parameter values of the problem, there arise intersections between the vortex and
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azimuthal wave bifurcations. This indicates that there arise rather complicated regimes.
These intersections take place especially when temperature of the outer cylinder is higher
than that of the inner one for sufficiently large values of the wave axial number and when
the liquid moves through the inner cylinder.

The Solutions of Integral-Differential Equations and
Their Applications in the Linear Theory of Elasticity
NUGZAR SHAVLAKADZE

A. Razmadze Mathematical Institute of Iv. Javakhishvili Thilisi State University,
Thilisi, Georgia

emails: nusha@rmi.ge; nushal961@yahoo.com

Let a finite or infinite non-homogeneous inclusion with modulus of elasticity Fi(x),
thickness hy(x) and Poisson’s coefficient v; be attached to the plate which is in the con-
dition of a plane deformation. It is assumed that the inclusion has no bending rigidity,
is in the uniaxial stressed state and is subject only to tension, the tangential stress 7o(x)
acts on the line of contact of the inclusion and the plate, the contact condition considers
the existence of thin glue layer.

We are required to define the law of distribution of tangential contact stresses 7(z) on
the line of contact, the asymptotic behavior of these stresses at the end of the inclusion
and the coefficient of stress intensity.

To define the unknown contact stresses we obtain the following singular integral-
differential equation

%—i—%/%dt—kow”(l’) =g(z), 0<z<a, (1)
©(0) =0, ¢(a) =T,
where
o) = / () dt, / rWdt =Ty, Tp= / ot dt,
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The effective solutions for integro-differential equations (1) related to problems of
interaction of an elastic thin finite and infinite inclusion with a plate are considered.
If the geometric and physical parameter of the inclusion is measured along its length
according to the parabolic and linear law we have managed to investigate the obtained
boundary value problems of the theory of analytic functions and to get exact solutions
and establish behavior of unknown contact stresses at the ends of an elastic inclusion.

Acknowledgement. The designated project has been fulfilled by a financial support
of Shota Rustaveli National Science Foundation (Grant no. FR/86/5-109/14).

Precision of Estimation of Nonperiodical Core
Density Constructed by Observation
with Chain Dependence

T. SHERVASHIDZE!, Z. KVATADZE?
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Thilisi, Georgia

2Georgian Technical University, Thilisi, Georgia

email: zurakvatadze@yahoo.com

In the paper is considered stationary in narrow sense succession {&,;x,}n,>1. The
chain dependence succession {,,},>1, terms of that represents observations on arbitrary
x occurrence. It is known that P, /¢,—q, @ = 0,1 conditional distributions have densities
fi(z) and fy(x) accordingly. L

In certain conditions is determined the precision f(z) = p(&)fi(z) + p(&) fa(z) of
density approximation by core type it’s estimation.
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Hyperbolicity Equation of Motion for
General Maxwell’s Body
TEIMURAZ SURGULADZE
Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia
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In this work the equation of the motion of the generalized Maxwell’s body
o4+ XD = \GyD’:, 0< o, < 1

is considered, where o is a tension, ¢ is a deformation, D* and D” Riemann-Liouville
derivative of fractional order.

It is shown that the equation of motion is hyperbolic.

This is another case and it differs from earlier case just, that here o £ .

Universal Topological Abelian Groups
ONISE SURMANIDZE

Department of Mathematics, Batumi Shota Rustaveli State University
Batumi, Georgia

onise.surmanidze@mail.ru

A topological group H is called universal for topological group G, if G is isomorphical
to some subgroup of H.

For weakly linearly compact topological abelian groups are constructed universal topo-
logical abelian groups and proved that each such type universal group is isomorphical to
the local direct product of elementary topological abelian groups.
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On the Solution of Some Problems of the Theory
of Elastic Mixture by the Variation Method
KoSsTA SVANADZE
Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia

e-mail: kostasvanadze@yahoo.com

In the present work in the case of plane theory of elastic mixture the solutions of the
non-homogeneous boundary value problem of statics and homogeneous boundary value
problem of steady state oscillations when on the boundary of simple connected finite
domain is given a displacement vector are reduced to the minimum finding problem of a
positively defined functional.
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The Basic BVP of Thermo-Electro-Magneno
Elasticity for Half Space
ZURAB TEDIASHVILI
Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: zuratedo@gmail.com

Let R3 be divided by some plane into two half-spaces. Without loss of generality
we assume that these half-spaces are R? := {z | x = (21,22, 73) € R?, x3 >0}, RS :=
{x |z = (x1,22,73) ER®, 23 <0}.

