Georgian Mathematical Union
bsfarmagemmb

Georgian Mechanical Union

 Batumi Shota Rustaveli State University
 Sponsor: Shota Rustaveli National Science Foundation

VII International Joint Conference of Georgian Mathematical Union \& Georgian Mechanical Union

Continuum Mechanics and Related Problems of Analysis
Dedicated to 125-th birthday anniversary of academician N. Muskhelishvili

BOOK OF ABSTRACTS

Batumi, September 5-9

Organizing Committee:

Chairmen: Roland Duduchava (GMU), George Jaiani (GeoMechU), Vice-Chairs: Tinatin Davitashvili (GMU), Natalia Chinchaladze (GeoMechU), Scientific Secretaries: Medea Tsaava (GMU), Bakur Gulua (GeoMechU), Members: Tengiz Buchukuri, Guram Gogishvili, Nugzar Kereselidze, Levan Sigua, George Tephnadze (GMU), Miranda Gabelaia, Gela Kipiani, Mikheil Rukhaia (GeoMechU), Local Organizers: Vladimir Baladze, Anzor Beridze, Ruslan Tsinaridze.

Scientific Committee:

Vladimer Baladze, Tirthankar Bhattacharyya, Temur Chilachava, Otar Chkadua (Chairman), Teimuraz Davitashvili (Chairman), Roland Duduchava, Guram Gogishvili, Vladimir Gol'dshtein, Boris Golubov, George Jaiani, Aleks Kirtadze, Alexander Kvinikhidze, Hamlet Meladze, Mohammad Sal Moslehian, Wolfgang Müller, Konstantin Pkhakadze, Sergej Rjasanow, Khimuri Rukhaia, Nugzar Shavlakadze, Grigol Sokhadze.

Editors: Guram Gogishvili, Maia Kvinikadze, Maia Japoshvili
Cover Design: David Sulakvelidze

Contents

 29
 29
Professor Revaz Bantsuri - 80 33
 37
Professor Merab Mikeladze - 90 43
In Memoriam - blmagb 49
 49
Grigol (Gia) Sokhadze 51
Abstracts of Plenary and Invited Speakers 53
 53
Tirthankar Bhattacharyya, Holomorphic Functions on the Symmetrized Bi- disk - Realization, Interpolation and Extension 55
 55
Sergei Chobanyan, Inequalities on Rearrangements of Summands with Ap- plications in a.s. Convergence of Functional Series 56
 56
Yuri Dahl, Nikita Morozov, Boris Semenov, Kolosov-Muskhelishvili's Me- thod in Problems of Fracture and Buckling of Thin Planes with Defects 57
 57
V. Gogokhia, A. Shurgaia, M. Vasuth, The Mass Gap and Hagedorn Den- sity of States in QCD at Finite Temperature 58
 58
Vladimir Gol'dshtein, Composition Operators for Sobolev Spaces and their Applications 59
 59
Boris I. Golubov, Sergey S. Volosivets, Multiplicative Fourier Transforms and Convolutions 60
 60
George Jaiani, On Elastic Multi-Layered Prismatic Structures 61
 61
Julius Kaplunov, Danila Prikazchikov, Surface and Edge waves of General time-Dependence 62
 62
Vakhtang Kokilashvili, Vakhtang Paatashvili, Boundary Value Problems for Analytic and Generalized Analytic Functions within the Framework of New Function Spaces 63
 63
Alexander Kvinikhidze, Tools of the Nuclear Effective Field Theory 63
 63
W. H. Müller, W. Weiss, E. N. Vilchevskaya, Reality Viewed through the Eyes of Continuum Mechanics 64
 64
Mohammad Sal Moslehian, Recent Developments of Grüss Type Inequalities for Positive Linear Maps 66
 66
Sergej Rjasanow, Boundary Element Methods with Radial Basis Functions 67
 67
Armen Sergeev, Sobolev Space of Half-Differentiable Functions and Qua- sisymmetric Homeomorphisms 68
 68
Wojciech Sulisz, On the Formation of Freak Waves 69
 69
Abstracts of Participants' Talks 71
 71
Edison Abramidze, A Numerical Analysis of Deformed Multilayered Ellip- soidal Non-Linear Shells 73
 73
G. Akhalaia, G. Makatsaria, N. Manjavidze, Correctness of the Boundary Value Problems for Some Classes of Two-Dimensional Elliptic Systems 73
 jemblobongols 73
Teimuraz Aliashvili, On Topology of Proper Quadratic Endomorphisms 74
 74
Teimuraz Aliashvili, Topological Invariants of Random Polynomials 74
 O゚9 ${ }^{\text {b̀ }}$ 74
Akbar B. Aliev, Gunay I. Yusifova, Existence and Nonexistence of Global Solutions for a Class Nonlinear Pseudo-Hyperbolic Equations with Damp- ing and Source Terms 75
 75
Bakhram A. Aliev, Solvability of a Boundary Value Problem for Second Order Elliptic Differential-Operator Equations with Quadratic Spectral Parame- ter 76
 76
Maryam Amyari, Orthogonality in Finsler C^{*}-Modules 77
 77
Natela Ananiashvili, About Solution of Generalized Problems of Minimal Set Covering 77
 77
Gegi Aptsiauri, The Algorithm of Mathematical Modeling of Turbulent Spa- tial Flows 78
 78
Zurab Arkania, Calculation of Hoses on Strength 79
 79
Malkhaz Ashordia, Nestan Kekelia, Nino Topuridze, On the Solvabil- ity of the Cauchy Problem for Linear Systems of Generalized Differential Equations with Singularities 79
 79
Malkhaz Ashordia, Goderdzi Ekhvaia, Nato Kharshiladze, On the Cauchy Problem for Systems of Linear Generalized Differential Equations with Sin- gularities 81
 samgubob ఫglsbgo 81
Siamak Ashrafi, Boundary Layer Problem for the System of First Order Ordinary Differential Equations with General Nonlocal Boundary Con- ditions 82
82
Irakli Avalishvili, Apply of Graph Extension Function in Nature 83
 83
Abdullah Avey, Bilender Pasaoglu, On the Solution of the Eigenvalue Prob- lem of Shear Deformable Functionally Graded Shells 8484
Petre Babilua, Elizbar Nadaraya, Grigol Sokhadze, On the Statistic of Criteria for the Testing Hypothesis of Equality Several Distribution Densities 85
 $z^{\mathrm{ob}} \mathrm{Ig}_{9} \mathrm{bsb} \mathrm{g}^{\mathrm{d}}$ 85
 86
Petre Babilua, Grigol Sokhadze, Model Lessons in Mathematics 86
Guram Baghaturia, Marina Losaberidze, Elastic-Plastic State of Cylindri- cal Tube in Elastic Medium 87
 87
Giorgi Baghaturia, Marina Menteshashvili, The General Integrals of Quasi- Linear Equations and Domains of Propagation of the Solutions of Non- Linear Cauchy Problems 88
 งウゥяว่๐ 88
Gulbanu Baisarova, Omar Kikvidze, Investigation of a Temperature Field of a Beam under Non-Uniform Nonstationary Heating 89
 89
Vladimer Baladze, Anzor Beridze, Strong Shape and Homology of Contin- uous Maps 90
 90
Vladimer Baladze, Koba Ivanadze, The Proper Shape Theories and Massey (Co)Homology Groups 91
 91
Vladimer Baladze, Ruslan Tsinaridze, On Fiber Strong Shape Theory 92
 92
Rovshan Bandaliyev, Hausdorff Operator in Lebesgue spaces 93
 93
G. Barsegian, New Type Regularities for Some Basic Concepts in Analysis and Geometry (in Particular for Smooth Curves, Surfaces and Analytic Functions in a Given Domain) 94
 94
Mariam Beriashvili, Some Applications of Projective Sets in Study of Abso- lutely Non-measurable Functions 95
 95
Yuri Bezhuashvili, Asymptotic Distribution of the Eigenvalues and Eigen- functions in Basic Boundary Value Oscillation Problems in Hemitropic Elasticity 96
 96
Lamara Bitsadze, Fundamental Solution in the Plane Equilibrium Theory of Thermoelasticity with Microtemperatures for Microstretch Solids 96
96
Rusudan Bitsadze, Simon Bitsadze, On Initial Problem for One Equation of Oscillation Taking Place in Magnetohydraulic Pusher 97
 97
Nika Botchorishvili, Lia Kipiani, David Chikovani, Program of Analysis of Plate with a Certain Reduced Flexural Rigidity 98
 98
Tengiz Buchukuri, Otar Chkadua, David Natroshvili, Pseudo-oscillation Problems of the Thermopiezoelectricity Theory without Energy Dissipa- tion 98
 98
Ali Cakmak, Parallel Surfaces of Ruled Surfaces 99
 99
Hasim Cayir, Some Notes on Covarient and Lie Derivatives of Sasakian Metric on Cotangent Bundles 100
 100
Ahmet Okay Çelebi, Schwarz Problem for Higher-Order Linear Equations in \mathbb{C}^{n} 101
 \mathbb{C}^{n} - ${ }^{\text {б }}$ 101
Gela Chankvetadze, Lia Kurtanidze, Mikheil Rukhaia, Automated The- orem Prover for Unranked Logics 102
 102
Khatuna Chargazia, Oleg Kharshiladze, Theoretical and Numerical Anal- ysis of the Zonal Flow Structures in Nonuniform Ionospheric Medium 102
 102
Temur Chilachava, Maia Chakaberia, About Some Decisions of Nonlin- ear System of the Differential Equations Describing Process of Two-Level Assimilation 103
 चglubg 103
Temur Chilachava, Tsira Gvinjilia, Nonlinear Mathematical Model of Dy- namics of Processes of Cooperation Interaction in Innovative System 104
 @ущ๐ 104
Temur Chilachava, Leila Sulava, Three Party Nonlinear Mathematical Model of Elections 105
 105
Natalia Chinchaladze, Antiplane Shear of Orthotropic Non-Homogeneous Prismatic Shells 106
 106
Bayaz Daraby, A Generalization of the Minkowski and Related Type Inequal- ities for the Sugeno Integrals 107
 107
Bayaz Daraby, Uniform Boundedness Theorem on Fuzzy Hilbert Spaces 108
 108
Bayaz Daraby, Bessel's Inequality on Fuzzy Hilbert Spaces 109
 109
Teimuraz Davitashvili, Givi Gubelidze, Meri Sharikadze, Hydraulic Cal- culation of Branched Gas Pipeline 110
 110
Teimuraz Davitashvili, Nato Kutaladze, Ramaz Kvatadze, Giorgi Mi- kuchadze, Zurab Modebadze, Heavy Showers Prediction above the Complex Terrain Based on WRF Modelling 111
111
David Devadze, On One Numerical Method of Solution of the Problem of Optimal Control for Linear Differential Equation 112
 112
Mzia Diasamidze, Irma Takidze, Second Order Statistical Moments of the Phase Fluctuations of Scattered Radiation in the Collision Magnetized Plasma 113
 113
Victor Didenko, Roland Duduchava, Medea Tsaava, Basic Boundary Value Problems for the Helmholtz Equation in a Model 2D Angular Domain 114
 114
Mehdi Djahangiri, On the Application of Uncertain Measure to Find the Uncertain Weighted Stable Set 115
 115
Besik Dundua, Rule-Based Programming with Regular Constraints 117
 117
Omar Dzagnidze, Single Fourier Series of Several Variable Functions 118
 onols 118
Tsiala Dzidziguri, Guidelines for the Study of the Course "Mathematical and Computer Modeling" on a Specialty "Computer Technology" 118
 доomongòsちo 118
 Jglvobgo 119
G. Fedulov, N. Iashvili, T. Dzagania, V. Padiurashvili, About Models and Algorithms for Optimization Tasks of Bin Packing 119
Miranda Gabelaia, On Deflections of a Prismatic Shell Exponentially Cusped at Infinity 120
 120
M. Gabidzashvili, On Two-Weighted Estimates for Riesz Potentials 120
 120
Inga Gabisonia, Vakhtang Kokilashvili, Dali Makharadze, On the Ap- proximation of Periodic Functions in Variable Exponent Lorentz Spaces 121
 121
Avtandil Gachechiladze, Roland Gachechiladze, Some Contact Problem in Elasticity with Natural Nonpenetration Condition 121
 121
Levan Gavasheli, Fermat's Great Theorem 122
 122
George Geladze, Manana Tevdoradze, Numerical Modelling of a Meso- boundary Layer of Atmosphere Taking into Account of Some Moments of Solar Radiation 123
 123
Ashot Gevorkyan, Poincare Conjecture, Classical Nonintegrability and Quan- tum Chaos on the Example of 3 Bodies 123
 123
Ashot Gevorkyan, Reduction of the Classical Three-Body Problem to 6th Order System 124
 mogol bob 124
Levan Giorgashvili, Maia Kharashvili, Revaz Meladze, Boundary Value Problems for the Navier-Stokes Equations in the Half-Space 124
 124
Levan Giorgashvili, Shota Zazashvili, Mathematical Problems of Thermoe- lasticity of Bodies with Microstructure and Microtemperatures 125
 onals 125
Vazha Gogadze, Crane-Transport, Building and Road Machines Working Equip- ments' Structural Research 125
 125
 126
Guram Gogishvili, On the Strengthened Program of the National Curriculum in Mathematics 126
V. Gogokhia, A. Shurgaia, Periodic Field Configurations in a Theory of Scalar Fields with Brocken $S U(2)$ Symmetry 127
 127
David Gogolashvili, On Estimation of the Two Dimensional Regression Func- tion 127
 bg ${ }^{\text {b }}$ 127
David Gorgidze, Electroelasticity Equilibrium of an Elliptical Cylinder 128
 128
Bakur Gulua, Roman Janjgava, Derivation of the System of Equations of Equilibrium for Plates Having Double Porosity 128
 128
Bakur Gulua, Manana Tevdoradze, Solution of Boundary Value Problems of Spherical Shells by the Vekua Method in the Approximation $N=2$. 129
 129
David Gulua, Jemal Rogava, About One Method for Splitting of the Semi- discrete Schemes for the Evolutionary Equation with Variable Operator 130
 dgbsbgo 130
Osman Gursoy, On the Kinematical Invariants in Line Space 131
 131
Abbas Heydari, Nikrooz Heidari, Parametrization of Euclidean Nearly Käh- ler Submanifolds 132
 Бsommonls 3s 132
 133
Giorgi Iashvili, Quantitative Rationale of Decision-Making 133
 @১ дупммœзゝ 134
Magda Iashvili, Criteria and Methodology for Assessment of the Level of De- velopment of Small Business 134
 135
N. Iashvili, T. Dzagania, V. Padiurashvili, G. Iashvili, Principles of Mathematical Modeling of Analytical Devices and Systems 135
Muhsin Incesu, Osman Gürsoy, $\mathbf{S}(2, \mathrm{D})$-Equivalence Conditions of Control Points of Dual Planar Bezier Curves 136
 136
S. V. Israilov, A. A. Sagitov, Boundary Value Problem of the Vallee-Poussin for the Differential Equations Unsolved with Respect to Highest Derivative 137
 додлணை 137
Yousef Jafarzadeh, A Numerical Method for Solving Integral Equations by Modified Hat Functions 138
 138
Yousef Jafarzadeh, Error Analysis of Fuzzy Fredholm Integral Equations by the Splines Interpolation 138
 138
Aslan Jaghmaidze, Giorgi Karseladze, Guram Sadunishvili, Non-Classi- cal Problems of Statics of Linear Thermoelasticity of Microstretch Mate- rials with Microtemperatures 139
 139
Roman Janjgava, A Condition of Existence of Neutral Surfaces for the Shells Consisting of Binary Mixtures 139
 139
Levan Japaridze, Field of Stresses in Cylindrical Specimen of the Rocks and Other Hard Materials at Indirect Test of Tensile Strength 140
 140
Revaz Kakubava, Solomon Kurtanidze, Grigol Sokhadze, About Re- served Systems with Repair and Replacement Bodies 141
 141
Murad Kalabegashvili, Short Review of Scientific and Pedagogical Activity of Merab Mikeladze 141
 141
Varga Kalantarov, Blow up of Solutions of Nonlinear Wave Equations with Positive Initial Energy 142
 142
Giorgi Kapanadze, The Plane Problems of the Theory of Elasticity for a Doubly-Connected Domain Bounded by the Convex Polygons 142
 142
Liana Karalashvili, The Approximate Solution of a Boundary Value Problem by Grid Method Using Sh. Mikeladze Formula 143
 143
Tamar Kasrashvili, On Some Measurability Properties of Additive Functions 143
 143
Nugzar Kereselidze, Beqa Toklikishvili, About a Safety Issue of Computer System 144
 144
Nugzar Kereselidze, George Sanaia, Beqa Toklikishvili, About Blocking and Unblocking Websites 145
 145
 145
Razhden Khaburdzania, On Focuses in an Improper Lines in Five-Dimensional Extended Euclidian Space 145
Marina Kharazishvili, Using Graphing Calculators in the Mathematics Teach- ing Process 146
 146
Nino Khatiashvili, On the Cauchy Integrals with the Weierstraß Kernel 146
 146
Zaza Khechinashvili, Optimal Forecasting for Risky Asset Price Evolution in the Models Represented by Gaussian Martingale 148
 148
Giorgi Khimshiashvili, Topology of Stable Quadratic Mappings into the Plane 148
 magos 148
Giorgi Khimshiashvili, Natia Sazandrishvili, Morse Functions on Concen- tric Configurations of Points 149
 149
Vladimir Khocholava, On the Strong Summability of Fourier-Laplace Series 150
 150
S. Khomeriki, D. Khomeriki, G. Shatberashvili, E. Mataradze, M. Lo- saberidze, Determination of the Parameters of Refracted Wave Stress in the Rock 151