We investigate the following basic boundary value problem of the thermo-electro-
magneto-elasticity theory for half-space.

Dirichlet problem (D)*. Find a solution vector U = (u,p,1,9)" € [C’l(ﬁz)]6 N
[C*(R$,)]° to the system of equations

AU =0 in RY, (1)
satisfying the Dirichlet type boundary condition
U} =f on S=0Rl, (2)

where A(0) = [Ap,(0)]6xe is the matrix differential operator of statics in the theory of
thermo-electro-magneto-elasticity [1]. We require that f € C>(R?).

Theorem 1. The Dirichlet boundary value problems (1)—(2) have at most one solution
U = (u,,1,0)" in the space [C'(R?,)]° N[C*(RF,)]° provided

0(z) =O(z|™") and 8°U(z) = O(|lz|"" ™ n|z|) as |z] = oo
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for arbitrary multi-index o = (o, ag, a3). Here U= (u, 0, 0)".

Theorem 2. Let f € C*(R?) and [, f(F)di = 0, [ f(@)a;di = 0, j = 1,2,
T = (w1,%2). Then the unique solutions of the boundary value problems (1)—(2) can
be represented in the form

U(x) = F21 [0 ) [0 0)] 7 (€

)} , v3 >0, or
Ule) = F7! L |09 2g) @ 0)] " F©)] . s <0,

Here .Fg% denotes the inverse generalized Fourier transform and ®* are the following
matrices:

O, 25) = /

¢+

AN (—ig)e o™ dgy,  )(E x5) = / ATH(—ig)e™ 0 dg,
.

where (1 (resp., £7) is a closed simple curve of positive counterclockwise orientation (resp.,
negative clockwise orientation) in the upper (resp., lower) complex half-plane Re&; > 0
(resp., Re &3 < 0) enveloping all the roots with respect to &3 of the equation det A(—i&) =0
with positive (respectively, negative) imaginary parts.
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[1] D. Natroshvili, Mathematical problems of thermo-electro-magneto-elasticity. Lect.
Notes TICMI 12 (2011), 127 pp.

Convergence of Walsh—Fourier Series in the
Martingale Hardy Spaces
GEORGE TEPHNADZE

Department of Mathematics, I. Javakhishvili Thilisi State University, Thbilisi, Georgia
Department of Engineering Sciences and Mathematics, Luled University of Technology,
Lulea, Sweden

email: giorgitephnadze@gmail.com

In [2] (see also [3]) it was proved that there exists an martingale f € H, (0 <p < 1),
such that
sup || Sy fl 1, = +00.
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On the other hand, it is well known (for details see e.g. [1], [4] and [5]) that there
exists an absolute constant ¢, depending only on p, such that

| Son fll &, < cpllfllm,, f € Hpy p>0.

This lecture is devoted to review boundedness of the subsequences of partial sums
with respect to Walsh system in the martingale Hardy spaces H,, when 0 < p < 1. We
also investigate necessary and sufficient conditions for the convergence of subsequences of
partial sums in terms of modulus of continuity of the martingale Hardy spaces H,,, when
0<p<l.
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A Note on N. Bary’s One Conjecture
SHAKRO TETUNASHVILI

A. Razmadze Mathematical Institute of Iv. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: stetun@rmi.ge

According to Cantor’s well-known theorem (see [1]) if a trigonometric series converges
everywhere to zero, then all of its coefficients equal to zero.
V. Kozlov proved (see [2]) that there exists a trigonometric series

an sin nz, Zbi >0 (1)
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possesing the following property:

if {Sy(z)}5°_; is the sequence of partial sums of the series (1), then there exists a
sequence of natural numbers {my}3°, such that S,,, (r) — 0 everywhere as k — oo and
S, () — 0 uniformly on [§, 7 — §] for any 6 > 0.

According to N. Bary’s conjecture (see [3]) if the trigonometric series (1) posses the
above mentioned property indicated by V. Kozlov, then it is necessary that

M4+
Mg

— 00 as k — oo. (2)

We gave a negative answer to this conjecture (see [4]).
In our talk we present a theorem which strengthens our above mentioned result re-
flected in [4]. Namely, the following theorem holds:

Theorem. There ezist a series (1) and a sequence {my}32, such that
1) Sy, (z) — 0 everywhere as k — oo;

2) S, (x) = 0 uniformly on [§, m — d] for any § > 0;

Rt g A

3)
Remark. It is obvious that condition (2) implies that the upper density of the sequence
{mi}32, equal to zero, while 3) means that the upper density of the sequence {my}22,
equal to one.

References

[1] G. Cantor, Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen
Reihen. Math. Ann. 5 (1872), no. 1, 123-132 (in German).

[2] V. Ya. Kozlov, On complete systems of orthogonal functions. Mat. Sbornik N.S.
26(68) (1950), 351-364 (in Russian).

[3] N. K. Bary, On everywhere converging to zero subsequences of partial sums of
a trigonometric series. Izv. AN SSSR, Ser. Mathem. 24 (1960), 531-548 (in
Russian).

[4] Sh. T. Tetunashvili, On N. Bary’s one conjecture. Proc. A. Razmadze Math. Inst.
133 (2003), 164-165.



05017790, 5-9 lgg@9ddgco, 2016 dmbosfomgms Imbligbgogools mgdoligdo 235

On Geometrical Realizations of Families of Sets
TENGIZ TETUNASHVILI
I. Vekua Institute of Applied Mathematics of 1. Javakhishvili Thbilisi State University,
Thilisi, Georgia
Georgian Technical University, Thilisi, Georgia

email: tengiztetunashvili@gmail.com

In our talk geometrical realizations of families of sets and some algorithms for such
realizations in finite dimensional R" spaces are presented and discussed. Special attention
dictated by visibility aspects is paid to geometrical realizations of families of sets in
R!, R? and R3? spaces. Several of our theorems describe properties of special important
cases of geometrical realizations of families of sets and some of their applications are
shown. Namely, different statements dealing with geometrical realizations of independent
families of sets are presented. These results continue our earlier research work reflected
in publications [1] and [2].

Acknowledgement. Presented research was supported by the Shota Rustaveli Na-
tional Science Foundation Grant for Young Scientists (Contract Number: YS15_2.1.1_31).
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Absolutely Convergence Factors of Fourier Series

VAKHTANG TSAGAREISHVILI, GIORGI TUTBERIDZE

Department of Mathematics, Faculty of Exact and Natural Sciences, 1. Javakhishvili
Thilisi State University, Thilisi, Georgia

emails: cagare@ymail.com; giorgi.tutberidze257@ens.tsu.edu.ge

The talk is devoted to investigate numerical sequences, for which multiplication with
Fourier coefficients of finite variation functions provides absolute convergence of Fourier
series in the power p, where p > 0.
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We present the theorem, which is a criterion for which the above mentioned numerical
sequences are absolute convergence factors of Fourier series of finite variation functions.

Moreover, we also consider efficiency of criterion of main results for trigonometric and
Walsh systems.

Solution of the Boundary-Contact Problem of
Elastostatics for an Multi-Layer Infinite Cylinder
with Double Porosity

IVANE TSAGARELI

I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: i.tsagareli@Qyahoo.com

Green’s formulas for systems of equations phoroelasticity are deduced. The uniqueness
theorems of solutions are proved. The general solutions of equations are presented by
means of harmonic, meta-harmonic and biharmonic functions. Explicit solutions of basic
BVPs are obtained in the form of series. The conditions needed for absolute and uniform
convergence of series are established.
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(Septeber 30 — October 3, 2010, Yerevan—Jermuk), Conference Proceedings 2 (2010),
219-225.
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Sci. 39 (2016), no. 8, 2136-2145.
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Application of Low Rank Approximation for Solution
of Large Scale Electromagnetic Problems
P. TSERETELI?, Z. SUKHIASHVILI', R. JOBAVA?
'EMCoS Ltd, Thilisi, Georgia
2St. Andrew the First-Call Georgian University of Patriarchate of Georgia

email: paata.tsereteli@gmail.com

Solution of large scale and complex electromagnetic (EM) problems by the Method of
Moments (MoM) demands a large amount of computer memory (hundreds of GBytes) and
requires a big computational time. The used technique finally leads to solution of the sys-
tem of linear equations with complex coefficients where the number of unknowns may be
100,000 and more [1]. To reduce the required memory and speed up the calculation time,
various low rank approximation methods are used. At the last conference we reported
about ACA (Adaptive Cross Approximation) algorithm and BICGSTAB (BiConjugate
Gradient Stabilized) iterative method for compression of matrix and its solution [2], [3].
Now we would like to report about SVD (Single Value Decomposition) algorithm for the
compression and direct method (LU decomposition) for solving of compressed system of
linear equations.