Irina Khutsishvili, On the MADM Problem Based on TOPSIS with Triangular Hesitant Information 151
 151
Aben Khvoles, About Application of Data Mining Methods Teaching Research Methods for Managements Faculties 152
 152
G. Kipiani, D. Jankarashvili, A. Tabatadze, Analysis of Rotating Circular Ring Disk with a Constant Thickness with Rigidly Fixed Internal Circuits 152
 152
Gela Kipiani, Akaki Paresishvili, Nino Chorkhauli, Plate's Optimization in Aircrafts 153
 153
Gela Kipiani, Lery Zambakhidze, Giorgi Rekhviashvi, Stability of Thin- Walled Spatial Systems with Discontinuous Parameters 154
 154
Aleks Kirtadze, On a Classification of Sets and Functions from the Point of View of Their Measurability 154
 154
Vakhtang Kokilashvili and Tsira Tsanava, Fundamental Inequalities for Trigonometric Polynomials in New Function Spaces and Applications 155
 155
Tea Kordzadze, Nino Gogoladze, Petro I. Bidyuk, Adaptive Forecasting With Alternative Techniques 156
 156
Berna Koşar, Celil Nebiyev, Cofinitely E-Supplemented Modules 157
 157
Vakhtang Kvaratskhelia, Unconditional Convergence of Random Series 158
 158
Levan Labadze, On Statistical Estimation of Coefficients of the Ornstein- Uhlenbeck Processes 159
 159
O. Lanchava, G. Nozadze, Numerical Modeling of Fires in the Road Tunnels and Dynamic of Distribution of Damaging Factors 160
 160
Badri Magradze, Strong Coupling Constant from τ Decay 161
 @ゝ6 161
Dali Magrakvelidze, Description of Income and Substation Effect by Using Slutsky Identity 162
 162
Nino Makatsaria, Bernoulli Type Time Series 163
 163
Leon Makharadze, The Analysis of Hydrodynamic and Mechanical Processes Impact on Pressure Pipeline Durability and Exploitation Reliability During Hydro Aero-Mixtures Motion with Abrasive Solid and Loose Admixtures in It 164
 164
Leonard Mdzinarishvili, Homotopy Groups of Infinite Wedge 164
 164
Mahir Aligulu Mehdiyev, Surkay Akbarov, On the Forced Vibration of the Bi-Material Elastic System Consisting of the Hollow Cylinder and Sur- rounding Elastic Medium 165
 165
Hamlet Meladze, Tinatin Davitashvili, Some Algorithms of Solving the Systems of Nonlinear Algebraic Equations on Parallel Computing Systems 166
 лмдмппотдо 166
 167
Rusudan Meskhia, On Some Problems Connected with Teaching the Set of Values of Functions 167
David Metreveli, David Burchuladze, Solution of the Non-classical Prob- lems of Statics of Two-Component Elastic Mixtures for a Half-Space 168
 ongols 168
Tina Mgeladze, Integral Functionals of Distribution Densities and Their Deriva- tives 168
 168
Miranda Mnatsakaniani, Control Task Formulation in Geopolitics (Neural Networks Approach) 169
 169
Shahram Morowati-Shalilvand, Sedaghat Shahmorad, Kamal Mirnia, Knapsack Problem over Time 170
 170
Yu. M. Movsisyan, On Burnside Varieties 172
 172
Yuri Movsisyan, Sergey Davidov, Aleksandar Krapež, On Division and Regular Algebras with Functional Equations 173
 173
Natia Mtchedlidze, Prismatic Shell with the Thickness Vanishing at Infinity in the $N=0$ Approximation of Hierarchical Models 173
 173
Elizbar Nadaraya, Grigol Sokhadze, On Estimations of Distribution Den- sities in Functional Spaces 174
 174
Vadoud Najjari, On Selection of Copulas 174
 174
Miranda Narmania, Roman janjgava, Some Statically Definable Problems for Cylindrical Shells 175
 175
Natavan Nasibova, The General Solution of the Non-Homogeneous Problem 176
 176
Babak Nasrinpay, Yousef Jafarzadeh, Convergence Analysis for Systems of Integral Equations by Hat Functions 177
 177
Celil Nebiyev, Weakly E-Supplemented Modules 177
 177
Celil Nebiyev, Hasan Hüseyin Ökten, Cofinitely E-Supplemented Modules 178
 178
Kakhaber Odisharia, Vladimer Odisharia, Paata Tsereteli, Nona Jani- kashvili, Mathematical Modeling of Immunopathogenesis of Rheumatoid Arthritis 179
 179
 181
K. Odisharia, V. Chinchaladze, V. Odisharia, A Numerical Solution for the Reissners Nonlinear System 181
Nana Odishelidze, On Construction of Full-Strength Holes for the Mixed Problem of Plate Bending 182
 182
Konul Omarova, The Process of Semi-Markov Random Walk with Two De- laying Screen 182
 182
Gogi Pantsulaia, Givi Giorgadze, Representation of the Dirac Delta Func- tion in $\mathcal{C}\left(R^{\infty}\right)$ in Terms of the $(1,1, \cdots)$-Ordinary Lebesgue Measure 183
 183
Archil Papukashvili, Meri Sharikadze, Ekaterine Namgalauri, Maria
Gorgisheli, Numerical Solution for a Two-Point Boundary Value Prob- lem with a Second Order Non-Constant Coefficient Ordinary Differential Equation by Means of Operator Interpolation Method 185
 185
Giorgi Papukashvili, On One Method of Approximate Solution of the J. Ball Nonlinear Dynamic Beam Equation 186
 186
Bilender Pasaoglu, Dilation, Functional Model and Spectral Problems of Dis- crete Singular Hamiltonian System 187
 187
Bilender Pasaoglu, Spectral Problems of Singular Sturm-Liouville Boundary Value Transmission Problem in Limit-Point Case 188
 188
David Pataraia, On Possibility of Static and Dynamical Calculations of Ex- tended Bodies with Application of a Solid Deformable Body Discrete Model and Successive Approximation Algorithm 189
 дm@gmols @д додœаз 189
Mzevinar Patsatsia, Grigol Sokhadze, On Functionals of a Probability Den- sity 190
 Jglosbg 190
Jemal Peradze, On an Integro-Differential Equation of a Nonlinear Static Plate 191
 191
Konstantine Pkhakadze, In the European Union with the Georgian Lan- guage - the Long-Term Project "Technological Alphabet of the Georgian Language" and the Threats in which is Georgian Language 192
 192
 193
Konstantine Pkhakadze, George Chichua, The Trial - Applied Version of the Georgian Semantically Reader System 193
 194
Konstantine Pkhakadze, George Chichua, Inesa Beriashvili, The First Trial Version of the Georgian Multilingual (English, German, Russian) Computer Phrasebook 194
 196
Konstantine Pkhakadze, George Chichua, Merab Chikvinidze, David Kurtskhalia, The First Trial Version of the Georgian Adapted (i.e. Voice Managed) "Windows" 196
 197
Konstantine Pkhakadze, Merab Chikvinidze, The First Trial - Applied Version of the Georgian Hybrid Grammatical (Orthographic and Syntactic) Checker System 197
 198
Konstantine Pkhakadze, Merab Chikvinidze, George Chichua, David Kurtskhalia, The First Trial Voice Managing Version of the Georgian Logical Analyzer and Question Answering System 198
199

Konstantine Pkhakadze, Merab Chikvinidze, George Chichua, David
Kurtskhalia, The First Trial Version of the Georgian Smart Paper i.e.
Multifunction Georgian Redactor 199
 201
Konstantine Pkhakadze, David Kurtskhalia, The First Trial - Applied Version of the Automatically Generating System of the Georgian Logical Tasks and Analogies 201
 202
Konstantine Pkhakadze, David Kurtskhalia, Merab Chikvinidze, George Chichua, The First Trial Version of the Georgian Smart Journal 202
 $39^{\text {mbogòn }}$ 203
Konstantine Pkhakadze, David Kurtskhalia, George Chichua, Merab Chikvinidze, The First Trial Voice Managing Version of the Automati- cally Testing System of the Skills of Solving of Georgian Logical Tasks and Analogies 203
 205
Konstantine Pkhakadze, David Kurtskhalia, George Chichua, Merab Chikvinidze, The First Trial Version of the Georgian Adapted (i.e. Voice Managed) "Gmail" 205
 206
Konstantine Pkhakadze, David Kurtskhalia, Merab Chikvinidze, George Chichua, The First Trial - Applied Version of the Georgian Talk- ing Browser 206
Valerii Plisko, On a Constructive Theory of Enumerable Species 207
 207
Vsevolod Popov, Dynamic Stress Intensity Factor for Break-Line Shaped Crack at Harmonic SH-Wave Interaction 209
 209
V. G. Popov, O. I. Kirillova, Stress State of a Cylindrical Body with a Crack under Oscillations in the Plane Strain Conditions 210
 210
Omar Purtukhia, Hedging of European Option with Nonsmooth Payoff Function 211
 211
Asghar Rahimi, Zahra Darvishi, Approximately Dual for Continuous Frames in Hilbert Spaces 212
 212
Giorgi Rakviashvili, Ekaterine Kuljanishvili, About a Center of a Bi- parabolic of Subalgebra of $\operatorname{sl}(n)$ 213
 d39 213
Mehdi Rashidi-Kouchi, Basic Properties of Controlled Frames in Hilbert C^{*} - modules 214
 214
Kerstin Rjasanowa, Numerical Solution of the Eikonal Equation with Appli- cations to an Automatic Piping 215
 215
 216
Khimuri Rukhaia, Lali Tibua, Sopho Pkhakadze, About One Logical Method of Automatic Theorem Proving 216
Nino Rusiashvili, On an Existence of Dynamical Systems in Polish Topological Vector Spaces 217
 217
Ghadir Sadeghi, Modular Spaces Associated to Semi-Finite von Neumann Algebras 218
 218
Serpil Şahin, Hüseyin Demir, Numerical Solution of Natural Convective Heat Transfer for Dilatant Fluids 219
 219
Tevfik Şahïn, Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface in the Pseudo-Galilean Space 220
 220
Arif Salimov, Some Remarks on the Geometry of Anti-Kähler-Codazzi Mani- folds 221
 221
Tsitsino Sarajishvili, Some Aspects of Teaching Sensitivity Analyses of Eco- nomic Problem 222
 222
Aleksandr Sborshchikov, Using the Wald's Method for Prove of Consistency of Generalized Estimation of Maximal Likelihood Estimation 223
 пм 223
Mohammad Shahriari, Hochstadt's Result for Inverse Sturm-Liouville Prob- lems Using m Transmission and Parameter Dependent Boundary Conditions 223
 223
Mohammad Shahriari, Behzad Abbasi, Reconstruction of the Discontin- uous Potential Function for Sturm-Liouville Problems with Transmission Conditions 225
 225
Luiza Shapakidze, Complex Regimes Arising in a Heat-Conducting Flow Be- tween Horizontal Porous Cylinders 226
 226
Nugzar Shavlakadze, The Solutions of Integral-Differential Equations and Their Applications in the Linear Theory of Elasticity 227
 227
T. Shervashidze, Z. Kvatadze, Precision of Estimation of Nonperiodical Core Density Constructed by Observation with Chain Dependence 228
 228
Teimuraz Surguladze, Hyperbolicity Equation of Motion for General Maxwell's Body 229
 229
Onise Surmanidze, Universal Topological Abelian Groups 229
 229
Kosta Svanadze, On the Solution of Some Problems of the Theory of Elastic Mixture by the Variation Method 230
 230
 230
Kakhaber Tavzarashvili, Ketevan Kuthashvili, Electronic Program Math- Bridge of Teaching Mathematics 230
Zurab Tediashvili, The Basic BVP of Thermo-Electro-Magneno Elasticity for Half Space 231
 231
George Tephnadze, Convergence of Walsh-Fourier Series in the Martingale Hardy Spaces 232
 232
Shakro Tetunashvili, A Note on N. Bary's One Conjecture 233
 233
Tengiz Tetunashvili, On Geometrical Realizations of Families of Sets 235
 dglsbgo 235
Vakhtang Tsagareishvili, Giorgi Tutberidze, Absolutely Convergence Fac- tors of Fourier Series 235
 235
Ivane Tsagareli, Solution of the Boundary-Contact Problem of Elastostatics for an Multi-Layer Infinite Cylinder with Double Porosity 236
 236
P. Tsereteli, Z. Sukhiashvili, R. Jobava, Application of Low Rank Approx- imation for Solution of Large Scale Electromagnetic Problems 237
 237
Zviad Tsiklauri, On the Iterative Solution of a System of Discrete Beam Equa- tions 238
 samblsonl aglssbad 238
Irma Tsivtsivadze, On the Fourier Coefficients of a Double Indefinite Integral 238
 238
B. Tsutskiridze, L. Jikidze, The Nonstationary Flow of a Conducting Fluid in a Plane Pipe in the Presence of a Transverse Magnetic Field 239
 239
Margarita Tutberidze, Cylindrical Deformation of a Prismatic Shell with the Thickness Vanishing at Infinity 240
 240
Duglas Ugulava, Approximation in Mean on Homogeneous Spaces 240
 240
Mohammad J. Vanaei, S. M. B. Kashani, Cohomogeneity One Lorentzian Manifolds 241
 241
Zurab Vashakidze, Approximate Solution of Antiplane Problem of Elastic- ity Theory for Composite Bodies Weakened by Cracks Based On Finite- Elements Method 242
 242
Tamaz Vashakmadze, New Algorithm of the Estimate Operation Number for Product of Polynomials 244
 sbऽме Јмдмппопдо 244
Tamaz Vashakmadze, To Creation and Design of Refined Theories of von Kármán-Koiter Type for Thin-Walled Continuum Medium 245
 245
Mamuka Vazagashvili, Jumber Kakhidze, David Kipiani, Calculation of Thin-Walled Structures with Cracks 246
 246
Teimuraz Vepkhvadze, On the Number of Representations of a Positive In- teger by Binary Forms Belonging to Multi-Class Genera 247
 $3^{\text {bols }}$ 247
Fatima Verulashvili, Revaz Kakhidze, Influence of Delamination Type De- fects on Parameters of Sandwich Plate 247
 247
Furkan Yildirim, Kursat Akbulut, Cross-Sections in a Special Class of Semi- Cotangent Bundles 248
 248
Kenan Yildirim, A Suggestion for Controlling of a Nonlinear Plate Via Max- imum Principle 249
 249
Kenan Yildirim, Optimal Vibration Control for a Mindlin-Type Beam 249
 249
Natela Zirakashvili, Study of Stress-Strain State of Infinite Elastic Body with Parabolic Notch 250

Natela Zirakashvili, Mariam Mateshvili, Numerical Solution of Stresses
Localization Problem by Boundary Element Method 250

253

 งдмп̧л

 samblfago obsogol.

 дәјмо одмппол.

 byò。.

 вэдпм

Professor Revaz Bantsuri - 80

This year is marked by the 80 -th birthday anniversary of Professor Revaz Bantsuri, a prominent Georgian mathematician, Corresponding Member of the Georgian National Academy of Sciences, Doctor of physical and mathematical sciences.

He was born on June 10, 1936 in the village of Bantsurtkari (Dusheti region). Upon graduation from I. Javakhishvili Tbilisi State University, since 1960 up to the end of his life he has been working at A. Razmadze Mathematical Institute holding different positions. In 1966 he defended his Candidate's thesis and in 1982 Doctoral thesis at the Institute of Problems of Mechanics of the Russian Academy of Sciences. Since 1983 he headed the Department of Mathematical Theory of Elasticity.

In 1997, Revaz Bantsuri was elected a Corresponding Member of the Georgian National Academy of Sciences. He was a member of Russian National Committee in Theoretical and Applied Mechanics.

Revaz Bantsuri was Niko Muskhelishvili's pupil and worthy successor of his scientific ideas.

He devoted all his works to: boundary and contact problems of the plane theory of elasticity, mixed boundary value problems of the theory of analytic functions, problems of elasticity for domains with partially unknown boundaries, systems of convolution type integral equations and infinite algebraic equations. He essentially developed the wellknown Muskhelishvili research area, having considerably enriched with new trends a range of application of methods of the theory of analytic functions.

Using integral transformations, R. Bantsuri reduced contact problems of certain classes to boundary value problems of the theory of analytic functions of new type and called them the Carleman type problems for a strip. He elaborated a new type method of factorization and solved the Carleman type problem in a rather general case. Applying this method, he solved very important contact problems of various types for isotropic and anisotropic bodies.

This method, besides the theory of elasticity, can be used in the theory of integral equations of convolution type and in the theory of systems of infinite algebraic equations of the same type, in problems of heat distribution with third kind boundary conditions, in problems of electromagnetic wave diffraction, etc. The method for the above-mentioned problems is of the same importance as that developed by Muskhelishvili in the 40ies of the past century for investigation of classical contact problems. The method is known as R. Bantsuri's method of canonical solutions, and presently is a unique general method successfully used for effective solution of the above-mentioned contact problems.

The problems for domains with partially unknown boundaries deal with optimal distribution of stresses in a body. They belong to mathematically complicated and very important problems of optimal projecting. In a general case, these problems are reduced to nonlinear problems.

Revaz Bantsuri formulated the problems of the plane theory of elasticity and plate bending for some classes of problems with partially unknown boundaries and reduced them first to linear problems and then to the problems of the theory of analytic functions with shifts and called them the Carleman type problems for a circular ring. He elaborated the second method of factorization whose application allowed us to get a completed theory of solvability for that class of problems.

Applying the methods of Muskhelishvili and Wiener-Hopf, R. Bantsuri reduced static problems of cracks, when the crack comes to the boundary or to the interface of a piecewise homogeneous medium, to the problem of linear conjugation with a Wiener class coefficient. He constructed effective solutions and studied the question on the stress concentration at the crack ends. Thus he has obtained significant results in fracture mechanics. The above-mentioned result of R . Bantsuri is recognized by specialists as one of the best results.

The problems of crack distribution in a body with constant or varying velocity belong to such a class of mixed problems when the points of change of boundary conditions displace in time. R. Bantsuri considered the problems when semi-infinite cracks in a plane spread linearly with constant or varying velocity. The problems of crack distribution with constant velocity were reduced by means of variable transformations to the problem of classical dynamics, while in the problem of crack distribution with varying velocity by means of Fourier-Laplace transformation we get the generalized Wiener-Hopf problem. An effective solution of that problem is obtained. The above method is used in contact problems when a semi-infinite rigid punch moves with varying velocity at the boundary of a half-plane or a strip. Very interesting and significant results were obtained in this
group of problems, as well.
The apparatus of the Cauchy type integral turned out to be insufficient for solving the Carleman type problems for a strip and a circular ring, hence Revaz Bantsuri constructed new integral representations which in this case have played the same role as the Cauchy type integrals in problems of linear conjugation. Using the obtained results, R. Bantsuri constructed for a circular ring a solution for the Riemann-Hilbert problem and for the mixed problem of the theory of analytic functions, he obtained effective solutions of a system of infinite convolution type algebraic equations.
R. Bantsuri together with G. Janashiya proved the invariance of algebra of Wiener functions on the axis with respect to Hilbert transformations.

This allowed him to reduce a solution of convolution type integral equations on the semi-axis for a summable kernel to the problem of linear conjugation in a class of Wiener functions.

Relying on the above-said, we can conclude that Revaz Bantsuri has made an internationally recognized contribution to the development of the theory of elasticity. He improved N. Muskhelishvili's method and largely extended an area of application of methods of the theory of analytic functions in the plane theory of elasticity.

A special mention should be made of Revaz Bantsuri's contribution to the cause of education of the young generation. For many years he worked at the Chair of Theoretical Mechanics of Tbilisi State University, delivered lectures in the theory of elasticity and brought up many candidates and doctors of sciences. Revaz Bantsuri, a great researcher, remarkable citizen, excellent family man, modest and full of responsibility, passed away in 2014. He made a major contribution to the science.

 1982 烸．）．

 1969 ๆ. ৎऽ ১.д.).

 3м

Professor Merab Mikeladze - 90

Honored Worker of Sciences, Doctor of Engineering, Corresponding Member of Georgian Academy of Sciences, Professor Merab Mikeladze was born in 1926 in the family of outstanding Georgian mathematician Shalva Mikeladze.

In 1948 after the graduation from the Construction Faculty of Georgian Polytechnic Institute he continued study in Moscow at the Institute of Mechanics Postgraduate School of the Academy of Sciences of the former Soviet Union. There he defended both candidate and doctor's theses. The last one was defended in 10 years after graduation from the Georgian Polytechnic Institute.

Since June of 1952 till September of 1953 he was working at the Institute of Mechanics of the Academy of Sciences of the Soviet Union. Since September of 1953 he was a senior research associate at the Mathematical Institute of Georgian Academy of Sciences. At the same time (1953-56) he delivered lectures at the Tbilisi State University at MechanicoMathematical faculty.

In 1958 he was invited as the head of the Department of Theoretical Mechanics at Tbilisi Institute of Transport Engineers. After merge to Polytechnic Institute he headed Department of Structural Mechanics (1960-1982).

He devoted nearly 4 decades to studying researches of thin plates and shells of nonclassical problems of Structural Mechanics. Researches in this area of nonlinear behavior of shells, and first of all at the expense of studying of anisotropic shells, considerably
extended. The choice of scientific subject was prompted by the fact that in the early forties huge significance was given to anisotropic materials and the constructions made of them. In this regard it should be noted that M. Mikeladze was a pioneer of this sphere by publishing the article in the magazine "ДАН СССР", 1954 "On the carrying capacity initially anisotropic shells". This work was important also for the reason that instead of using the theory of Nadai-Henki-Ilushin of small elasto-plastic deformations (which was used by almost all Soviet scientists during fifties), he used Levi-Mizes theory of a flow (referred to the version of Mises-Hill for orthotropic bodies). So, the known hypotheses of Kirhgoff-Liav, - the main relations of the theory of a plastic flow of Mises and model of a plastic and rigid body, were the basis of the theory offered by M. Mikeladze. Accordingly homogeneous shells of different thickness and also composite layered constructions, including ideal two-layer models were considered. "Finite relations between stresses and the bending moments were established in case of a symmetric flow to the middle of a surface in particular, the known formulas of Ilushin for isotropic shells were followed. Besides, the Mikeladze's way of research gave the chance to reveal additional relations between internal forces thanks to what widening of a class of statically determined problems became possible.It was possible, in the form of an example, to provide semi-moment theory of anisotropic cylindrical shells whose thickness for this system of external forces were defined in each point of the middle of a shell, proceeding from a fluidity condition. Further M. Mikeladze developed the similar theory for the rotating prefabricated shells which were made along parallels and meridians jointed by hinges. He considered several axially symmetric problems about definition of the carrying capacity and one elasto-plastic problem, in which case explicit solution was enabled. The desire to expand the class of the studied problems and to resolve burning engineering issues inspired M. Mikeladze to use a new version of plasto-rigid calculation scheme, according to which not only elastic but also plastic parts of a shell were considered rigid. As a result of such approach in six-dimensional space of forces and moments the limited hyper surface of fluidity would be transformed to a hyper ellipsoid which, together with the corresponding law of the flow, gave the chance to formulate theorems of limit equilibrium for anisotropic shells as well. By means of these theorems it became possible to determine carrying capacity of the shallow rotating shells, the stretched bending circular plates and other structures. Consequently, the calculation models of the anisotropic shells were extended to such shells, material of which differently interfered with compression and stretching. The main relations received by M. Mikeladze gave the chance to formulate a general problem about the law by means of which the optimal thickness of a shell, at which this loading instantly transferred the entire structure to a fluidity condition, was determined. Such approach provided the uniform strength and the minimum weight (volume) of a construction. In works of M. Mikeladze specific problems, which in case of isotropic material were reduced to results of V. Prager, V. Friberger, B. Tekinalpi and other scientists, were considered. The scientist using similar approach researched problems regarding shaping of optimal middle surface of a metal shell and by means of radioactive radiation of a middle surface
of a shell. These researches of M. Mikeladze were partially reflected in his monographs ("Statics of anisotropic plastic operations", 1963; "Introduction to the technical theory of ideally plastic shells", 1969) and in many articles which were published abroad. These results were widely covered in survey works of the Soviet and foreign authors (see, for example, article of D. Drakker "Plasticity" in English, published in the collection "Construction Mechanics", New York, 1960; V. Olshak, Z. Mruzis and Pezhina, translation from English "A Current State of the Theory of Plasticity", publishing house "Мир", 1964; article of I. R. Lepik in "The Engineering Magazine" (v. IV, issue 3, 1964); "Balance of Elastoplastic and Plastic-Rigid Plates and Shells"; V. Olshak's translation from English "Inelastic Behavior of Shells", publishing house "Мир", 1969, etc).

In 1965 at the initiative of M. Mikeladze and under his supervision at the Mathematical Institute of Academy of Sciences of the USSR the Department of Applied Mechanics which was completed with young scientists - graduates of GPI was created, the main directions of scientific subject of the Department - research of elastic and elasto-plastic equilibrium of thin plates taking into account piece-wise defined behavior of their separate physical, geometrical and kinematic parameters were planned.

The important place in activity of M. Mikeladze was taken by the Department of Structural Mechanics of the Georgian Polytechnic Institute which was created by his initiative in 1960 and which was directed by him till 1982.

The reasonable organization of the Department and intelligent use of scientific potential of staff gave to the scientist the chance to create single strong research team.

In order to reflect the success of M. Mikeladze and his disciples it could be named several of them: 1 . Bending and optimal planning of thin plates, when their thickness behaves as a piece-wise defined function; 2. Calculation of elastic and non-elastic structures consisting of jointed by hinges elements; 3. Planning of structures of equilibrium strength by radiation exposure; 4. Calculation of elastic and plastic cylindrical shells of noncircular shape; 5. Research of carrying capacity; 6. Optimal planning taking into account conditions of rigidity and strength; 7. Calculation of continuous structure; 8. Elastoplastic bending of the plates and cylindrical shells having discontinuous characteristics taking into account material hardening. It is worth mentioning the questions, studied by M. Mikeladze, which concerned continuous casting of steel on radial and oval equipments. The assumption, accepted by him that in a crystallizer and in a zone of secondary cooling to consider a crust of a body as a rigid and plastic shell, which fluidity limit at compression many times over surpasses a fluidity limit at stretching, became a starting point of these researches. These problems together with the scientist were considered also by his disciples.

It should be noted separately works in Structural Mechanics of Machines. They were executed in the early fifties. Generally they concerned to calculations of quickly rotating disks, cylinders and cores within and out of elasticity. Further these researches were continued by his disciples.

Researches of M. Mikeladze are partially reflected in Structural Mechanics of Machines
in his monograph "Elasticity and Plasticity of Elements of Structures and Machines", 1976.

Besides, M. Mikeladze is the author of five original textbooks in the field of Modern Structural Mechanics: Bases of the theory of shells, 1974; Theory of plates bending, 1976; Short course of Structural Mechanics, 1977; Bases of calculations of thin-walled spatial systems, 1980; Statics of ideally elasto-plastic and plastic and rigid systems, 1980.

At the end of the short characteristic of scientific activity of M. Mikeladze we will note that he in his scientific area is one of the famous experts both in our country, and beyond its bounds. Neither one, nor two works were published by him on pages of the famous foreign scientific magazines, took part in work of several international forums. His scientific works were characterized by novelty of thought and practical commitment. It testifies to wide erudition and talent of the author creatively to use modern mathematical apparatus in the course of studying of complex engineering challenges.

Taking into account that contribution which M. Mikeladze brought in development of elasto-plastic systems of Structural Mechanics and in preparation of national scientific staff, the scientist adequately carried a rank of the Honored Worker of Science and the Corresponding Member of Academy of Sciences of the Georgian SSR.

He perfectly felt that great significance which was attached to pilot studies in the field of Applied Mechanics. When on his initiative at Mathematical Institute the laboratory base was creating, in Romania a book of Balan and his disciples "Hromoplasticity" was issued, in which visual and simple teaching methods of pilot studies of elasto-plastic systems were described. For the purpose of promoting and development of these methods in our country M. Mikeladze considered necessary to translate this book from Romanian and to publish it. Theoretical researches of this scientist and his disciples were always closely connected with practice. Possibly therefore the fact that young people who under his supervision defended dissertations in Moscow or Tbilisi fruitfully worked both at scientific and pedagogical fields, and in different spheres of a national economy. It should be noted pedagogical activity of M. Mikeladze especially. Not one generation, graduated the Georgian Polytechnic Institute, remember his smoothly running, refined in the language plan and deeply intelligent lectures. In modernization and perfection of educational process the significant role was played by the textbooks in the native language written by him. Besides, within years M. Mikeladze was a member of the scientific commission "Stregth", existing at Presidium of Academy of Sciences of the USSR and the member of the Scientific Methodical Commission of the Ministry of Secondary Vocational Education of Structure Mechanics and Building Constructions.

As the chairman of society "Knowledge" M. Mikeladze one of the first in Georgia gave a helping hand to capable youth of mountain areas and gave them the chance to study at the Georgian Polytechnic Institute. Brought up in a traditional family of the academician Shalva Mikeladze love for the country to him was imparted since the childhood. He was ready always and everywhere to protect interests of Georgia. Then under trying conditions of the Soviet management each patriotic step was regarded as primitive-national
manifestation. The proof to that was noisy performance of the father and son, Shalva and Merab Mikeladze on enlarged meeting of Academy of Sciences of GSSR in 1973 against the book, published by Academy of Sciences of the USSR, "Questions of History of Mathematics" in which the role of the Georgian mathematicians was not considered. The acute reaction and repressions of the government of that time was a followed result. Together with all M. Mikeladze was an approximate son, the husband and the father.

The big scientist and the patriot M. Mikeladze until the end of his life worked on questions of history of Georgia. He wrote many interesting works and letters which part was published by the separate book "Totem and Ancient World", Tbilisi, 2001.

3. lmbsda @sodses 1953 Pimol 29 s3momb dumod

 งb

 1992 Яูณ

Grigol (Gia) Sokhadze

We are grieved by the sudden death of the well-known mathematician, Professor of the Iv. Javakhishvili Tbilisi State University, Head of Department of I. Vekua Institute of Applied Mathematics of TSU, Doctor of physics and mathematics, Grigol (Gia) Sokhadze.
G. Sokhadze was born on April 29, 1953, in Kutaisi. In 1970-1974 he was a student of physics and mathematics faculty at the Kutaisi State Pedagogical Institute. After graduating from the Institute, G. Sokhadze, being a young man of special talent, was invited by Professor Gvanji Mania to work as a research worker at the I. Vekua Institute of Applied Mathematics of TSU.

Later he started work at A. Razmadze Institute of Mathematics of the Georgian Academy of Sciences. Since 1983 he had been Professor and Head of Chair of Higher Mathematics at Kutaisi Akaki Tsereteli State University. Since 2009 to the end of his life he had been working at the Faculty of Exact and Natural sciences of TSU.

In 1980 G. Sokhadze successfully defended his candidate's thesis in Kiev, at the Institute of Mathematics of Ukraine, and in 1992 -- the doctor's thesis at the same Institute.
G. Sokhadze had versatile scientific interests. He was a well-educated mathematician, scientist of high level. Most of his scientific investigations are dedicated to problems of probability theory and mathematical statistics. He was extremely productive as a researcher - for the last 10 years he had been the author of over 100 scientific papers, published in different scientific journals. His latest works reveal new and profound relations between infinite-dimensional analysis and Malliavin calculus, on the one hand, and stochastic calculus and theory of statistical inference, on the other hand. It should also be mentioned that for the last five years three scientific projects under his guidance have obtained funding through grants which is one more proof of the high level of his scientific investigations and diversity of his interests.
G. Sokhadze was also remarkable as a teacher to many young scientists, author of many text-books, a favourite lecturer with students and often those wishing to attend his lectures were more than it was envisaged by the educational course. Many theses were defended under his guidance both in Kiev and Tbilisi. He was guiding the work of five doctoral students for the last years.

Besides the scientific and pedagogical activities he was also the member of the Council of the Georgian Mathematical Society, member of the Board of the Georgian Statistical

Society, accreditation expert of the National Center for Educational Quality Enhancement, trainer at the Teachers' Training centre, member of the Editorial Board of the journal "TSU science", Deputy Editor-in-Chief of the Editorial Board of the scientificpopular journal "Mathematics". He exerted himself to the end.

The death of G. Sokhadze, famous scientist, mathematician of international level, a principal, distinguished person and a reliable colleague, is an irreparable loss to his family, friends and colleagues.

Vakhtang Kvaratskhelia
Omar Purtukhia

Abstracts of Plenary and Invited Speakers

Holomorphic Functions on the Symmetrized Bidisk - Realization, Interpolation and Extension

Tirthankar Bhattacharyya
Indian Institute of Science, Bengaluru, Karnataka, India
email: tirthankar.bhattacharyya@gmail.com

This talk is about the open symmetrized bidisk $\mathbb{G}=\left\{\left(z_{1}+z_{2}, z_{1} z_{2}\right):\left|z_{1}\right|,\left|z_{2}\right|<1\right\}$. We shall start with basic properties of this object and then turn to function theory. The main aim is to relate function theory with reproducing kernel Hilbert spaces of holomorphic functions. In particular, three new thing will be discusses.

1. The Realization Theorem: A realization formula is demonstrated for every f in the norm unit ball of $H^{\infty}(\mathbb{G})$.
2. The Interpolation Theorem: Nevanlinna-Pick interpolation theorem is proved for data from the symmetrized bidisk and a specific formula is obtained for the interpolating function.
3. The Extension Theorem: A characterization is obtained of those subsets V of the open symmetrized bidisk \mathbb{G} that have the property that every function f holomorphic in a neighbourhood of V and bounded on V has an H^{∞}-norm preserving extension to the whole of \mathbb{G}.

The talk is based on joint work with Dr. Haripada Sau.

Inequalities on Rearrangements of Summands with Applications in a.s. Convergence of Functional Series

Sergei Chobanyan
Niko Muskhelishvili Institute of Computational Mathematics of Georgian Technical University, Tbilisi, Georgia
email: chobanyan@stt.msu.edu

Theorem 1. Let $x_{1}, \ldots x_{n} \in X$ be a collection of elements of a normed space X with $\sum_{1}^{n} x_{i}=0$. Then
a. For any collection of signs $\vartheta=\left(\vartheta_{1}, \ldots, \vartheta_{n}\right)$ there is a permutation $\pi:\{1, \ldots, n\} \rightarrow$ $\{1, \ldots, n\}$ such that

$$
\max _{1 \leq k \leq n}\left\|\sum_{1}^{k} x_{i}\right\|+\max _{1 \leq k \leq n}\left\|\sum_{1}^{k} \vartheta_{i} x_{i}\right\| \geq 2 \max _{1 \leq k \leq n}\left\|\sum_{1}^{k} x_{\pi(i)}\right\| .
$$

The mapping $\vartheta \rightarrow \pi_{\vartheta}$ can be written down explicitly .
b. (Transference Theorem) There is a permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ such that

$$
\max _{1 \leq k \leq n}\left\|\sum_{1}^{k} x_{\sigma(i)}\right\| \leq \max _{1 \leq k \leq n}\left\|\sum_{1}^{k} \vartheta_{i} x_{\sigma(i)}\right\|
$$

for any collection of signs $\vartheta=\left(\vartheta_{1}, \ldots, \vartheta_{n}\right)$.
Theorem 1 implies the Maurey-Pisier sign-permutation relationship, as well as GarsiaNikishin type theorems on rearrangement convergence almost surely of a functional series. A particular form of Theorem 1 also was used by Konyagin and Revesz to find conditions under which the Fourier series of a 2π-periodic continuous function f converges a.s. under some rearrangement. Theorem 1 also finds applications in scheduling theory, discrepancy theory and machine learning.

References

[1] S. A. Chobanyan, G. Giorgobiani, A problem on rearrangements of summands in normed spaces and Rademacher sums. Probability theory on vector spaces, IV (Łańcut, 1987), 33-46, Lecture Notes in Math., 1391, Springer, Berlin, 1989.
[2] S. Levental', A. Mandrekar, S. A. Chobanyan, On Nikishin's theorem on the almost sure convergence of rearrangements of function series. (Russian) Funktsional. Anal. i Prilozhen. 45 (2011), no. 1, 41-55; translation in Funct. Anal. Appl. 45 (2011), no. 1, 33-45

Kolosov-Muskhelishvili's Method in Problems of Fracture and Buckling of Thin Planes with Defects

Yuri Dahl, Nikita Morozov, Boris Semenov
Saint Petersburg State University, Faculty of Mathematics and Mechanics, Saint Petersburg, Russia

email: semenov@bs1892.spb.edu

We will develop an analysis of the impact of defects such as cuts and cracks in the loss of the bearing capacity of thin plates under tension. The loss of bearing capacity of such plates can be caused by its destruction or buckling. We conduct research in problems caused by using different nanodevices with elements of nanometer thickness (MEMS, NEMS and others).

We consider two classes of problems:

1) planes which are weakened by a lattice of parallel cracks
2) planes which are weakened by a circular cut.

The analytical study of the stress state of the plane with a lattice of parallel cuts is still a tricky task of the theory of elasticity. Articles devoted to this problem use the calculation of the stress intensity factors at the tips of two, three or four collinear cracks placed one above the other. This approach seems quite natural when it comes to the strength of massive quasi-brittle bodies with cracks that are in plane strain state. In the case of generalized plane stress state typical for stretched thin plates the formation and development of specific bending of plates in the vicinity of the centers of cuts usually precedes destruction. The emergence of the latter is caused by compressive stresses, localized around the edges of the cuts. At certain level of external tensile forces these stresses cause local buckling of plates, which considerably reduces their load-bearing capacity.

By Kolosov-Muskhelishvili's method [1] an exact analytical solution to the system of collinear cracks is built.

The dependence of the failure load and the critical load of the buckling on the ratio of crack length to the distance between them is analyzed. The dependence of the critical load on the number of cracks is also studied.

Considering the plates of nanoscale thickness it is shown that the bending stiffness is significantly affected by the surface stresses. For plate of the nanoscale thickness with a circular cut the effect of surface stresses on the buckling under uniaxial tension is evaluated [2].

The considered problems were also solved by the method of finite elements. A good coincidence of the first critical loads constructed by the method of finite elements and by the above method is obtained.

References

[1] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity. Basic Equations, the Plane Problem, Torsion and Bending (Foreword by Acad. A. N. Krilov). (Russian) Acad. Sci. USSR, Leningrad, 1933.
[2] V. A. Eremeyev, H. Altenbach, N. F. Morozov, The influence of surface tension on the effective stiffness of nanosized plates. Dokl. Phys. 54 (2009), no. 2, 98-100.

The Mass Gap and Hagedorn Density of States in QCD at Finite Temperature

V. Gogokhia, A. Shurgaia, M. Vasuth
Deprt. Theor. Phys., WIGNER RCP RMI, Budapest, Hungary; Deprt. Theor. Phys., A. Razmadze Math. Inst., TSU, Tbilisi, Georgia
email: gogohia.vahtang@wigner.mta.hu, gogokhia@rmi.ge

The effective potential approach for composite operators turned out to be a very useful analytical and perspective dynamical tool for the generalization of QCD to nonzero temperature and density. In the absence of external sources it is nothing but the vacuum energy density (VED), i.e., the pressure apart from the sign. This approach is non-perturbative (NP) from the very beginning, since it deals with the expansion of the corresponding skeleton vacuum loop diagrams in powers of the Planck constant, and thus allows one to calculate the VED from first principles. Using this general approach, we have shown in detail that the low-temperature expansion for the non-perturbative gluon pressure has the Hagedorn-type structure. Its exponential spectrum of all the effective gluonic excitations are expressed in terms of the mass gap. It is this which is responsible for the large-scale dynamical structure of the QCD ground state. The gluon pressure properly scaled has a maximum at some characteristic temperature $T=T_{c}=266.5 \mathrm{MeV}$, separating the low- and high temperature regions. It is exponentially suppressed in the $T \rightarrow 0$ limit. In the $T \rightarrow T_{c}$ limit it demonstrates an exponential rise in the number of dynamical degrees of freedom. This makes it possible to identify T_{c} with the Hagedorn transition temperature T_{h}, i.e., to put $T_{h}=T_{c}$. The gluon pressure has a complicated dependence on the mass gap and temperature near T_{c} and up to approximately $(4-5) T_{c}$. In the limit of very high temperatures $T \rightarrow \infty$ its polynomial character is confirmed, containing the terms proportional to T^{2} and T. All this will make it possible to transform such obtained gluon pressure into the full gluon pressure by adding the so-called StefanBoltzmann (SB) term in a self-consistent way. In its turn, this will allow one to analytically describe $S U(3)$ lattice thermodynamics in the whole temperature range from zero to
infinity, and thus to understand what is the physics behind its numbers and curves. Especially this is important for low-temperature region, where all lattice results suffer from big uncertainties.