In our approach surface of the investigated body is divided approximately into equal
areas taking into account their properties. The MoM assumes that these areas interact to
each other and various blocks of matrix correspond to these interactions. Diagonal blocks
of matrix correspond to interaction of the surface area on themselves and they are filled
completely. The blocks which describe interaction between concerning areas are filled
completely also or low rank approximation with high accuracy is used for filling. Other
blocks are compressed by low rank approximation method. In some cases we obtain 80-
90% compression of matrix. For solving the compressed system of linear equations, block
LU method is implemented.
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Problem. VI Annual International conference of the Georgian Mathematical Union,
Book of Abstracts, July 12-16, 2015, Batumi, Georgia, 192.

On the Iterative Solution of a System
of Discrete Beam Equations
ZVIAD TSIKLAURI
Georgian Technical University, Thilisi, Georgia

email: zviad_tsiklauri@Qyahoo.com

The variational and difference methods are used respectively for spatial and time
variables to solve a nonlinear integro-differential dynamic beam equation. The resulting
algebraic system of cubic equations is solved by the iterative method. The iteration
process error is estimated.

On the Fourier Coefficients of a Double
Indefinite Integral

IRMA T'SIVTSIVADZE
Akaki Tsereteli Kutaisi State University, Kutaisi, Georgia

email: irmatsiv@gmail.com

The necessary and sufficient conditions for 27 periodicity are established with re-
spect to each variable of the indefinite double integral F; corresponding to a function f
summable on [0,27]? and 27 periodic with respect to each variable. Give the relation
between the Fourier coefficients of functions f and F.
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The Nonstationary Flow of a Conducting Fluid in a
Plane Pipe in the Presence of a
Transverse Magnetic Field

B. TSUTSKIRIDZE, L. JIKIDZE

Department of Mathematics, Georgian Technical University, Thilisi, Georgia

emails: b.tsutskiridze@Qmail.ru; levanjikidze@yahoo.com

We consider the nonstationary flow of an incompressible viscous conducting fluid in
plane pipe of infinite length in the presence of a transverse magnetic field. Using the
Laplace transformation we obtain the expressions for the fluid flow velocity and the electric
and magnetic field intensities when the conductivity values of the fluid and pipe walls are
arbitrary. Solutions are expressed in terms of complex integrals which are calculated for
the particular case of ideally conducting walls.

In recent years, nonstationary flows of a conducting incompressible fluid have been
considered in a number of works. A class of exact solutions of magnetohydrodynamic
equations for laminar flows has been considered in the papers [1]. The theoretical state-
ment of nonstationary problems and their solvability were investigated by Ladizhenskaya
and Solonnikov in [2]. In the papers [3], an exact solution was obtained for a nonsta-
tionary flow of a fluid which is produced by the ideally conducting parallel walls in the
presence of a transverse magnetic filed. The impulsive motion and oscillations of the plate
in a conducting fluid in the presence of a magnetic filed are studied in the works [4].
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Cylindrical Deformation of a Prismatic
Shell with the Thickness Vanishing at Infinity

MARGARITA TUTBERIDZE

. Vekua Institute of Applied Mathematics of 1. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: Tutberidze.rita@mail.ru

The present work is devoted to the problem of cylindrical deformation of a prismatic
shell with the following thickness

h = hoe™ 2 hg = const, a = const, 0 < xy <00; —00 < x1 < +00, (71,%2) € w,
where w is the projection of the plate on Ox;xs,
w = {(z1,22) : —00 < 71 < 00,0 < 23 < +00}.

Solutions of the posed boundary value problems are presented by integral forms, nu-
merical results are also given.