Composition Operators for Sobolev Spaces and their Applications

Vladimir Gol'dshtein
Ben-Gurion University, Israel
email: vladimir@bgu.ac.il

The talk is devoted to bounded composition operators $\varphi^{*}: L^{1, p}\left(\Omega^{\prime}\right) \rightarrow L^{1, p}(\Omega)$ of uniform Sobolev spaces $L^{1, p}$ defined in space domains $\Omega, \Omega^{\prime} \subset \mathrm{R}^{n}$ under an additional assumption that $\varphi: \Omega \rightarrow \Omega^{\prime} \$$ are homeomorphisms. In the case $p=n$ the composition operators can be induced by quasiconformal homeomorphisms. In the case $p \neq n$ the composition operators can be induced by comparatively new class of so-called p quasiconformal homeomorphisms. The class of p-quasiconformal homeomorphisms coincide with the class of quasiconformal homeomorphisms for $p=n$. In this case $p=n$ composition operators φ^{*} are invertable. For applications more useful to use composition operators $\varphi^{*}: L^{1, p}\left(\Omega^{\prime}\right) \rightarrow L^{1, q}(\Omega), q \leq p$ that induced by so-called (p, q)-quasiconformal homeomorphism. In all these cases descriptions of composition operators are exact (necessary and sufficient conditions).

Following applications will be discussed: Embedding theorems for rough domains; Brennan's conjecture for composition operators; spectral stability of Laplace-Dirichlet and Laplace-Neumann operators in plane domains and hyperbolic geometry; lower estimates of the first non-trivial eigenvalue of the spectral Neumann problem for the Laplace operator and the p-Laplace operator in plane and space domains (the free membrane problem).

The work is done jointly with Alexander Ukhlov.

References

[1] V. Gol'dshtein and L. Gurov, Applications of change of variables operators for exact embedding theorems. Integral Equations Operator Theory 19 (1994), no. 1, 1-24.
[2] V. Gol'dshtein, L. Gurov, and A. S. Romanov, Homeomorphisms that induce monomorphisms of Sobolev spaces. Israel J. Math. 91 (1995), no. 1-3, 31-60.
[3] V. Gol'dshtein and A. Ukhlov, Weighted Sobolev spaces and embedding theorems. Trans. Amer. Math. Soc. 361 (2009), no. 7, 3829-3850.
[4] V. Gol'dshtein and A. Ukhlov, Brennan's conjecture and universal Sobolev inequalities. Bull. Sci. Math. 138 (2014), no. 2, 253-269.
[5] V. Gol'dshtein and A. Ukhlov, On the First Eigenvalues of Free Vibrating Membranes in Conformal Regular Domains. Arch. Ration. Mech. Anal. 221 (2016), no. 2, 893-915.

Multiplicative Fourier Transforms and Convolutions

Boris I. Golubov, Sergey S. Volosivets

Dept. of Mathematics, Moscow Institute of Physics and Technology (State University), Moscow, Russia
email: golubov@mail.mipt.ru

Multiplicative Fourier transform (MFT) was introduced by N.Ya. Vilenkin (see [1], p. 135). MFT $F_{\mathbf{P}}(f)(x), x \in \mathbb{R}_{+}=[0, \infty)$, of a function $f \in L^{1}\left(\mathbb{R}_{+}\right)$depends on the sequence $\mathbf{P}=\left\{p_{j}\right\}_{j=1}^{\infty}$ of natural numbers $p_{j} \geq 2$. For any function $f \in L^{2}\left(\mathbb{R}_{+}\right)$the analog of Plansherel equality $\left\|F_{\mathbf{P}}(f)\right\|_{2}=\|f\|_{2}$ is valid (see [2], p. 83). For each function $f \in L^{p}\left(\mathbb{R}_{+}\right), 1<p \leq 2$, an analog of the Hausdorf-Young inequality $\left\|F_{\mathbf{P}}(f)\right\|_{p^{\prime}} \leq\|f\|_{p}$ holds, where $1 / p+1 / p^{\prime}=1$ (see [1], p.149). The integrability and uniform convergence of multiplicative Fourier transforms was studied by us in the paper [3].

In this presentation we assume that the sequence \mathbf{P} is bounded.
Theorem 1. Let the function g be non increasing on $(0,+\infty), g \in L^{1}[0,1)$ and $\lim _{x \rightarrow+\infty} g(x)=0,1<p \leq 2$. Then for existence of a function $f \in L^{p}\left(\mathbb{R}_{+}\right)$such that $F_{\mathbf{P}}(f)(x)=g(x)$ almost everywhere on \mathbb{R}_{+}the condition $g(x) x^{1-2 / p} \in L^{p}\left(\mathbb{R}_{+}\right)$is necessary and sufficient. If this condition is valid then the inequality $\|f\|_{p} \leq C\left\|g(x) x^{1-2 / p}\right\|_{p}$ holds.

This result can be considered as an analog of the Hardy-Littlewood theorem on trigonometric cosine- and sine-series with monotone coefficients (see [4], Ch. X, p. 657). There are similar results for the Fourier cosine-transform (see [5], Ch. 4, Theorems 79, 80 and 82).

It is known the notion of \mathbf{P}-convolution $(f * g)_{\mathbf{P}}(x)$ of two functions (see [2], p. 44).
Theorem 2. Let $1<p, q<2,3 / 2<1 / p+1 / q<2,1 / r=1 / p+1 / q-1,1 / r+1 / r^{\prime}=1$. 1) If $f \in L^{p}\left(\mathbb{R}_{+}\right)$, $g \in L^{q}\left(\mathbb{R}_{+}\right)$, then $h=(f * g)_{\mathbf{P}} \in L^{r}\left(\mathbb{R}_{+}\right)$and $\left\|F_{\mathbf{P}}(h)\right\|_{r^{\prime}} \leq\|f\|_{p}\|g\|_{q}$. 2) If $\theta \in(r, 2], \gamma \in\left(0, r^{\prime}\right)$, then there exist functions $f_{0} \in L^{p}\left(\mathbb{R}_{+}\right)$, $g_{0} \in L^{q}\left(\mathbb{R}_{+}\right)$such that $h_{0}=\left(f_{0} * g_{0}\right)_{\mathbf{P}} \notin L^{\theta}\left(\mathbb{R}_{+}\right)$and $F_{\mathbf{P}}\left(h_{0}\right) \notin L^{\gamma}\left(\mathbb{R}_{+}\right)$.

References

[1] B. Golubov, A. Efimov, V. Skvortsov, Walsh Series and Transforms. Theory and Applications. Translated from the 1987 Russian original by W. R. Wade. Mathematics and its Applications (Soviet Series), 64. Kluwer Academic Publishers Group, Dordrecht, 1991.
[2] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtel̆n, Multiplicative systems of functions and harmonic analysis on zero-dimensional groups. "Èlm", Baku, 1981 (in Russian).
[3] B. I. Golubov, S. S. Volosivets, On the integrability and uniform convergence of multiplicative Fourier transforms. Georgian Math. J. 16 (2009), no. 3, 533-546.
[4] N. K. Bary, Fourier Series. Fizmatlit, 1961 (in Russian).
[5] E. C. Titchmarsh, An Introduction to the Theory of Fourier Integrals. Oxford Univ. Press, 1948.

On Elastic Multi-Layered Prismatic Structures

George Jaiani
I. Vekua Institute of Applied Mathematics \& Faculty of Exact and natural Sciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: george.jaiani@gmail.com

The present talk is a survey devoted to mathematical and engineering models of elastic multi-layered prismatic shell-like structures. In particular, it presents a model constructed by the speaker, based on modifications and a combination of the engineering method of equivalent single-layered model (see, e.g., [1]) and I. Vekua dimension reduction method [2] of constructing hierarchical models. The layers may be cusped prismatic shells as well. In the case of cusps peculiarities of setting boundary conditions (for such peculiarities see [3]) do not arise if the thickness of the structure does not vanish at the lateral boundary in spite of the fact that the structures may consist of cusped layers.

References

[1] H. Altenbach, J. Altenbach, W. Kissing, Mechanics of Composite Structural Elements. Springer-Verlag, Berlin-Heidelberg, 2004.
[2] I. Vekua, Shell Theory: General Methods of Construction. Pitman Advanced Publishing Program, Boston-London-Melbourne, 1985.
[3] G. Jaiani, Cusped Shell-like Structures. Springer Briefs in Applied Science and Technology, Springer-Heidelberg-Dordrecht-London-New York, 2011.

Surface and Edge waves of General time-Dependence

Julius Kaplunov, Danila Prikazchikov
School of Computing and Mathematics, Keele University, Keele, Staffordshire, UK
j.kaplunov@keele.ac.uk, d.prikazchikov@keele.ac.uk

Well-known surface waves of arbitrary profile [1, 2] are considered together with less known bending edge waves of general time dependence [3] within a uniform framework, relying on an implicit travelling wave ansatz arising from the dispersion relations. The examples include classical Rayleigh wave on elastic half-space, bending edge wave on a Kirchhoff plate, with extension to edge waves on plates supported by elastic foundations.

A straightforward approach to subsonic regimes of steady-state moving load problems relying on the eigensolution for surface wave is demonstrated. Finally, slow-time perturbations of surface and bending edge waves of general time-dependence leading to explicit formulations [4] are discussed.

References

[1] S. L. Sobolev, Some problems in wave propagation. In P. Frank, R. von Mises, Differential and integral equations of mathematical physics., ONTI, Moscow-Leningrad, 1937 (in Russian).
[2] P. Chadwick, Surface and interfacial waves of arbitrary form in isotropic elastic media. J. Elasticity 6 (1976), no. 1, 73-80.
[3] J. Kaplunov, D. A. Prikazchikov, G. A. Rogerson, Edge bending wave on a thin elastic plate resting on a Winkler foundation. Proceedings of the Royal Society London Series A 472 (2016), 20160178.
[4] J. Kaplunov and D. A. Prikazchikov, Explicit models for surface, interfacial and edge waves in elastic solids. In R. V. Craster, J. Kaplunov, Dynamic localization phenomena in elasticity, acoustics and electromagnetism. CISM International Centre for Mechanical Sciences, 547, Springer-Verlag Wien, 2013.

Boundary Value Problems for Analytic and Generalized Analytic Functions within the Framework of New Function Spaces

Vakhtang Kokilashvili ${ }^{1}$, Vakhtang Patashyili ${ }^{1,2}$.
${ }^{1}$ A. Razmadze Mathematical Institute, Tbilisi, Georgia
${ }^{2}$ Georgian Technical University, Tbilisi, Georgia
email: kokil@rmi.ge

Our talk deals with the following topics:

- Mapping properties of Cauchy singular (generalized Cauchy singular integrals) operators in variable exponent and variable exponent grand Lebesgue spaces;
- Variable exponent Hardy classes and Dirichlet problem;
- The Riemann and Riemann-Hilbert BVPs for generalized analytic functions with the coefficients more general than Simonenko's ones;
- The Riemann-Hilbert problem in the class of Cauchy type integrals with densities of grand Lebesgue spaces;
- The Riemann and Riemann-Hilbert BVPs with piecewise continuous coefficients within the framework of variable grand Lebesgue spaces.

Tools of the Nuclear Effective Field Theory

Alexander Kvinikhidze
Department of Theoretical Physics, A. Razmadze Mathematical Institute, Tbilisi State University, Tbilisi, Georgia
email: sasha_kvinikhidze@hotmail.com

The ultimate theory of strong interaction, Quantum Chromodynamics (QCD), is not applicable directly to problems of low energy nuclear physics due to large value of coupling constant making perturbative methods useless. In this range of energies one resorts to the so called nuclear effective field theory (EFT) where a perturbation theory can be formulated based on the expansion in powers of low energy. EFT involves many free parameters which need to be ordered in a systematic way the theory to have predictive
power. There are methods used in EFT this and other jobs to be done some of which are discussed in this talk.

Namely we derive so called Renormalization group equations for interaction potential and currents by demanding that physical observables do not depend of a cutoff parameter. Note that the cutoff is needed to keep energy low in the intermediate states as well. We also discuss constrains imposed by invariance with respect to the local transformations (gauge invariance) and current conservation. The equations also are discussed that describe exotic systems, e.g. tetraquarks which are the particles composed of three quarks and one antiquark.

Reality Viewed through the Eyes of Continuum Mechanics

W. H. MÜLler ${ }^{1}$, W. Weiss ${ }^{1}$, E. N. Vilchevskaya ${ }^{2,3}$
${ }^{1}$ Institute of Mechanics, Chair of Continuum Mechanics and Materials Theory, Technical University of Berlin, Berlin, Germany
${ }^{2}$ Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
${ }^{3}$ Peter the Great Saint-Petersburg Polytechnic University (POLYTEC), St.-Petersburg, Russia
email: whmmechanik@yahoo.de

The purpose of this paper is a fundamental one: We wish to draw attention to the fact that modeling nature by using continuum theory can become quite treacherous. Whilst we may have some confidence in the applicability of the fundamental laws of classical physics, such as the conservation of mass, linear and angular momentum, or energy, the use of constitutive relations requires special care and sound scepticism, even if they follow from principles of rational thermodynamics. As a matter of fact, many engineers of daily practice are not even aware of the fundamental difference between conservation laws and material equations" as the latter are sometimes innocently called. They believe that they are "true laws of nature". Surely, there might be limits to their applicability, if strains become too high or temperatures are too low (say), but very often this is attributed to numerical inaccuracy rather than a principal internal deficiency. This dilemma is nicely depicted in a recent textbook [1] and we will illustrate it here for the case of selfgravitating terrestrial planets.

We start our discussion with a model based on Hookean elasticity formulated in terms of linear strain measures. In this case the solutions for the stresses, the strains, and the displacements in a selfgravitating object can be presented in closed form, as was first
shown by the great (linear) elastician A.E.H. Love around the beginning of last century [2]. We will, first, present the underlying theory in modern form. Second, solutions to the resulting equations will be obtained. Third, the equations will be evaluated by using physical data of various objects, such as terrestrial planets, moons, and asteroids. This will show that under certain circumstances the displacements may be enormous. Consequently, the limits of linear strain theory will become evident.

As a special feature we will then leave the canonical pathway of linear elasticity, where it is conventionally assumed that the body forces are applied to the undeformed configuration [3]. In contrast to conventional (engineering) literature, we will present an "extended model" and study the influence of linear terms of displacement gradients in the body force density. In fact, this approach may serve as a bridge between linear elasticity at small strains and elasticity at large deformations. Moreover, it has the advantage of still leading to closed-form solutions.

In an attempt to remedy the problem of large deformations once and for all we will then choose a nonlinear version of Hooke's law in the current configuration. More precisely, the Cauchy stress will be related to the nonlinear deformation measure of the current configuration, the Euler-Almansi finite strain, which replaces the linear strain tensor of the ordinary Hooke's law [4]. However, even this approach has drawbacks: As we shall see, we will run into modeling and numerical problems again, if the mass of the self-gravitating object becomes too large. There will even be a limit mass beyond which stresses will go to infinity, similarly to the case of the Chandrasekhar limit for the mass of white dwarf stars. However, this phenomenon is an artifact of the constitutive law we chose for the stressstrain relation [5]: It can lead to a unique, two, three, or no solutions for the problem. This is a well-known problem of strain energy density functions that are not poly-convex and we will address this issue.

Finally we will turn to time-dependent modeling of deformation in terms of a defor-mation-wise linear viscoelastic model of the Kelvin-Voigt type [6]. Surprisingly it allows for a closed-form solution for a solid as well as for a hollow sphere. As a new result it will turn out that in the early days of planet formation the so-called Love radius, which is the demarcation line between the completely compressive interior of a planet from a radially strain-wise tensile exterior, does not exist initially and requires time for its development. Interestingly the solution for the solid sphere will not lead to zero deformation in the limit of initial time. Rather it jumps abruptly to finite values varying linearly throughout the sphere. If the same limit is considered in the solution for the hollow sphere with a very small hole at the center one can see the reason for this behavior: The transition from zero to finite deformation is extremely fast. In other words: If gravitation is "switched on", large amounts of mass will start moving and it is inapt to use the static form of the balance of momentum. Inertial forces should be taken into account. Hence, this time it is not a fault of the constitutive equation but an inappropriate simplification of the equations of motion, which creates a problem.

References

[1] F. M. Capaldi, Continuum mechanics. Constitutive modeling of structural and biological materials. Cambridge University Press, Cambridge, 2012.
[2] A. E. Love, A treatise on the mathematical theory of elasticity. Vol. I. University Press, Cambridge, 1892.
[3] R. Kienzler and R. Schröder, Einführung in die Höhere Festigkeitslehre. Springer, Dordrecht, Heidelberg, London, New York, 2009.
[4] S. C. Bose and P. P. Chattarji, A note on the finite deformation in the interior of the Earth. Bull. Calcutta Math. Soc. 55 (1963), no. 1, 11-18.
[5] A. Bertram, T. Böhlke, and M. Šilhavý, On the rank 1 convexity of stored energy functions of physically linear stress-strain relations. J. Elasticity 86 (2007), no. 3, 235-243.
[6] P. Haupt, Continuum mechanics and theory of materials. Springer-Verlag, Berlin, 2002.

Recent Developments of Grüss Type Inequalities for Positive Linear Maps

Mohammad Sal Moslehian

Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran email: moslehian@um.ac.ir

Grüss showed that if f and g are integrable real functions on $[a, b]$ and there exist real constants $\alpha, \beta, \gamma, \Gamma$ such that $\alpha \leq f(x) \leq \beta$ and $\gamma \leq g(x) \leq \Gamma$ for all $x \in[a, b]$, then

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \frac{1}{b-a} \int_{a}^{b} g(x) d x\right| \leq \frac{1}{4}|\beta-\alpha||\Gamma-\gamma| .
$$

This inequality was studied and extended by a number of mathematicians for different contents such as inner product spaces, quadrature formulae, finite Fourier transforms and linear functionals.

For unital n-positive linear maps $\Phi(n \geq 3)$, the authors of [3] proved that

$$
\|\Phi(A B)-\Phi(A) \Phi(B)\| \leq \inf _{\alpha \in \mathbb{C}}\|A-\alpha I\| \inf _{\beta \in \mathbb{C}}\|B-\beta I\|
$$

for all operators A, B in a C^{*}-algebra.
The Grüss inequality was generalized in the setting of inner product modules over H^{*} algebras and C^{*}-algebras in [1]. Several Grüss type inequalities in inner product modules over C^{*}-algebras are investigated in [2]. In this talk, we investigate several new Grüss type inequalities for positive linear maps.

References

[1] D. Ilišević and S. Varošanec, Grüss type inequalities in inner product modules. Proc. Amer. Math. Soc. 133 (2005), no. 11, 3271-3280.
[2] J. S. Matharu and M. S. Moslehian, Grüss inequality for some types of positive linear maps. J. Operator Theory 73 (2015), no. 1, 265-278.
[3] M. S. Moslehian and R. Rajić, A Grüss inequality for n-positive linear maps. Linear Algebra Appl. 433 (2010), no. 8-10, 1555-1560.

Boundary Element Methods with Radial Basis Functions

Sergej RJasanow
Institute for Applied Mathematics, Saarland University, Saarbrücken, Germany
email: rjasanow@num.uni-sb.de

Radial basis functions (RBF's) have become increasingly popular for the construction of smooth interpolant $s: \mathbb{R}^{n} \rightarrow \mathbb{R}$ through a set of N scattered, pairwise distinct data points. In the first part of the talk we introduce the RBF's [1] and discuss their properties.

The second part of the talk is devoted to the boundary integral formulation for a mixed boundary value problem in linear elastostatics with a conservative right hand side [2]. A meshless interpolant for the scalar potential of the volume force density is constructed by means of radial basis functions. An exact particular solution to the Lamé system with the gradient of this interpolant as the right hand side is found. Thus, the need of approximating the Newton potential is eliminated. The procedure is illustrated on numerical examples.

In the third part of the talk, an iterative procedure for the numerical solution of the diffusion equation with variable diffusion coefficient is formulated. For the iterative solution, we suggest a combination of the fast Boundary Element Method [3] and RBF's. We prove linear convergence with a convergence factor depending on the ratio of the maximal and the minimal value of the diffusivity. Numerical examples illustrate the functionality and the efficiency of the approach.

References

[1] H. Wendland, Scattered data approximation. Cambridge Monographs on Applied and Computational Mathematics, 17. Cambridge University Press, Cambridge, 2005.
[2] H. Andrä, R. Grzhibovskis, and S. Rjasanow, Boundary element method for linear elasticity with conservative body forces. In: Advanced Finite Element Methods and Applications, pp. 275-297. Springer-Verlag, Berlin-Heidelberg-New York, 2012.
[3] S. Rjasanow and O. Steinbach, The fast solution of boundary integral equations. Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York, 2007.

Sobolev Space of Half-Differentiable Functions and Quasisymmetric Homeomorphisms

Armen Sergeev
Steklov Mathematical Institute, Moscow, Russia
email: sergeev@mi.ras.ru

One of the main goals of the noncommutative geometry is the translation of basic notions of analysis, geometry and topology into the language of Banach algebras. In our talk we demonstrate how it is done in the case of quasisymmetric homeomorphisms of the circle. They are boundary values of quasiconformal homeomorphisms of the disk and form a group $\operatorname{QS}\left(S^{1}\right)$ with respect to composition. This group acts on the Sobolev space $H_{0}^{1 / 2}\left(S^{1}, \mathbb{R}\right)$ of half-differentiable functions on the circle by reparameterization. We give interpretations of the group $\operatorname{QS}\left(S^{1}\right)$ and the space $H_{0}^{1 / 2}\left(S^{1}, \mathbb{R}\right)$ in terms of the noncommutative geometry.

On the Formation of Freak Waves

Wojciech Sulisz
Polish Academy of Sciences, Institute of Hydroengineering, 80328 Gdańsk, Poland
email: sulisz@ibwpan.gda.pl

Freak waves are unique phenomena that appear unexpectedly on the ocean surface and are the most dangerous type of extreme waves. Eye witnesses, reporting on individual extreme waves in coastal or deep water, mention either single very high waves or several successive extreme waves. These waves are not only a danger to fishermen or yachtsmen, but are also capable of damaging large vessels and maritime structures. Within the past 20 years at least 200 supercarriers have been lost, each more than 200 meters long. In majority of these cases the cause of the accident is believed to be freak waves The consequences of the attack of freak waves are usually very tragic. Many accidents occurred in the Black Sea.

The mechanism of the formation of freak waves is still unknown. Neither the occurrence of these waves nor their physical structure is well understood by conventional wave science. A theoretical approach is applied to predict the propagation and transformation of nonlinear water waves in a wave train. The studies show that the evolution of unstable waves may lead to the formation of freak waves. The analysis shows that these phenomena cannot be described properly by the nonlinear Schrödinger equation or its modifications. Conducted investigations comprise cases characteristic for the Black Sea [1, 2].

Theoretical results are in a fairly good agreement with experimental data. A reasonable agreement between theoretical results and experimental data is observed also for the formation and evolution of freak waves.

Keywords: wave trains, evolution of nonlinear waves, extreme waves, freak waves
Acknowledgements. Financial support for this study was provided by the National Science Centre, Poland, and the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk, Poland, under the contract No. UMO-2012/05/13/ST8/01833.

References

[1] W. Sulisz, M. Paprota, Modeling of the propagation and evolution of nonlinear waves in a wave train. Arch. Mech. 63 (2011), no. 3, 311-335.
[2] W. Sulisz, M. Paprota, A. Reda, Extreme waves in the southern Baltic Sea. Ciencias Marinas 42 (2016), no. 2, 123-137.

Abstracts of Participants' Talks

A Numerical Analysis of Deformed Multilayered Ellipsoidal Non-Linear Shells

Edison Abramidze

N. Muskhelishvili Institute of Computational Mathematics of Georgian Technical University, Tbilisi, Georgia
E-mail: edisoni.abramidze@mail.ru
For the numerical realization of problems of deformed multilayered ellipsoidal geometrically non-linear shells we give a non-linear system of differential equations, which provides the solution of these class of problems. This system is obtained on the basis of a version of the refined theory, which takes into account the non-homogenity of shifts along the layers.

References

[1] Ya. M. Grigorenko, E. A. Abramidze, Refined stress analysis of flexible multilayered shells of revolution with orthotropic layers. International Applied Mechanics $\mathbf{3 7}$ (2001), no. 11, 1433-1440.
[2] E. A. Abramidze, The stress state of the multillayer flexible cylindrical shells of variable stiffness. International Applied Mechanics 39 (2003), no. 2, 211-216.

Correctness of the Boundary Value Problems for Some Classes of Two-Dimensional Elliptic Systems

G. Akhalaia ${ }^{1}$, G. Makatsaria ${ }^{2}$, N. Manjavidze ${ }^{3}$

${ }^{1}$ I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: giaakha@gmail.com
${ }^{2}$ Saint Andrew The First Called Georgian University of Patriarchate of Georgia, Tbilisi, Georgia
email: giorgi.makatsaria@gmail.com
${ }^{3}$ Ilia State University, Tbilisi, Georgia
email: nino.manjavidze@iliauni.edu.ge
The structure of the solutions of sufficiently wide class of singular elliptic systems in the neighborhood of singular point are studied. On this basis the correct boundary value problems are posed and their complete (in some sense) analysis is given.

On Topology of Proper Quadratic Endomorphisms

Teimuraz Aliashvili
Ilia State University, Tbilisi, Georgia
email: aliashvili@yahoo.com

We discuss topological properties of quadratic endomorphism of n-dimensional space. In particular, a criterion of properness is obtained. Moreover, an explicit estimate for the topological degree of proper quadratic endomorphism is given and the spectrum of possible values of topological degree is completely described. In special cases where $n=2$ or $n=3$, more detailed results are available. In particular, for $n=2$ an algebraic criterion of properness of F is given in terms of coefficients of components F_{1}, F_{2}. Moreover, an algebraic formula for topological degree of map F using the signature formula of Khimshiashvili-Eisenbud-Levine. In addition a complete description of the possible structure of singularity set and bifurcation diagram of F is obtained. The aforementioned results are used to obtain the criteria of surjectivity and stability of such an endomorphism. In special case, when F is the gradient of homogeneous polynomial of third degree, the structure of the local algebra at the origin is also determined. The proofs are based on the normal forms of quadratic endomorphisms obtained in a recent paper "Classification of critical sets and their images for quadratic maps of the plane" (arXiv: 1507.02732v1 [math.DS] 9 Jul 2015) by Chia-HsingNien, Bruce B. Peckham and Richard P. McGehee. For $n=3$, we present an algebraic formula for the topological degree which enables one to obtain a criterion of surjectivity.

Keywords: Quadratic maps, endomorphism, singularities, topological degree of mapping, surjectivity and stability.

Topological Invariants of Random Polynomials

Teimuraz Aliashvili
Ilia State University, Tbilisi, Georgia
email: aliashvili@yahoo.com

Random polynomials with independent identically distributed Gaussian coefficients are considered. In the case of random gradient endomorphism $F=(f, g): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ the expected value of topological degree is computed and the expected number of complex points is estimated. In particular, the asymptotics of these invariants are determined as the algebraic degree of F tends to infinity.

We also give the asymptotic of the mean writhe number of a standard equilateral random polygon with big number of sides and obtain a lower estimate for the mean Coulomb energy of a standard equilateral random polygon.

Keywords: random polynomial endomorphism, Gaussian distribution, topological degree, equilateral random polygon, writhe number, Coulomb energy, self-linking number.

Existence and Nonexistence of Global Solutions for a Class Nonlinear Pseudo-Hyperbolic Equations with Damping and Source Terms

Akbar B. Aliev ${ }^{1,2}$, Gunay I. Yusifova ${ }^{3}$
${ }^{1}$ Azerbaijan Technical University, Baku, Azerbaijan
${ }^{2}$ Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
email: alievakbar@gmail.com
${ }^{3}$ Ganja State University, Ganja, Azerbaijan

Consider the initial-boundary value problem for the nonlinear pseudo-hyperbolic equation:

$$
\begin{gather*}
u_{t t}-\Delta u_{t t}+\Delta^{2} u+\left|u_{t}\right|^{m-1} u_{t}=|u|^{p-1} u, \quad t>0, \quad x \in \Omega, \tag{1}\\
u(0, x)=\varphi(x), \quad u_{t}(0, x)=\psi(x), \quad x \in \Omega, \tag{2}\\
u(t, x)=\Delta u(t, x)=0, \quad t \in[0, \infty), \quad x \in \Gamma, \tag{3}
\end{gather*}
$$

where $\Omega \subset R^{n}$ is bounded domain with boundary Γ.
We determine suitable relation between m and p, for which there is global existence or alternatively finite-time blow up. In other words we showed that if $p \leq m$ the solutions of problem (1)-(3) exist globally in time and blow up in finite time if $p>m$ and the initial energy is sufficiently negative.

Solvability of a Boundary Value Problem for Second Order Elliptic Differential-Operator Equations with Quadratic Spectral Parameter

Bakhram A. Aliev
Institute of Mathematics and Mechanics of NAS of Azerbaijan; Azerbaijan State Pedagogical University, Baku, Azerbaijan
email: aliyevbakhram@yandex.ru

In the notice in the separable Hilbert space H we study the solvability of the following boundedly value problem for second order elliptic differential equation with a quadratic spectral parameter

$$
\begin{gather*}
L(\lambda, D) u:=\lambda^{2} u(x)-u^{\prime \prime}(x)+A u(x)=f(x), x \in(0,1), \tag{1}\\
L_{1}(\lambda) u:=\alpha u^{\prime}(1)+\lambda B u(0)=f_{1}, \tag{2}\\
L_{2} u:=u^{\prime}(0)=f_{2} .
\end{gather*}
$$

Theorem. Let the following conditions be fulfilled: A is a strongly positive operator in H. The linear operator B is bounded from H into H and from $H\left(A^{1 / 2}\right)$ into $H\left(A^{1 / 2}\right) . \alpha \neq 0$ is some complex number.

Then the operator $\mathbf{L}(\lambda): u \rightarrow \mathbf{L}(\lambda) u:=\left(L(\lambda, D) u, L_{1}(\lambda) u, L_{2} u\right)$, for sufficiently rather large $|\lambda|$ from the sector $|\arg \lambda| \leq \varphi<\frac{\pi}{2}$ is an isomorphism from $W_{p}^{2}((0,1) ; H(A), H)$ onto

$$
L_{p}((0,1) ; H) \dot{+}(H(A), H)_{\frac{1}{2}+\frac{1}{2 p}, p} \dot{+}(H(A), H)_{\frac{1}{2}+\frac{1}{2 p}, p}
$$

and for these λ, the following estimate is valid for solution of the problem (1), (2)

$$
\begin{gathered}
|\lambda|^{2}\|u\|_{L_{p}((0,1) ; H)}+\left\|u^{\prime \prime}\right\|_{L_{p}((0,1) ; H)}+\|A u\|_{L_{p}((0,1) ; H)} \\
\leq C\left[|\lambda|\|f\|_{L_{p}((0,1) ; H)}+\sum_{k=1}\left(\left\|f_{k}\right\|_{(H(A), H) \frac{1}{2}+\frac{1}{2 p}, p}+|\lambda|^{1-\frac{1}{p}}\left\|f_{k}\right\|_{H}\right)\right]
\end{gathered}
$$

The boundary value problem similar to boundary value problem (1), (2) was studied in the paper [1].

References

[1] B. A. Aliev, Ya. Yakubov, Second order elliptic differential-operator equations with unbounded operator boundary conditions in UMD Banach spaces. Integral Equations Operator Theory 69 (2011), no. 2, 269-300.

Orthogonality in Finsler C^{*}-Modules

Maryam Amyari
Mashhad Branch, Islamic Azad University, Department of Mathematics, Mashhad, Iran
email: maryam_amyari@yahoo.com

In this talk, we introduce the notion of orthogonality in the setting of Finsler C^{*} modules and investigate the relation between this orthogonality and the Birkhoff-James orthogonality. Suppose that (E, ρ) and $\left(F, \rho^{\prime}\right)$ are Finsler modules over C^{*}-algebras \mathcal{A} and \mathcal{B}, respectively, and $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ is a $*$-homomorphism of C^{*}-algebras. A map $\Psi: E \rightarrow F$ is said to be a φ-morphism of Finsler modules if $\rho^{\prime}(\Psi(x))=\varphi(\rho(x))$ and $\Psi(a x)=\varphi(a) \Psi(x)$. We show that each φ - morphism of Finsler C^{*}-modules preserves the Birkhoff-James orthogonality and conversely, each surjective linear map between Finsler C^{*}-modules that preserves the Birkhoff-James orthogonality is a φ - morphism under certain conditions. In fact, we state a version of Wigner's theorem in the framework of Finsler C^{*}-modules.

The talk is based on joint work with co-author (Reyhaneh Hassanniah).

References

[1] M. Amyari, A. Niknam, A note on Finsler modules. Bull. Iranian Math. Soc. 29 (2003), no. 1, 77-81.
[2] L. Arambašić, R. Rajić, A strong version of the Birkhoff-James orthogonality in Hilbert C^{*}-modules. Ann. Funct. Anal. 5 (2014), no. 1, 109-120.
[3] A. Blanco, A. Turnšek, On maps that preserve orthogonality in normed spaces. Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 4, 709-716.

About Solution of Generalized Problems of Minimal Set Covering

Natela Ananiashyili
Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University, Tbilisi Georgia
email: natela.ananiashvili194@ens.tsu.edu.ge

The heuristic algorithm of solution of generalized problems of finding of minimal set covering is developed. The necessity of solution of generalized problem of minimal set
covering is revealed, when we search of multiple main centre in the graph [1]. We can cite many practical problems of optimal location of service points for finding such centers. The proposed algorithm has selective characteristic and uses a search tree [2]. Algorithm realization software showed good results for test problems.

References

[1] E. Minieka (1978), Optimization Algorithms For Networks And Graphs, New York: M. Dekker.
[2] N. Christofides (1986), Graph Theory. An Algorithmic Approach, Computer science and applied mathematics, London, Academic Press.

The Algorithm of Mathematical Modeling of Turbulent Spatial Flows

Gegi Aptsiauri
Georgian Aviation University, Tbilisi, Georgia
email: gegiaptsiauri@gmail.com

Mathematical modeling of turbulent flows is one of the most important problems of continuous body mechanics, which, despite the existence of a number of successful models, from theoretical to numerical and experimental point of view, but it has to be fully explored. Recently, the theoretical solution of turbulence problem achieved high level in Georgia and opens up new opportunities to make important steps towards the creation of mathematical models, which are based on a solid theoretical basis. At present in Georgian aviation university are developing a new mathematical model, algorithm and the program, of complex turbulent flows based on fundamental principles of Continuous mechanics and tensor accounting equations. Elaborated by us model program is different from other semi-empirical models in determination of stress tensor and turbulence kinetic energy are used the exact theoretical solution of initial system of equations.

References

[1] A. Aptsiauri, Solution of turbulence problem based on tensor analysis. Problems of Mechanics, Tbilisi 2 (59) (2015), 44-52.

Calculation of Hoses on Strength

Zurab Arkania
Department of Engineering Mechanics, Akaki Tsereteli State University, Kutaisi, Georgia
email: Zurabi.arkania@mail.ru

We have developed a method of determination of axial tensions of absolutely flexible hung hose shapes and in the hoses. We have received an axial tensions formula in case of consideration of internal flow of the liquid in the hose. We have developed the algorithm of the calculation on solidity of absolutely flexible hoses when flexural rigidity, having no significant influence on shape of hoses and axial tensions, importantly effects on tensions in the hoses. In any cross-section of the hose the complete normal tension is presented as a sum of two components, where the first is a normal strain caused by axial tensions and the second is a strain caused by flexural rigidity. The results give opportunity to evaluate solidity of the hose, to select parameters of the internal flow of the hose and liquid in it in order to raise reliability of the hose in the process of maintenance.

References

[1] V. A. Svetlitski, Mechanics of Pipelines and Hoses, "Mashinostroenie", Moscow, 1982.

On the Solvability of the Cauchy Problem for Linear Systems of Generalized Differential Equations with Singularities

Malkhaz Ashordia, Nestan Kekelia, Nino Topuridze
Faculty of Mathematics and Computer Sciences, Sokhumi State University, Tbilisi, Georgia

emails: ashord@rmi.ge; nestkek@mail.ru; topurnino@yahoo.com

Let $[a, b[$ be an arbitrary (finite or infinity) subset of R. Consider the singular problem

$$
\begin{equation*}
d x(t)=d A(t) \cdot x(t)+d f(t) \text { for } t \in[a, b[, \quad x(b-)=0, \tag{1}
\end{equation*}
$$

where $A=\left(a_{i k}\right)_{i, k=1}^{n}:\left[a, b\left[\rightarrow R^{n \times n}\right.\right.$ is a nondecreasing matrix-function, and $f=\left(f_{k}\right)_{k=1}^{n}$ is a vector-function with bounded variations components on the every closed interval from
$[a, b[$. The singularity is considered in the sense that A or f maybe has non-bounded total variation on the whole closed interval $[a, b]$. We assume that $\operatorname{det}\left(I_{n} \pm d_{j} A(t)\right) \neq 0$ for $t \in\left[a, b\left[(j=1,2)\right.\right.$, where I_{n} is the identity $n \times n$-matrix, $d_{1} A(t)=A(t)-A(t-)$, $d_{2} A(t)=A(t+)-A(t)$. A vector function $x \in B V_{\text {loc }}\left(\left[a, b\left[; R^{n}\right)\right.\right.$ is said to be a solution of the generalized system (1) if $x(t)-x(s)=\int_{s}^{t} d A(\tau) \cdot x(\tau)+f(t)-f(s)$ for $a \leq s<t<b$, where the integral is understand in the Kurzweil-Stieltjes integral sense.

If $X \in B V_{l o c}\left(\left[a, b\left[; R^{n \times n}\right)\right.\right.$ and $Y \in B V_{l o c}\left(\left[a, b\left[; R^{n \times n}\right)\right.\right.$, then

$$
\begin{aligned}
\mathcal{A}(X, Y)(t) \equiv Y(t)-Y(a) & +\sum_{a<\tau \leq t} d_{1} X(\tau)\left(I_{n}-d_{1} X(\tau)\right)^{-1} d_{1} Y(\tau) \\
& -\sum_{a \leq \tau<t} d_{2} X(\tau)\left(I_{n}+d_{2} X(\tau)\right)^{-1} d_{2} Y(\tau)
\end{aligned}
$$

Theorem. Let $d_{1} a_{i i}(t)<1(i=1, \ldots, n)$ and there exist a nondecreasing matrix-function $\left(b_{i k}\right)_{i, k=1}^{n}:\left[a, b\left[\rightarrow R^{n \times n}\right.\right.$, the spectral radius of which is less than 1 , such that

$$
\int_{t}^{b-}(b-\tau) d a_{i i}(\tau) \leq\left(b_{i i}(b-)-b_{i i}(t)\right)
$$

and

$$
\int_{t}^{b-}(b-\tau) d \operatorname{Var}\left(\mathcal{A}\left(a_{i i}, f_{i}\right)\right)(\tau) \leq\left(b_{i k}(b-)-b_{i k}(t)\right)
$$

for $t \in[b-\delta, b[(i \neq k, i, k=1, \ldots, n)$, where δ is some small positive number. Let, moreover,

$$
\lim _{t \rightarrow b-}(b-t)^{-1} \operatorname{Var}_{t}^{b-}\left(\mathcal{A}\left(a_{i i}, f_{i}\right)\right)=0 \quad(i=1, \ldots, n)
$$

Then the problem (1) is uniquely solvable.
In first, analogous problem has been investigated by V. A. Chechik in the paper [1] for ordinary differential equations. See also [2] and the references therein.