Approximation in Mean on Homogeneous Spaces
DuGrLas UGULAVA

N. Muskhelishvili Institute of Computational Mathematics of Georgian Technical
University, Thilisi, Georgia

email: duglasugu@yahoo.com

Let 20 be a homogenous space, and GG be a compact transitive transformation group of
20 with respect to left multiplication(see, for example, [1]). Let further a be a fixed point
from 20 and consider its stationary subgroup H C G. Consider the following one-to-one
correspondence ¢ between 20 and the factor space G/H: if w € Q0 and g € G transfers a
to w, then the corresponding to w element p(w) € G/H is the class gH. To the subgroup
H and defined on G a Haar measure, corresponds a G-invariant Radon measure p on G/H
[2]. In turn, by means of such measure p and the correspondence ¢, we may introduce
on 20 a translation invariant measure doy. By L?(20) we denote the space of quadratic
integrable with respect to the measure dyy; functions. In the case of a massive subgroup
H [1], some Jackson’s type theorems for the space L?(20) are established and illustrated
by examples. It is considered also the case when on a homogenous space acts a locally
compact group.
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Cohomogeneity One Lorentzian Manifolds

MoHAMMAD J. VANAEI, S. M. B. KASHANI

Department of Pure Mathematics, Tarbiat Modares University, Tehran, Iran

emails: javad.vanaeiQmodares.ac.ir; kashanism@modares.ac.ir

The action of a subgroup of the isometry group of a given semi-Riemannian manifold
is called an isometric action. The cohomogeneity of an isometric action is defined as the
lowest codimension of its orbits. Each one of the orbits of such an isometric action, as
an invariant under the isometries of the ambient manifold, is called an (extrinsically)
homogeneous submanifold, and the collection of all the orbits is the orbit foliation of
the action. The investigation of homogeneous submanifolds and their generalizations has
produced an influential and fruitful area of research along the last decades. Historically,
the case of codimension one was the first one to be addressed. The classification of co-
homogeneity one actions up to orbit equivalence (which is equivalent to the classification
of homogeneous hypersurfaces up to isometric congruence) is an important problem in
differential geometry. The main reason is that, if M is a cohomogeneity one manifold,
certain partial differential equations that can arise on M can be reduced to ordinary dif-
ferential equations, which can make its resolution easier. This procedure has proved to
be successful, for example, for the construction of Einstein, Einstein—-Ké&hler metrics ([1]).
In Riemannian geometry, the orbit structure of a cohomogeneity one action is easy to
describe. Indeed, it is well-known that the orbit space M /G is a one dimensional topo-
logical space and using this fact one can see that all orbits of a cohomogeneity one action
can be reconstructed from one orbit of the action ([1]). The situation in non-Riemannian
geometry gets quite different and more interesting. To get a better understanding of coho-
mogeneity one actions in non-Riemannian setting, we consider cohomogeneity one actions
on Lorentzian manifolds of constant curvature. Besides some general results on specific
spaces (the anti de Sitter space and the Minkowski space) we classify cohomogeneity one
actions in low dimensions which clarify how various and different the orbit structure and
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the orbit spaces could be in non-Riemannian manifolds. For example, we can see that it
may not be possible to reconstruct the orbits structure even if the orbits are known on
an open dense subset of the ambient space.

This is a joint work with J. Berndt, J.C. Diaz-Ramos and E. Straume.
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Approximate Solution of Antiplane Problem of
Elasticity Theory for Composite Bodies Weakened by
Cracks Based On Finite-Elements Method

ZURAB VASHAKIDZE!?

1. Vekua Institute of Applied Mathematics of I. Javakhishvili Thilisi State University,
Thilisi, Georgia

2Faculty of Exact and Natural Sciences of I. Javakhishvili Thilisi State University,
Thilisi, Georgia

email: zurab.vashakidze@gmail.com

Study of boundary value problems for the composite bodies weakened by cracks has a
great practical significance. Mathematical model investigated boundary value problems
for the composite bodies weakened by cracks in the first approximation can be based
on the equations of anti-plane approach of elasticity theory for composite (piece-wise
homogeneous) bodies. When cracks intersect an interface or penetrate it at all sorts
of angle on the base of the integral equations method is studied in the works [1]-]2].
Approximate solution of the above mentioned problem by finite-difference method have
been studied in the articles [3], [4].



05017790, 5-9 lgg@9ddgco, 2016 dmbofomgms Imbligbgogools mgdoligdo 243

In the present article finite-elements solution of anti-plane problems of elasticity theory
for composite (piece-wise homogeneous) bodies weakened by cracks is presented. The
differential equation with corresponding initial boundary conditions is approximated by
finite-elements analogies in the rectangular quadratic area. Such kind set of the problem
gives opportunity to find directly numeral values of shift functions in the grid points.
The suggested calculation algorithms have been tested for the concrete practical tasks.
The results of numerical calculations are in a good degree of approach with the results of
theoretical investigations.