References

[1] V. A. Chechik, Investigation of systems of ordinary differential equations with singularity. Tr. Mosk. Mat. Obs. 8 (1959), 155-198 (in Russian).
[2] I. T. Kiguradze, On a singular Cauchy problem for systems of linear ordinary differential equations. Differ. Uravn. 32 (1996), no. 2, 171-179, 285 (in Russian); translation in Differential Equations 32 (1996), no. 2, 173-180.

On the Cauchy Problem for Systems of Linear Generalized Differential Equations with Singularities

Malkhaz Ashordia, Goderdzi Ekhvaia, Nato Kharshiladze
Sukhumi State University, Faculty of Mathematics and Computer Sciences, Tbilisi, Georgia

emails: ashord@rmi.ge; goderdzi.ekhvaia@mail.ru; natokharshiladze@ymail.com

Let $[a, b[$ be an arbitrary (finite or infinity) subset of R. Consider the singular problem

$$
\begin{equation*}
d x(t)=d A(t) \cdot x(t)+d f(t) \quad \text { for } \quad t \in[a, b[, \quad x(b-)=0, \tag{1}
\end{equation*}
$$

where $A \in B V_{l o c}\left(\left[a, b\left[; R^{n \times n}\right)\right.\right.$ and $f \in B V_{l o c}\left(\left[a, b\left[; R^{n}\right)\right.\right.$, i.e. A and f are, respectively, matrix and vector functions with bounded variations components on the every closed interval from $[a, b[$. The singularity is considered in the sense that A or f maybe has non-bounded total variation on the whole closed interval $[a, b]$. We assume that $\operatorname{det}\left(I_{n} \pm\right.$ $\left.d_{j} A(t)\right) \neq 0$ for $t \in\left[a, b\left[(j=1,2)\right.\right.$, where I_{n} is the identity $n \times n$-matrix, $d_{1} A(t)=$ $A(t)-A(t-), d_{2} A(t)=A(t+)-A(t)$. A vector function $x \in B V_{l o c}\left(\left[a, b\left[; R^{n}\right)\right.\right.$ is said to be a solution of the generalized system (1) if $x(t)-x(s)=\int_{s}^{t} d A(\tau) \cdot x(\tau)+f(t)-f(s)$ for $a \leq s<t<b$, where the integral is understand in the Kurzweil-Stieltjes integral sense.

If $X \in B V_{l o c}\left(\left[a, b\left[; R^{n \times n}\right)\right.\right.$ and $Y \in B V_{l o c}\left(\left[a, b\left[; R^{n \times n}\right)\right.\right.$, then $\mathcal{A}(X, Y)(t) \equiv Y(t)-$ $Y(a)+\sum_{a<\tau<t} d_{1} X(\tau)\left(I_{n}-d_{1} X(\tau)\right)^{-1} d_{1} Y(\tau)-\sum_{a<\tau<t} d_{2} X(\tau)\left(I_{n}+d_{2} X(\tau)\right)^{-1} d_{2} Y(\tau)$.

Let $C_{0}: \bar{I}_{t_{0}}^{2} \rightarrow R^{n \times n}$ be the Cauchy matrix of the homogeneous system $d x(t)=$ $d A_{0}(t) \cdot x(t)$, where $A_{0} \in B V_{l o c}\left(\left[a, b\left[; R^{n \times n}\right)\right.\right.$.
Theorem. Let there exist the matrix-function $A_{0} \in B V_{\text {loc }}\left(\left[a, b\left[; R^{n \times n}\right)\right.\right.$ and constant matrices $B_{0}, B \in R_{+}^{n \times n}$ such that $\operatorname{det}\left(I_{n} \pm d_{j} A_{0}(t)\right) \neq 0$ for $t \in[a, b[(j=1,2)$, the spectral radius of the matrix B is less than $1,\left|C_{0}(t, \tau)\right| \leq B_{0}$ for $a \leq t \leq \tau<b-\delta$, and

$$
\left|\int_{t}^{b-}\right| C_{0}(t, \tau)\left|d \operatorname{Var}\left(\mathcal{A}\left(A_{0}, A-A_{0}\right)\right)(\tau)\right| \leq B \quad \text { for } \quad t \in[b-\delta, b[,
$$

where δ is some small positive number. Let, moreover,

$$
\lim _{t \rightarrow b-}\left\|\int_{t}^{b-} C_{0}(t, \tau) d \mathcal{A}\left(A_{0}, f\right)(\tau)\right\|=0
$$

Then the problem (1) is uniquely solvable.
In first, analogous problem has been investigated by V. A. Chechik in the paper [Investigation of systems of ordinary differential equations with singularity, Tr. Mosk.

Mat. Obshch. 8 (1959), 155-198] for ordinary differential equations. See also [I. T. Kiguradze, On the singular Cauchy problem for systems of linear ordinary differential equations. (Russian) Differentsial'nye Uravneniya 32 (1996), no. 2, 215-223; English transl.: Differ. Equations 32 (1996), no. 2, 173-180] and the references therein.

Boundary Layer Problem for the System of First Order Ordinary Differential Equations with General Nonlocal Boundary Conditions

Siamak Ashrafi
Department of Mathematics, Islamic Azad University, Maragheh Branch, Maragheh, Iran
email: siamak.ashrafi@yahoo.com

One of the important subjects in applied mathematics is the theory of singular perturbation problem. The mathematical model for this kind of problem usually is in the form of either ordinary differential equations (O.D.E) or partial differential equations (P.D.E) in which the highest derivative is multiplied by some powers of ε as a positive small parameter [1], [2]. The purpose of the theory of singular perturbations is to solve a differential equation with some initial or boundary conditions with small parameter ε. If the solution of the differential equation

$$
\varepsilon y_{\varepsilon}^{(n)}+f\left(y_{\varepsilon}^{(n-1)}, y_{\varepsilon}^{(n-2)}, \ldots, y_{\varepsilon}^{\prime}, y, x\right)=0
$$

(when ε is chosen to be zero) is the same solution as the limit of the solution when $\varepsilon \rightarrow 0$, then we say our problem is free of boundary layer. In other words, the limit of the solution i.e. $\lim _{\varepsilon \rightarrow 0} y_{\varepsilon}(x)=y_{0}(x)$ satisfies the given boundary conditions.

Otherwise we said that boundary layer exists. Naturally the case of free boundary layer is more desirable than the other cases. On the other hand, since the structure of approximate solutions of these problems depend on place of boundary layer, therefore the determination of points which for them boundary layer formed will be important. According to these facts, we decided to apply these conditions for determining boundary layers for singular perturbation problems. In the some works of authors: M. Jahanshahi and S. Ashrafi and N. Aliev [1], [2], wish to present sufficient conditions for some singular perturbation problems consisting O.D.E's which do not have boundary layers. Moreover In this paper we consider a boundary layer problem (singular perturbation problem) which consist of first order system of differential equations. For the given problem, we determine if the boundary layers exist or not. Then by making use of the necessary conditions and fundamental solution of the given system of differential equations, we obtain some sufficient conditions such that we have no boundary layer.

References

[1] A. R. Sarakhsi, M. Jahanshahi and M. Sarakhsi, Approximate solution of the problem of singular perturbation of second order linear with variable coefficients with Dirichlet conditions. Journal of Advanced Mathematical Modeling, 2013.
[2] M. Jahanshahi, A. R. Sarakhsi, S. Asharafi, N. Aliev, Boundary layer problem for system of first order of ordinary differential equations with linear non-local boundary conditions. Iran. J. Sci. Technol. Trans. A Sci. 37 (2013), no. 3, Special issue: Mathematics, 389-396.

Apply of Graph Extension Function in Nature

Irakli Avalishvili
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Tbilisi, Georgia
email: Irakli_a@yahoo.com

Arbitrary systems, will it be biological, physical, cybernetical, chemical, etc., may be described by a simple (possible single) mathematical function, namely by a graph extension function, which we also call hierarchical function (and which mathematically shows hierarchical nature of science).

This function can be also used to describe mathematical objects themselves, which in the paper is shown on the example of the action of the graph extension function on the set of integers. A new theory of graph extensions, similar to group extension theory, is outlined. A theorem about the equivalence of different extension functions is proved.

There exists an isomorphism between the modified functional graph of the cell (functional block-scheme) and the morphological graph of the cell (the graph expressing topological membrane intertransformations of the cell) which expresses the most essential features of for the biology of the cell and captures one of the specific differences between living and non-living systems.

It is shown that the construction of the graph of a complex organism from the primordial graph given by Rashevsky is nothing, but an extension of the primordial graph by the graph extension function. It is described, that there exist morphisms from biological graphs described by various authors to our functional graph.

On the Solution of the Eigenvalue Problem of Shear Deformable Functionally Graded Shells

Abdullah Avey ${ }^{1}$, Bilender Pasaoglu ${ }^{2}$
${ }^{1}$ Engineering Faculty, Suleyman Demirel University, Department of Civil Engineering, Isparta, Turkey
email: abdullahavey@sdu.edu.tr
${ }^{2}$ Faculty of Arts and Sciences, Suleyman Demirel University, Department of Mathematics, Isparta, Turkey
email: bilenderpasaoglu@sdu.edu.tr

Functionally graded materials (FGM), as special composites have been widely used in various structures as optimal strength and stiffness, associated with their design. Therefore, its applications have been studied and received considerable attention from the industrial production and modern technologies. As the use of FGMs increases, the study of FGMs are considered to be the distribution of the volume fraction of metal or ceramics has been presented for many years [1]. A comprehensive survey of the relevant theoretical methodologies and numerical modeling and detailed review on the stability performance of FGM shells can be found in the study of Shen [2]. Mechanical behavior of structural elements with FGMs gain practical value and play an important role in the analysis, some studies have been published on the vibration and stability analyses in recent years $[3,4]$.

The major goal of this research was to obtain a closed form solution for free vibration of FGM conical shells within the shear deformation theory (SDT). The basic equations of FGM shells are derived within the SDT. By using the Galerkin method to basic equations are obtained the expressions for the frequency parameters of FGM shells within the SDT. In particular, similar expressions within the classical shell theory (CST) are obtained, also. Our numerical experiments reveal that the proposed solution may offer accurate frequency parameter for FGM shells as compared with reference solutions available in the literature. Finally, the calculation and presentation of the effects of many parameters included in the analysis conclude the goals to be reached in the study.

References

[1] Y. Miyamoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki, R. G. Ford, Functionally Graded Materials: Design, Processing and Applications. Springer Science \& Business Media, 2013.
[2] H. S. Shen, Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC Press, 2009.
[3] A. H. Sofiyev, N. Kuruoglu, Vibration analysis of FGM truncated and complete
conical shells resting on elastic foundations under various boundary conditions. J. Engrg. Math. 77 (2012), 131-145.
[4] Z. Su, G. Jin, S. Shi, T. Ye, X. Jia, A unified solution for vibration analysis of functionally graded cylindrical, conical shells and annular plates with general boundary conditions, International Journal of Mechanical Sciences 80 (2014), 62-80.

On the Statistic of Criteria for the Testing Hypothesis of Equality Several Distribution Densities

Petre Babilua, Elizbar Nadaraya, Grigol Sokhadze

Faculty of Exact and Natural Sciences, Department of Mathematics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
emails: petre.babilua@tsu.ge; elizbar.nadaraya@tsu.ge; grigol.sokhadze@tsu.ge
Let $X^{(i)}=\left(X_{1}^{(i)}, \ldots, X_{n_{i}}^{(i)}\right), i=1, \ldots, p$, be independent samples with sizes n_{1}, \ldots, n_{p}, from $p \geq 2$ general population with probability densities $f_{1}(x), \ldots, f_{p}(x)$ and it is required to test two hypothesis, based on samples $X^{(i)}, i=1, \ldots, p$: test of homogeneity

$$
H_{0}: f_{1}(x)=\cdots=f_{p}(x)
$$

and goodness-of-fit test

$$
H_{0}^{\prime}: f_{1}(x)=\cdots=f_{p}(x)=f_{0}(x)
$$

where $f_{0}(x)$ is a fully defined density function. In case of hypothesis H_{0} the common density function $f_{0}(x)$ is unknown.

In this abstract the criteria for testing hypothesis H_{0} and H_{0}^{\prime} is constructed against a sequence of "close" alternatives ([1], [2]):

$$
\begin{gathered}
H_{1}: f_{i}(x)=f_{0}(x)+\alpha\left(n_{0}\right) \varphi_{i}\left(\frac{x-l_{i}}{\gamma\left(n_{0}\right)}\right)+o\left(\alpha\left(n_{0}\right) \gamma\left(n_{0}\right)\right)\left(\alpha\left(n_{0}\right), \gamma\left(n_{0}\right) \rightarrow 0\right) \\
\int \varphi_{i}(x) d x=0, \quad n_{0}=\min \left(n_{1}, \ldots, n_{p}\right) \rightarrow \infty
\end{gathered}
$$

We will consider criteria for testing hypothesis H_{0} and H_{0}^{\prime} based on statistics

$$
T\left(n_{1}, \ldots, n_{p}\right)=\sum_{i=1}^{p} N_{i} \int\left[\widehat{f}_{i}(x)-\frac{1}{N} \sum_{j=1}^{p} N_{j} \widehat{f}_{j}(x)\right] r(x) d x
$$

where $\widehat{f}_{i}(x)$ is a kernel estimator of Rosenblatt-Parzen of density $f_{i}(x)$:

$$
\widehat{f}_{i}(x)=\frac{a_{i}}{n_{i}} \sum_{j=1}^{n_{i}} K\left(a_{i}\left(x-X_{j}^{(i)}\right)\right), \quad N_{i}=\frac{a_{i}}{n_{i}}, \quad N=N_{1}+\cdots+N_{p} .
$$

In particular, case $p=2$ the statistic T takes the explicit form

$$
T\left(n_{1}, n_{2}\right)=\frac{N_{1} N_{2}}{N_{1}+N_{2}} \int\left(\widehat{f}_{1}(x)-\widehat{f}_{2}(x)\right)^{2} r(x) d x
$$

References

[1] M. Rosenblatt, A quadratic measure of deviation of two-dimensional density estimates and a test of independence. Ann. Statist. 3 (1975), 1-14.
[2] E. A. Nadaraya, Nonparametric estimation of probability densities and regression curves. Mathematics and its Applications (Soviet Series), 20. Kluwer Academic Publishers Group, Dordrecht, 1989.

 @

 двмммм дmb

Elastic-Plastic State of Cylindrical Tube in Elastic Medium

Guram Baghaturia, Marina Losaberidze
LEPL Grigol Tsulukidze Mining Institute, Tbilisi, Georgia
email: marinalosaberidze@rambler.ru

The elastic-plastic problem for cylindrical tube in elastic medium has been solved. The case is considered when the constant pressure, P, acts on the tube internal wall and on external one-elastic body. We imply that there is no displacement along the cylinder axis. The equation was obtained which establishes the relationship between the boundary of elastic and plastic medium and the pressure, which acts on the tube internal wall.

The General Integrals of Quasi-Linear Equations and Domains of Propagation of the Solutions of Non-Linear Cauchy Problems

Giorgi Baghaturia ${ }^{1}$, Marina Menteshashvili ${ }^{1,2}$
${ }^{1}$ Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
${ }^{2}$ Sokhumi State University, Tbilisi, Georgia
emails: nogela@gmail.com; m.menteshashvili@gtu.ge

Some specific quasi-linear second order equations are considered. These equations are of hyperbolic type but they also admit a parabolic degeneration. After constructing of first integrals it become possible to obtain the general solution for each of the given equations. Using these general solutions The non-linear Cauchy problems with open support of data are solved. In each case, the solving process of the non-linear Cauchy problem required the simultaneous definition of a solution together with the domain of its propagation. Hence, the structures of such domains are also studied in this work.

The presentation is mainly based on the results of the papers [1]-[2].

References

[1] G. Baghaturia, Nonlinear versions of hyperbolic problems for one quasi-linear equation of mixed type. J. Math. Sci. (N.Y.) 208 (2015), no. 6, 621-634; translated from Sourem. Mat. Prilozh. No. 90 (2014).
[2] M. Menteshashvili, The nonlinear Cauchy problem with solutions defined in domains with gaps. J. Math. Sci. (N.Y.) 206 (2015), no. 4, 413-423; Translated from Sovrem. Mat. Prilozh. No. 89 (2013).

Investigation of a Temperature Field of a Beam under Non-Uniform Nonstationary Heating

Gulbanu Baisarova ${ }^{1}$, Omar Kikvidze ${ }^{2}$
${ }^{1}$ Sh. Yessenov Caspian State University of Technologies and Engineering, Aktau, Kazakhstan
email: gulbanu79@mail.ru
${ }^{2}$ Akaki Tsereteli State University, Kutaisi, Georgia
email: kikvidze61@mail.ru

In the present paper dependence of the temperature on time under non-uniform, nonstationary heating of a cantilevered beam is established. On the basis of the experimental measurements, diagrams of dependence of the temperature of the surfaces of the beam on time are constructed. For analytical representation of the experimental curves threeparametric regression by a power function is used. The experimental results are processed by means of the mathematical editor Mathcad and regression coefficients are defined too. As a result the following is established:

1. dependence of the temperature on time for a surface on which heat source is influencing is given by

$$
\begin{equation*}
T_{0}(t)=20.688 \cdot t^{0.322}+24.878 \tag{1}
\end{equation*}
$$

2. dependence of the temperature on time at points of the free surface of the beam is given by

$$
\begin{equation*}
T(t)=0.153 \cdot t^{0.98}+23.929 \tag{2}
\end{equation*}
$$

The one-dimensional nonstationary temperature problem is solved. On the heated surface of a beam the boundary condition of the first kind in the form of function (1) is used, and on the second free surface the boundary condition of the third kind is used. By numerical calculation the change of temperature of the free surface in time is defined and it is compared with function (2). It is established that the difference between the experimental data and results of the numerical calculation is about 1% until the dimensionless time $\bar{t}=0.8$, and the maximal difference took place at the moment $\bar{t}=1.0$.

Strong Shape and Homology of Continuous Maps

Vladimer Baladze, Anzor Beridze
Department of Mathematics, Batumi Shota Rustaveli State University, Batumi, Georgia
email: vbaladze@gmail.com; anzorberidze@yahoo.com

In the paper [1] the fiber resolution and fiber expansion of continuous map is defined and it is shown that any fiber resolution is fiber expansion. In this paper we have defined strong fiber expansion. We have modified some lemmas and theorems of [1] and we have shown that any fiber resolution is a strong fiber expansion. Besides, we have proved an analogous lemma of the Main Lemma on strong expansions [6]. Using the methods of strong shape theory [6] and fiber strong shape theory [3], we have constructed a strong fiber shape category of maps of compact metric spaces (comp. [3], see Remark 8).

In the second part in this paper, we have constructed the strong homological functor from the strong shape category of maps of compact metric spaces to the category of sequences of abelian groups and level mophisms. Using the obtained results we defined the homological functor $\mathbf{H}: \mathbf{M o r}_{\mathbf{C M}} \rightarrow \mathbf{A b}$ from the category of continuous maps of compact metric spaces to the category of abelian groups and proved the following theorems [4-5]:
Theorem 1. For each continuous map $f: X \rightarrow X^{\prime}$ of compact metric spaces the corresponding homological sequence

$$
\cdots \rightarrow \mathbf{H}_{\mathbf{n}}\left(X^{\prime}\right) \xrightarrow{\sigma_{*}} \mathbf{H}_{\mathbf{n}}(f) \xrightarrow{\kappa_{*}} \mathbf{H}_{\mathbf{n}-1}(X) \xrightarrow{E} \mathbf{H}_{\mathbf{n}-1}\left(X^{\prime}\right) \rightarrow \cdots
$$

is exact.
Theorem 2. If any two morphisms $\left(\varphi_{1}, \varphi_{1}^{\prime}\right),\left(\varphi_{1}, \varphi_{1}^{\prime}\right): f \rightarrow g$ induce a same strong shape morphisms, then

$$
\left(\varphi_{1}, \varphi_{1}^{\prime}\right)_{*}=\left(\varphi_{1}, \varphi_{1}^{\prime}\right)_{*}: \mathbf{H}(f) \rightarrow \mathbf{H}(g) .
$$

Theorem 3. If a continuous map $f: X \rightarrow X^{\prime}$ of compact metric space is the inverse limit of an inverse sequence $\mathbf{f}=\left\{f_{i},\left(p_{i, i+1}, p_{i, i+1}^{\prime}\right), N\right\}$ of $A N R$-maps, then the following sequence

$$
0 \rightarrow \operatorname{Lim}^{1} H_{n+1}\left(f_{i}\right) \rightarrow \mathbf{H}_{\mathbf{n}}(f) \rightarrow \operatorname{Lim} H_{n}\left(f_{i}\right) \rightarrow 0
$$

is exact.
Remark 4. Note that by [2] $\operatorname{Lim} H_{n}\left(f_{i}\right)$ is the spectral homology group $H_{n}(f)$ of f. There exists a continuous map $f \in \operatorname{Mor}_{\mathbf{C M}}$ of compact metric space for which $\operatorname{Lim}^{1} H_{2}\left(f_{i}\right) \neq 0$ and so

$$
\mathbf{H}_{1}(f) \neq H_{1}(f)
$$

The authors are supported by grant FR/233/5-103/14 from Shota Rustaveli National Science Foundation (SRNSF)

References

[1] V. Baladze, Fiber shape theory. Proc. A. Razmadze Math. Inst. 132 (2003), 1-70.
[2] V. Baladze, On the spectral (co)homology exact sequences of maps. Georgian Math. J. 19 (2012), no. 4, 627-638.
[3] V. Baladze and R. Tsinaridze, On fiber strong shape theory, to appear.
[4] A. Beridze, Strong homology groups of continuous map. Proc. A. Razmadze Math. Inst. 162 (2013), 25-35.
[5] A. Beridze, L. Turmanidze, Semi-continuity of strong homology groups of continuous maps. Sovrem. Mat. Prilozh. No. 91 (2014); translation in J. Math. Sci. (N.Y.) 211 (2015), no. 1, 13-30.
[6] S. Mardešic, Strong Shape and Homology. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2000.

The Proper Shape Theories and Massey (Co)Homology Groups

Vladimer Baladze, Koba Ivanadze
Department of Mathematics, Batumi Shota Rustaveli State University, Batumi, Georgia
emails: vbaladze@gmail.com; kobaivanadze@gmail.com

The proper shape and proper fiber shape theories of closed pairs of locally compact metrizable spaces and proper maps are investigated.

The spectral proper shape invariant extensions of Massey (co)homology functors are constructed. Besides, it is showed that there exist long (co)homological sequences of proper maps.

The authors are supported by grant FR/233/5-103/14 from Shota Rustaveli National Science Foundation (SRNSF).

References

[1] V. Baladze, A proper shape theory and resolutions. Soobshch. Akad. Nauk Gruzii 151 (1995), no. 1, 13-18 (1996).
[2] B. J. Ball, R. B. Sher, theory of proper shape for locally compact metric spaces. Fund. Math. 86 (1974), 163-192.
[3] B. J. Ball, Alternative approaches to proper shape theory. in: Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), pp. 1-27. Academic Press, New York, 1975.
[4] W. S. Massey, Homology and Cohomology Theory. An approach based on AlexanderSpanier cochains. Monographs and Textbooks in Pure and Applied Mathematics, Vol. 46. Marcel Dekker, Inc., New York-Basel, 1978.

On Fiber Strong Shape Theory

Vladimer Baladze, Ruslan Tsinaridze
Department of Mathematics, Batumi Shota Rustaveli State University, Batumi, Georgia
email: vbaladze@gmail.com; rtsinaridze@yahoo.com

The purpose of this paper is the construction and investigation of fiber strong shape theory for compact metrizable spaces over a fixed base space B_{0}, using the fiber versions of cotelescop, fibrant space and SSDR-map. In the paper obtained results containing the characterizations of fiber strong shape equivalences, based on the notion of double mapping cylinder over a fixed space B_{0}. Besides, in the paper we construct and develop a fiber strong shape theory for arbitrary spaces over fixed metrizable space B_{0}. Our approach is based on the method of Mardešić-Lisica and instead of resolutions, introduced by Mardešić, their fiber preserving analogues are used. The fiber strong shape theory yields the classification of spaces over B_{0} which is coarser than the classification of spaces over B_{0} induced by fiber homotopy theory, but is finer than the classification of spaces over B_{0} given by usual fiber shape theory.

The authors are supported by grant FR/233/5-103/14 from Shota Rustaveli National Science Foundation (SRNSF).

References

[1] S. A. Antonyan, R. Jiménez, S. de Neymet, Fiberwise retraction and shape properties of the orbit space. Glas. Mat. Ser. III 35(55) (2000), no. 2, 191-210.
[2] V. Baladze, On shape theory for fibrations. Bull. Georgian Acad. Sci. 129 (1988), 269-272.
[3] V. Baladze, Fiber shape theory. Rend. Istit. Mat. Univ. Trieste 22 (1990), no. 1-2, 67-77 (1992).
[4] F. W. Bauer, A shape theory with singular homology. Pacific J. Math. 64 (1976), no. 1, 25-65.
[5] A. Bykov, M. Texis, Equivariant strong shape. Topology Appl. 154 (2007), no. 10, 2026-2039.
[6] J. Dydak, J. Segal, Strong shape theory. Dissertationes Math. (Rozprawy Mat.) 192 (1981), 39 pp.
[7] Ju. T. Lisica, Strong shape theory and the Steenrod-Sitnikov homology. Sibirsk. Mat. Zh. 24 (1983), 81-99.
[8] Ju. T. Lisica and S. Mardešić, Coherent prohomotopy and strong shape theory. Glas. Mat. Ser. III 19(39) (1984), no. 2, 335-399.

Hausdorff Operator in Lebesgue spaces

Rovshan Bandaliyev
Institute of Mathematics and Mechanics of Azerbaijan National Academy of Sciences, Baku, Azerbaijan
email: bandaliyevr@gmail.com

The investigation of Hausdorff operator can be traced back to 1917 by Hurwith and Silverman in [2] with summability of number series. Therefore Hausdorff operator have become an essential part of modern harmonic analysis. In particular, the study of Hausdorff operator has attracted resurgent attentions in recent years (see [1]).

For a fixed function $\phi \in L_{1}^{\text {loc }}(0, \infty)$, the one-dimensional Hausdorff operator is defined in the integral form by

$$
H_{\phi}(f)(x)=\int_{0}^{\infty} \frac{\phi\left(\frac{x}{y}\right)}{y} f(y) d y
$$

See [3] for detailed discussion.
In this report we study the boundedness and compactness of Hausdorff operator in weighted Lebesgue spaces. In the case $0<p<1$ we prove the boundedness of Hausdorff operator in weighted Lebesgue spaces. Moreover, we investigate boundedness of Hausdorff operator in variable Lebesgue spaces.

This is joint work with Przemystaw Górka.

References

[1] J. Chen, D. Fan, J. Li, Hausdorff operators on function spaces. Chin. Ann. Math. Ser. B 33 (2012), no. 4, 537-556.
[2] W. A. Hurwitz, L. L. Silverman, On the consistency and equivalence of certain definitions of summability. Trans. Amer. Math. Soc. 18 (1917), no. 1, 1-20.
[3] X. Lin, The boundedness of Hausdorff operators on finction spaces. Ph.D. Theses, Univ. Wisconsin-Milwaukee, China, 2013.

New Type Regularities for Some Basic Concepts in Analysis and Geometry (in Particular for Smooth Curves, Surfaces and Analytic Functions)

G. Barsegian
Institute of Mathematics of Academy of Sciences of Armenia, Erevan, Armenia
email: barseg@instamath.sci.am

There is a huge number of investigations relating to different classes of meromorphic functions, particularly concerning meromorphic functions in the complex plane which were intensively studied in the classical value distribution theory created by Nevanlinna in 1920s. Meanwhile regularities related to the general case of arbitrary meromorphic functions in a given domain were revealed only in works of Cauchy in 19 century and in created in 1935 Ahlfors theory of covering surfaces.

In this talk we present some other results obtained since end of 1970s concerning the same meromorphic function in a given domain. Here we mention two of them; both intertwining with Nevanlinna and Ahlfors's theories.

One of these results shows that the basic regularities of these theories can be transferred for all meromorphic functions in a given domain (while these theories themselves are meaningful only under some additional restrictions). Thus we deal with an "universal version of value distribution". The universal version reveals essentially new type phenomena for meromorphic functions in a given domain while for meromorphic functions in the complex plane it leads to the conclusions quite comparable with the classical ones.

Also it will be shown that similar results occur also in geometry: the so-called "triple principle" shows that the universal version, formulated for complex function, admits corresponding forms for the smooth curves and surfaces in R^{3}.

The work was supported by the "Marie Curie (IIF) Award, 2013-2015".

Some Applications of Projective Sets in Study of Absolutely Non-measurable Functions

Mariam Beriashvili

I. Vekua Institute of Applied Mathematics, Tbilisi State University, Tbilisi, Georgia
email: mariam_beriashvili@yahoo.com

Descriptive Set theory is an important branch of set theory and plays an important role to solve many problems and questions in set theory ([2], [4]). When Luzin have constructed Projective sets hierarchy, he give to the mathematicians a new idea to develop set theory in new direction ([2], [3]). Descriptive set theory was applied in measure theory and was clear that, projective sets are very good objects in the sense of Lebesgue measure and are measurable sets. We discuss a modified version of the concept of measurability of sets and functions, in particular, we consider the measurability not only with respect to a concrete given measure, but also with respect to various classes of measures ([1], [3]). So, for a class \mathbf{M} of measures, the measurability of sets and functions has the following three aspects:
a. absolute measurability with respect to \mathbf{M};
b. relative measurability with respect to \mathbf{M};
c. absolute non-measurability with respect to M.

Definable Sets of real line have a many interesting properties and we consider such sets in the sense measure extension problem. It is well known, that assuming Martin's axiom it can be shown that there exists absolutely non-measurable functions. In particular, It is proved, that there exists absolutely non-measurable functions whose graph is projective subset of \mathbf{R}.

References

[1] M. Beriashvili, Measurability properties of certain paradoxical subsets of the real line. Georgian Math. J. 23 (2016), no. 1, 25-32.
[2] A. Kechris, Classical Descriptive Set Theory. Springer Verlag, 1994.
[3] A. B. Kharazishvili, Set Theoretical Aspects of Real Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
[4] R. Schindler, Set Theory. Exploring Independence and Truth. Universitext. Springer, Cham, 2014.

Asymptotic Distribution of the Eigenvalues and Eigenfunctions in Basic Boundary Value Oscillation Problems in Hemitropic Elasticity

Yuri Bezhuashvili
Georgian Technical University, Tbilisi, Georgia
email: y.bezhuashvili@yandex.ru

The basic boundary value oscillation problems for a three-dimensional elastic medium bounded by a closed surface are considered. Asymptotic formulas are derived for the eigenvalue and eigenfunction distributions in the problems.

Fundamental Solution in the Plane Equilibrium Theory of Thermoelasticity with Microtemperatures for Microstretch Solids

Lamara Bitsadze
Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: lamarabitsadze@yahoo.com

In this paper the 2D linear equilibrium theory of thermoelasticity with microtemperatures for isotropic microstretch solids is considered and the fundamental and singular matrices of solutions are constructed in terms of elementary functions. Representation of regular solution is obtained. Some basic results of the classical theories of elasticity and thermoelasticity are generalized.

References

[1] D. Ieşan, On a theory of micromorphic elastic solids with microtemperatures. J. Thermal Stresses 24 (2001), no. 8, 737-752.
[2] A. C. Eringen, Theory of thermomicrostretch elastic solids. Internat. J. Engrg. Sci. 28 (1990), no. 12, 1291-1301.
[3] M. Svanadze, R. Tracina, Representation of solutions in the theory of Thermoelasticity with Microtemperatures for microstretch solids. J. Thermal Stresses 34 (2011), no. 2, 161-178.
[4] L. Bitsadze, G. Jaiani, Some basic boundary value problems of the plane thermoelasticity with microtemperatures. Math. Methods Appl. Sci. 36 (2013), no. 8, 956-966.
[5] L. Bitsadze, Effective solution of the Dirichlet BVP of the linear theory of thermoelasticity with microtemperatures for a spherical ring. J. Thermal Stresses 36 (2013), no. 7, 714-726.
[6] L. Bitsadze, I. Tsagareli, The solution of the Dirichlet BVP in the fully coupled theory for spherical layer with double porosity. Mechanica 51 (2016), no. 6, 14571463.
[7] L. Bitsadze, The Dirichlet BVP of the theory of thermoelasticity with microtemperatures for microstretch sphere. J. Thermal Stresses 39 (2016), no. 9, 1074-1083.

On Initial Problem for One Equation of Oscillation Taking Place in Magnetohydraulic Pusher

Rusudan Bitsadze, Simon Bitsadze
Georgian Technical University, Tbilisi, Georgia
email: bitsadze.r@gmail.com

In the work is studied the initial Cauchy problem for one equation of nonlinear oscillations, which is received by mathematical modeling of processes taking place in magnetohydraulic pusher of specific design. There is shown the uniqueness of solution, which is written in an explicit form and its domain of propagation is established.

References

[1] R. G. Bitsadze, S. G. Bitsadze, On solvability of an equation of nonlinear oscillations problems. J. Problems of Mechanics 58 (2015), no. 1, 76-82.
[2] S. G. Bitsadze, R. G. Bitsadze, Initial problems for equation describing processes taking place in magnetohydraulic pusher. J. Transport and Machinebuilding 32 (2015), no. 1, 152-157.
[3] R. G. Bitsadze, Mixed characteristic problem for a nonlinear oscillation equation. Translated from Sovrem. Mat. Prilozh. No. 89 (2013). J. Math. Sci. (N.Y.) 206 (2015), no. 4, 329-340.

Program of Analysis of Plate with a Certain Reduced Flexural Rigidity

Nika Botchorishvili, Lia Kipiani, D. Chikovani
Georgian Technical University, Tbilisi, Georgia
email: zodeli@yahoo.com, kipianilia@yahoo.com, davidchikovani@yahoo.com

The developed method of plate's analysis which is taking into account the physical non-linearity is presented. It gives a possibility to estimate the changes of all components of mode of deformation, values of critical loadings and shapes of buckling and are more effective in comparison with other numerical and numerical-analytical methods.

Simplified variants of solution, in particular, a variant of reducing to single-layered plate with a certain flexural rigidity that leads to significant simplification without loss of precision of calculation, especially by determination of displacements, are studied.

Pseudo-oscillation Problems of the Thermopiezoelectricity Theory without Energy Dissipation

Tengiz Buchukuri ${ }^{1}$, Otar Chkadua ${ }^{1,2}$, David Natroshvili ${ }^{3}$
${ }^{1}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Faculty of Mathematics and Computer Sciences, Sokhumi state University, Tbilisi, Georgia
${ }^{3}$ Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
email: t_buchukuri@eyahoo.com

We consider the pseudo-oscillation equation of the linear theory of thermopiezoelectricity for bodies with inner structure. The model under consideration is based on the Green-Naghdi theory of thermopiezoelectricity without energy dissipation. In particular, this theory permits propagation of thermal waves at finite speed. We investigate the mixed boundary value problem for homogeneous isotropic solids with interior cracks. Using the potential method and theory of pseudodifferential equations on manifolds with boundary we prove existence and uniqueness of solutions and analyze their asymptotic properties. We also describe the explicit algorithm for finding the singularity exponents of the thermo-mechanical and electric fields near the crack edges and near the curves, where different types of boundary conditions collide.

As it is well known from the classical elasticity theory, in general, solutions to crack type and mixed boundary value problems have singularities near the crack edges and near the lines where the types of boundary conditions change, regardless of the smoothness of the boundary surfaces and given boundary data. It turned out that the same effect can be observed also in the theory under consideration. Explicit calculations show that the stress singularity exponents essentially depend on the material parameters, in general.

Parallel Surfaces of Ruled Surfaces

Ali Cakmak

Department of Mathematics, Faculty of Sciences and Bitlis Eren University, 13000, Bitlis, Turkey
email: acakmak@beu.edu.tr
In this paper, we investigate parallel surfaces of a ruled surface indicated by M_{r}, condition that M is denoted by a ruled surface in E^{3}. Besides, we calculate curvatures of M_{r} and obtain some relationships between curvatures of surfaces M and M_{r}.

References

[1] W. F. Kern, J. R. Bland, Cylindrical Surface. §14 in Solid Mensuration with Proofs, 2nd ed., pp. 32-36, Wiley, New York, 1948.
[2] J. W. Harris, H. Stocker, General Cylinder. §4.6.1 in Handbook of Mathematics and Computational Science, p. 103, Springer-Verlag, New York, 1998.
[3] T. Craig, Note on Parallel Surfaces. J. Reine Angew. Math. 94 (1883), 162-170.
[4] S. Kızıltuğ, Ö. Tarakcı, Y. Yaylı, On the curves lying on parallel surfaces in the Euclidean 3-space $E^{3} . ~ J . ~ A d v . ~ R e s . ~ D y n . ~ C o n t r o l ~ S y s t . ~ 5 ~(2013), ~ n o . ~ 3, ~ 26-35 . ~$
[5] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica. 2nd ed. CRC Press, Boca Raton, FL, pp. 439-441, 1998.
[6] H. H. Hacısalihoğlu, Diferensiyel Geometri. İn önü Üniversitesi Fen Edeb. Fak. Yayınları, Mat. No. 2 895s. 1983.
[7] H. Liu, Y. Yu, S. D. Jung, Invariants of non-developable ruled surfaces in Euclidean 3-space. Beitr. Algebra Geom. 55 (2014), no. 1, 189-199.
[8] H. Liu, Y. Yuan, Pitch functions of ruled surfaces and B-scrolls in Minkowski 3space. J. Geom. Phys. 62 (2012), no. 1, 47-52.
[9] Y. Yu, H. Liu, S. D. Jung, Structure and characterization of ruled surfaces in Euclidean 3-space. Appl. Math. Comput. 233 (2014), 252-259.