The author express hearty thanks to Prof. A. Papukashvili for his active help in
problem statement and solving.
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New Algorithm of the Estimate Operation Number
for Product of Polynomials
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1. Vekua Institute of Applied Mathematics of I. Javakhishvili Thilisi State University,
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2Department of Mathematics, 1. Javakhishvili Thilisi State University, Thilisi, Georgia

email: tamazvashakmadze@gmail.com

In the our report will be considered the problem of construction of the new scheme for
a product of polynomials of one variable. By our scheme, in particular, this number may
be reduced almost twice as in [1] but our approach is different giving some interesting ap-
plications. Then we construct an new expansion for arbitrary parameter.Same expression
in the simple case give an estimate considering in [2, Exercise 1.2.6] and for the work [3]
this result is essential.

Further, we also will present new scheme for product of polynomials, from which partic-
ularly follows that the order of numbers of multiplications for the product of two integers
is same of Toom-Cook estimate with bounded constant (compare with [4, Theorem C,
p. 324]).

By The Georgian Patent Office the corresponding materials of this article was deposit-
ing at 17.09.2015, Certificate No. 6353.
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To Creation and Design of Refined Theories
of von Karman—Koiter Type for
Thin-Walled Continuum Medium
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In the first chapter of [1] for elastic plates are constructing of refined theories (such
as Kirchhof-Love, von Karman—A. Feppl, Reissner—Mindlin, Poincare, Donnel, Washizu,
Hellinger, Landau, Timoshenko, Vekua, Ball, Goldenveiuser, Lucasiewich, Ciarlet, etc.)
and their equivalent new models,depending on arbitrary control parameters. On the
other hand, in [2] we formulated the Pinciple:If some phenomenon is discovered for any
separate media then this one are true for all forms of continuum mechanics. In this way it’s
interesting that in [3] we predicted the existence of solution waves for elastic plates which
would be confirmed by experiment [4]. Based on works[1], [2] we formulate the problem
investigation and decision of which would be for us the main aim: the creation of refined
theories with control parameters without applicable of simplifying hypothesis for problems
of continuum media with thin-walled structures (for example, the theory of Nagdy—Koiter
and Burgers’ equation). For clearness and concreteness we consider the cases when the
cylindrical pipe conductors of finite or semi-infinite lengths have concentrate circles or
confocal elliptical rings with oil, gas and blood.

In historical sense these problematics are connected with the names of I. Vorovich,
V. Koiter [some details seel, pp. 3, 4], C. Truesdell [5], Ph. Ciarlet [6]. In [5] Trues-
dell declared that von Kédrmén classical systems doesn’t have “physical soundness (PS)”.
Ph. Ciarlet in [6] seeked to proof that this system has PS. But it’s impossible as the sec-
ond differential equation with respect to Airy stress function is Saint—Venant—Beltrami
condition of compatibility and no-equilibrium independent equation. This incorrectness
discovered more evidently for consideration of dynamical problems.

Thus an aim of this report is determination facilities of construction and investigation
a class of mathematical models of von Karman—Koiter type refined theories; in case when
pipeconductors have sections of circle or elliptical rings we will try to construct new
algorithms and create new schemes for full designing.
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One of the key issues that determines the crack resistance of thin-walled reinforced
concrete structures, is taking into account the specific properties of reinforced concretes.
Reinforced concretes as a two-component structural material, differ from other materials
in a number of characteristic features such as heterogeneity, anisotropy, transformation
of cracks, etc., creates some difficulties for building structures calculation and design.

The paper is devoted to the calculation of reinforced concrete structures with cracks
by means of reduction of reinforced concrete elements mode of deformation to the calcu-
lation of having variable stiffness rod using the methods of structural mechanics. Due to
the integral model of deformation the level of load according to modes and duration of
loading, as well as strength, deformation characteristics, and according to cross-section
are determined.
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On the Number of Representations of a Positive
Integer by Binary Forms Belonging
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We extend formulae of P. Kaplan and K. Williams [1] for the number of representations
of positive integers by some binary quadratic forms belonging to multi-class genera.
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Influence of Delamination Type Defects
on Parameters of Sandwich Plate
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At design of sandwich plates and shells should be considered a possibility of such type
of defects, as the delamination of structure, which may arise at production of structure,
or at its operation. The origination of such defects is necessary to take into consideration
at design of optimal tasks as restrictions of symmetrical structure.

The analysis of mode of deformation of sandwich slab, which is being under the ac-
tion of distributed on the surface load and was simply supported on edges, shows that
parameters of mode of deformation of such slab that has additional delamination type
defect, considerably different from the parameters of mode of deformation of slab without
defects. Is clear numerical as well as qualitative difference. Especially in the case when
the defect location does not match the force application spot.
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In the report is stated the delamination related to shifted loading in the middle of span
applied on upper load bearing layer, when the deflection curve becomes asymmetrical
and the maximum deflection is increasing in comparison with non-deformed structures.
Also occurs the maximum deflection displacement ti the delamination zone. Location of
maximum deflection is determined by the sizes of delamination.

Cross-Sections in a Special Class of Semi-Cotangent

Bundles

FURKAN YILDIRIM!, KURSAT AKBULUT?

Department of Mathematics, Faculty of Sci. Atatiirk University, Narman Vocational

Training School, 25530, Erzurum, Turkey
email: furkan.yildirim@atauni.edu.tr
2Department of Mathematics, Faculty of Sci. Atatiirk University, 25240,
Erzurum, Turkey

email: kakbulut@atauni.edu.tr

The main purpose of this paper is to investigate cross-sections in semi-cotangent (pull-
back) bundle t*M of cotangent bundle T*M by using projection (submersion) of the
tangent bundle TM.
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A Suggestion for Controlling of a Nonlinear Plate
Via Maximum Principle
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In this study, a nonlinear plate equation is considered by means of maximum principle
in aspect of well-posedness and controllability. As a conclusion of the present study, an
open problem is presented.

Optimal Vibration Control for a Mindlin-Type Beam
KENAN YILDIRIM
Mus Alparslan University, Mus, Turkey

email: kenanyildirim52@gmail.com

In this study, optimal dynamic response control of a forced Mindlin-type beam is
presented. Before giving the controllability results, well-posedness of the system is dis-
cussed. Numerical results are presented in tables and graphical forms to demonstrate the
effectiveness and capability of the introduced control algorithm.
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Study of Stress-Strain State of Infinite Elastic Body
with Parabolic Notch
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In the parabolic coordinates £, n (—o0 < £ < 00, 0 < 1 < o0; if z, y are Cartesian
coordinates, then z = 7 (€2 —n?), y = c&n, where c is the scale factor and equal to 1 in our
case) [1] equilibrium equations system and Hook’s law are writing. Exact solutions of 2D
static boundary value problems of elasticity are constructed for the homogeneous isotropic
bodies occupying domains bounded by coordinate lines of system parabolic coordinates.
Namely, the elastic body occupies the following domain Q2 = {—0c0 < £ < 00, < 7 <
oo0}. At parabolic border are given normal or tangential loads, and at £ = 0 are given
symmetrical or anti-symmetrical conditions. The exact solutions are obtained by the
separation variables method. In the work the numerical values of the components of
stress tensor and displacement vector at some points of the body, and visualization and
discussion of gained results are presented.
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Numerical Solution of Stresses Localization Problem
by Boundary Element Method
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Numerical solution of the non-classical problem, namely problem of localization of
stresses, are obtained by the boundary element method [1]. In a certain sense, the problem
of localization of stresses in a body is the inverse problem to the delocalization problem [2].
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The localization problem is defined as follows: to change a sufficiently uniform stressed-
deformed state of a body for a sharply expressed non-uniform stressed-deformed state (in
conditions of constant external perturbations) by changing and appropriate selection of
parameters of the medium. This will enable us to destroy a military structure, for example,
the underground facilities. The problem can be set as follows: find on the part of border
half plane distribution of normal stress so that is the same normal stress on the segment
given length at a given distance from the boundary half plane is equal of given function
(function describes a concentrated force). By the changes of elastic characteristics, the
distance and the length of segment of the border will be select the normal stress optimal
distribution at part of border half plane. Numerical results, corresponding graphs and
mechanical and physical interpretation of above-mentioned problems are presented.
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