Some Notes on Covarient and Lie Derivatives of Sasakian Metric on Cotangent Bundles

Hasim Cayir
Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28100, Giresun, Turkey
email: hasim.cayir@giresun.edu.tr

In this paper, we define a Sasakian metric ${ }^{S} g$ on cotangent bundle $T^{*} M$, which is completely determined by its action on complete lifts of vector fields. Later, we obtain the covariant and Lie derivatives applied to Sasakian metrics with respect to the complete and vertical lifts of vector and kovector fields, respectively.

References

[1] N. Cengiz, A. A. Salimov, Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput. 142 (2003), no. 2-3, 309-319.
[2] H.Çayır, Lie derivatives of almost contact structure and almost paracontact structure with respect to X^{V} and X^{H} on tangent bundle $T(M)$. Proc. Inst. Math. Mech. 42 (2016), no. 1, 38-49.
[3] S. Gudmundsson, E. Kappos, On the geometry of tangent bundles. Expo. Math. 20 (2002), no. 1, 1-41.
[4] E. Musso, F. Tricerri, Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl. (4) 150 (1988), 1-19.
[5] F. Ocak, A. A. Salimov, Geometry of the cotangent bundle with Sasakian metrics and its applications. Proc. Indian Acad. Sci. Math. Sci. 124 (2014), no. 3, 427-436.
[6] A. A. Salimov, Tensor Operators and Their Applications. Mathematics Research Developments Series. Nova Science Publishers, Inc., New York, 2013.
[7] A. A. Salimov, N. Cengiz, Lift of Riemannian metrics to tensor bundles. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 2003, no. 11, 51-59; translation in Russian Math. (Iz. VUZ) 47 (2003), no. 11, 47-55 (2004).
[8] A. A. Salimov, F. Ağca, Some properties of Sasakian metrics in cotangent bundles. Mediterr. J. Math. 8 (2011), no. 2, 243-255.
[9] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J. (2) 10 (1958), 338-354.
[10] K. Yano, S. Ishihara, Tangent and Cotangent Bundles: Differential Geometry. Pure and Applied Mathematics, No. 16. Marcel Dekker, Inc., New York, 1973.

Schwarz Problem for Higher-Order Linear Equations in \mathbb{C}^{n}

Ahmet Okay Çelebi
Yeditepe University, Department of Mathematics, İstanbul, Turkey
email: acelebi@yeditepe.edu.tr

In this presentation, a general higher-order integral representation formula is developed for solutions of inhomogeneous pluriholomorphic systems in the unit polydisc by proper iterations of the respective formula for one variable case. Schwarz problem for inhomogeneous linear equations in \mathbb{C}^{n}, satisfying the boundary conditions chosen from a class of pluriholomorphic functions are discussed.

This is a joint work with Umit Aksoy; Atilim University, Department of Mathematics, Ankara, Turkey.

References

[1] H. Begehr, A. Dzhuraev, An Introduction to Several Complex Variables and Partial Differential Equations. Pitman Monographs and Surveys in Pure and Applied Mathematics, 88. Longman, Harlow, 1997.
[2] H. Begehr, Boundary value problems in C and \mathbf{C}^{n}. Acta Math. Vietnam. 22 (1997), no. 2, 407-425.
[3] H. Begehr, D.-Q. Dai, X. Li, Integral representation formulas in polydomains. Complex Var. Theory Appl. 47 (2002), no. 6, 463-484.

Automated Theorem Prover for Unranked Logics

Gela Chankvetadze, Lia Kurtanidze, Mikheil Rukhaia
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: mrukhaia@logic.at

In the talk we present proof search methods for first-order unranked logic. The unranked languages have unranked alphabet, where function and predicate symbols do not have a fixed arity. Such languages can model XML documents and operations over them, thus becoming more and more important in semantic web. We present a version of a sequent calculus for first-order unranked logic and describe a proof construction algorithm under this calculus. We give implementation details of the algorithm. We believe that this work will be useful for the undergoing work on logic and proof layers of the semantic web stack.

Acknowledgement. This work was supported by the Shota Rustaveli National Science Foundation project no. FR/51/4-120/13.

Theoretical and Numerical Analysis of the Zonal Flow Structures in Nonuniform Ionospheric Medium

Khatuna Chargazia ${ }^{1,2}$, Oleg Kharshiladze ${ }^{2,3}$

${ }^{1}$ I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ M. Nodia Institute of Geophysics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
${ }^{3}$ Physics Department, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: Khatuna.chargazia@gmail.com

Near Earth space (ionosphere, magnetosphere) is characterized by complicated dynamics and for modeling of such processes, especially at conditions of external nonstationary impact (bow shock) it is very important an estimation of determined and stochastic parts of the dynamics, as well as the possibility of the generation of large scale wave and fractal structures. In this work a physical model of the plasma perturbations for experimental data treatment and their physical and theoretical interpretationis obtained. In this model a nonlinear mechanism of interaction of the perturbations with spatially inhomogeneous
space flows is considered. From this flows a zonal flow is energetically most important. Numerical simulation of formation of such large scale flows are carried out. Time series of velocity flow and magnetic field components of the magnetospheric flows observed by THEMIS satellite mission are studiedby virtue of nonlinear methods. For numerical treatment of these data a recurrent diagram method is used, which is effective for short data series. Recurrence is a fundamental feature of the dissipative dynamical systems, which is used for analysis of relaxation processes in the magnetotail. The results of nonlinear analysis of plasma perturbations for interpretation is compared with the signals obtained by Lorentz and Weierstrass function. By virtue of recurrent diagram method a fractal nature of experimental signals and dynamical chaos parameters. The results of satellite and numerical simulation data are compared.

About Some Decisions of Nonlinear System of the Differential Equations Describing Process of Two-Level Assimilation

Temur Chilachava, Maia Chakaberia
Sokhumi State University, Faculty of Mathematics and Computer Sciences, Tbilisi, Georgia
emails: temo_chilachava@yahoo.com; chakaberiam@gmail.com

Earlier with us mathematical modeling of nonlinear process of two-level assimilation taking into account demographic factors of three sides is offered.

In the real model it is supposed that the powerful state with a widespread state language carries out assimilation of the population of less powerful state and the third population talking in two languages, different in prevalence. Carries out assimilation of the population of the state formation with the least widespread language to the turn, less powerful state.

Not triviality of model assumes negative demographic factor of the powerful stateassimilating and positive demographic factor of the state formation which is under bilateral assimilation. For some ratios between demographic factors of the sides and coefficients of assimilations, for nonlinear system of three differential equations with the corresponding conditions of Cauchy the first integrals are found.

In particular, in the first case the first integral in space of required functions represents a hyperbolic paraboloid, and in the second case - a cone. In these cases, the nonlinear system of three differential equations is reduced to nonlinear system of two differential equations for which the second first integrals are found and in the phase plane of decisions are investigated behavior of integrated curves.

In more general case with application of a criteria of Bendikson the possibility of existence of the closed integrated curves is proved that indicates a possibility of a survival of the population finding under double assimilation.

Nonlinear Mathematical Model of Dynamics of Processes of Cooperation Interaction in Innovative System

Temur Chilachava ${ }^{1}$, Tsira Gvinjilia ${ }^{2}$
${ }^{1}$ Sokhumi State University, Faculty of Mathematics and Computer Sciences, Tbilisi, Georgia
email: temo_chilachava@yahoo.com
${ }^{2}$ Batumi State Maritime Academy, Batumi, Georgia
email: Gvinjilia1959@mail.ru

One of the perspective and quickly field of application of mathematical modeling is dynamics of innovative processes. Researches in this area show that the crisis phenomena have not the casual, but systematic character defined by the determined mechanisms. Therefore many features of behavior of innovative processes can be described within the determined systems of the differential equations. The difficult behavior of these systems, including self-organization processes, gives in to the description thanks to existence of the nonlinear members who are present at mathematical models of dynamic systems. Research of mathematical models of innovative processes in scientific and educational areas is of a great interest.

In this work the nonlinear mathematical model of dynamics of processes of cooperation interaction in innovative system: fundamental researches - applied researches developmental works - innovations is offered.

$$
\begin{gathered}
\left\{\begin{array}{l}
\frac{d u(t)}{d t}=\alpha_{1} u(t)-\beta_{1} u^{2}(t)+\delta_{1}-\delta_{2}, \\
\frac{d v(t)}{d t}=\alpha_{2} v(t)-\beta_{2} v^{2}(t)+\gamma_{21} u(t) v(t), \\
\frac{d w(t)}{d t}=\alpha_{3} w(t)-\beta_{3} w^{2}(t)+\gamma_{32} v(t) w(t), \\
\frac{d z(t)}{d t}=\alpha_{4} z(t)-\beta_{4} z^{2}(t)+\gamma_{43} w(t) z(t),
\end{array}\right. \\
u(0)=u_{0}, \quad v(0)=v_{0}, \quad w(0)=w_{0}, \quad z(0)=z_{0}, \quad \delta_{i}>0, \quad i=1,2, \\
\alpha_{i}>0, \quad \beta_{i}>0, \quad i=\overline{1,4}, \quad \gamma_{21}>0, \quad \gamma_{32}>0, \quad \gamma_{43}>0 .
\end{gathered}
$$

We look for the solution of a task of Cauchy on a segment $[0, T]$ in a class of continuously differentiable functions $u(t), v(t), w(t), z(t)$.
$u(t)$ - number of fundamental researches, $v(t)$ - number of applied researches, $w(t)$ number of developmental works, $z(t)$ - number of innovative works.

Generally Cauchy's task of an analytically is solved in quadratures. In some private cases simple analytical formulas are received and the analysis of decisions is carried out.

Three Party Nonlinear Mathematical Model of Elections

Temur Chilachava, Leila Sulava
Faculty of Mathematics and Computer Sciences, Sokhumi State University, Tbilisi, Georgia

emails: temo chilachava@yahoo.com; leilasamadash@gmail.com
In this paper, the development of our previously proposed two-party electoral models, is proposed the nonlinear mathematical model with variable coefficients in the case of three-party elections, that describes the dynamics of the quantitative change of the votes of the ruling and two opposition parties from election to election. The model considers four objects:

1. State and administrative structures, acting by means of administrative resources for opposition-minded voters with the aim to win their support for the pro-government party.
2. Voters who support the first opposition party.
3. Voters who support the second opposition party.
4. Voters who support the ruling party.

The model takes into account the change in the total number of voters in the period from election to election, i.e. the so-called demographic factor during the elections is taken into account. We have considered two cases: when the elections are held without falsification and when there are cases of falsification by the Election Commission in favor of the pro-government party. The model considered the cases with variable coefficients. In particular, we assume that in the period between elections coefficients of "attracting" voters are exponentially increasing function of time.

In the particular case we obtain exact analytical solutions. The conditions have been identified under which the opposition can win the forthcoming elections, and in some cases, the pro-government party can stay in power.

In general Cauchy problem was solved numerically using the MATLAB software package.

We get different variations of the outcome of the election based on voter turnout, the possible falsification of elections and demographic factors.

The proposed mathematical and computer model has both theoretical and practical importance. Political opponents (government and opposition) can use our results: to choose a strategy, to calculate its abilities (selecting parameters) in order to achieve the set goal.

Antiplane Shear of Orthotropic Non-Homogeneous Prismatic Shells

Natalia Chinchaladze ${ }^{1,2}$
${ }^{1}$ Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia

${ }^{2}$ I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: chinchaladze@gmail.com

Antiplane shear of an orthotropic non-homogeneous prismatic shell is considered when the shear modulus depending on the body projection (i.e., on a domain lying in the plane of interest) variables may vanish either on a part or on the entire boundary of the projection (problems of antiplane strain of isotropic non-homogeneous prismatic shell-like bodies are considered in [1], [2]). The dependence of well-posedeness of boundary conditions on the character of vanishing the shear modulus is studied.

References

[1] G. Jaiani, On the relation of boundary value problems for cusped plates and beams to three-dimensional problems. Semin. I. Vekua Inst. Appl. Math. Rep. 28 (2002), 40-51.
[2] N. Chinchaladze, On some dynamical problems of the antiplane strain (shear) of isotropic non-homogeneous prismatic shell-like bodies. Bull. TICMI 19 (2015), no. 2, 55-65.

A Generalization of the Minkowski and Related Type Inequalities for the Sugeno Integrals
 Bayaz Daraby

Department of Mathematics, University of Maragheh, Maragheh, Iran
email: bdaraby@maragheh.ac.ir

In this paper, we generalize the Minkowski type inequality for the Sugeno integrals. In the continue, we prove the related type's of this inequality for the Sugeno integrals. Finally, we illustrate the results by some examples.

Definition 1 (Sugeno [1]). A set function $\mu: \mathcal{F} \rightarrow[0,1]$ is called a fuzzy measure if the following properties are satisfied:
(FM1) $\quad \mu(\emptyset)=0$ and $\mu(X)=1$;
(FM2) $\quad A \subset B$ implies $\mu(A) \leq \mu(B)$;
(FM3) $\quad A_{n} \rightarrow A$ implies $\mu\left(A_{n}\right) \rightarrow \mu(A)$.
When μ is a fuzzy measure, the triple (X, \mathcal{F}, μ) is called a fuzzy measure space.
For any $\alpha \in[0,1]$, we will denote the set $\{x \in X \mid f(x) \geq \alpha\}$ by F_{α} and $\{x \in X \mid f(x)>$ $\alpha\}$ by $F_{\bar{\alpha}}$. Clearly, both F_{α} and $F_{\bar{\alpha}}$ are nonincreasing with respect to α, i.e., $\alpha \leq \beta$ implies $F_{\alpha} \supseteqq F_{\beta}$ and $F_{\bar{\alpha}} \supseteqq F_{\bar{\beta}}$.
Definition 2 (Daraby [2], Sugeno [1]). Let (X, \mathcal{F}, μ) be a fuzzy measure space, and A $\in \mathcal{F}$, the Sugeno integral of f over A, with respect to the fuzzy measure μ, is defined by

$$
f_{A} f d \mu=\bigvee_{\alpha \in[0,1]}\left(\alpha \wedge \mu\left(A \cap F_{\alpha}\right)\right)
$$

When $\mathrm{A}=\mathrm{X}$, then

$$
f_{X} f d \mu=f f d \mu=\bigvee_{\alpha \in[0,1]}\left(\alpha \wedge \mu\left(F_{\alpha}\right)\right)
$$

Theorem 1. Let (X, \mathcal{F}, μ) be a fuzzy measure space and $f, g: X \rightarrow[0,1]$ two comonotone measurable functions. Let $\star:[0,1]^{2} \rightarrow[0,1]$ be continuous and nondecreasing in both arguments. If the seminorm T satisfies

$$
T(a \star b, c) \leq(T(a, c) \star b) \wedge(a \star T(b, c))
$$

then the inequality

$$
\left(\int_{T, A}(f \star g)^{s} d \mu\right)^{\frac{1}{s}} \leq\left(\int_{T, A} f^{s} d \mu\right)^{\frac{1}{s}} \star\left(\int_{T, A} g^{s} d \mu\right)^{\frac{1}{s}}
$$

holds for any $A \in \mathcal{F}$ and for all $0<s<\infty$.

References

[1] M. Sugeno, Theory of fuzzy integrals and its applications. Ph.D. Thesis. Tokyo Institute of Technology, 1974.
[2] B. Daraby, Generalization of the Stolarsky type inequality for pseudo-integrals. Fuzzy Sets and Systems 194 (2012), 90-96.

Uniform Boundedness Theorem on Fuzzy Hilbert Spaces

Bayaz Daraby
Department of Mathematics, University of Maragheh, Maragheh, Iran email: bdaraby@maragheh.ac.ir

Let η be a fuzzy subset on \mathbb{R}, i.e. a mapping $\eta: \mathbb{R} \rightarrow[0,1]$ associating with each real number t its grade of membership $\eta(t)$.
In this paper, we consider the concept of fuzzy real numbers (fuzzy intervals) in the sense of Xiao and Zhu [1].

Definition $1([2])$. Let $(X,\|\cdot\|)$ and $\left(Y,\|\cdot\|^{\sim}\right)$ be fuzzy normed linear spaces. A linear operator $T: X \rightarrow Y$ is said to be weakly fuzzy bounded if there exists a fuzzy interval $\tilde{0} \prec \eta \in F^{*}$ such that

$$
\|T x\|^{\sim} \oslash\|x\| \preceq \eta, \quad \forall x(\neq \underline{0}) \in X .
$$

Definition 2. Let $(X,\|\cdot\|)$ and $\left(Y,\|\cdot\|^{\sim}\right)$ be two fuzzy normed linear spaces. A family $\left\{T_{n}\right\} \subseteq \underset{\tilde{0}}{\mathbf{B}}(X, Y)$ is called point-wise bounded if for every $x(\neq 0) \in X$, there exists fuzzy number $\tilde{0} \prec \delta_{x} \in F^{*}$ such that for all $n>0$,

$$
\left\|T_{n}(x)\right\|^{\sim} \preceq \delta_{x},
$$

and is said uniformly bounded if there exists fuzzy number $\tilde{0} \prec \delta \in F^{*}$ such that for each $n>0$ and $x(\neq 0) \in X$,

$$
\left\|T_{n}\right\|^{\sim} \preceq \delta .
$$

Theorem 1 (Uniform Boundedness Theorem). Let $\left\{T_{n}\right\} \subset \boldsymbol{B}(H, H)$ such that for each $x \in H,\left\{T_{n}\right\}$ is bounded in H, i.e. there exists a fuzzy real number η_{x} such that $\left\|T_{n} x\right\| \preceq \eta_{x}$, for all n. Then there exists a fuzzy real number δ such that $\left\|T_{n}\right\| \preceq \delta$, for all n, where $(H,\|\cdot\|)$ is a complete fuzzy normed linear space for each $\alpha \in(0,1]$.
Remark 1. If T is weakly fuzzy bounded, then the above theorem is also true.

References

[1] J. Xiao, X. Zhu, Fuzzy normed space of operators and its completeness. Theme: Topology. Fuzzy Sets and Systems 133 (2003), no. 3, 389-399.
[2] T. Bag, S. K. Samanta, A comparative study of fuzzy norms on a linear space. Fuzzy Sets and Systems 159 (2008), no. 6, 670-684.

Bessel's Inequality on Fuzzy Hilbert Spaces

Bayaz Daraby
Department of Mathematics, University of Maragheh, Maragheh, Iran email: bdaraby@maragheh.ac.ir

Definition 1 ([1]). Let X be a vector space over \mathbb{R}. A fuzzy inner product on X is a mapping $\langle\cdot, \cdot\rangle: X \times X \rightarrow F(\mathbb{R})$ such that for all vectors $x, y, z \in X$ and $r \in \mathbb{R}$, we have
$\left(I P_{1}\right)\langle x+y, z\rangle=\langle x, z\rangle \oplus\langle y, z\rangle$,
$\left(I P_{2}\right)\langle r x, y\rangle=\widetilde{r}\langle x, y\rangle$,
$\left(I P_{3}\right)\langle x, y\rangle=\langle y, x\rangle$,
$\left(I P_{4}\right)\langle x, x\rangle \succeq \widetilde{0}$,
$\left(I P_{5}\right) \inf _{\alpha \in(0,1]}\langle x, x\rangle_{\bar{\alpha}}^{-}>0$ if $x \neq 0$,
$\left(I P_{6}\right)\langle x, x\rangle=\widetilde{0}$ if and only if $x=0$.
The vector space X equipped with a fuzzy inner product is called a fuzzy inner product space. A fuzzy inner product on X defines a fuzzy number

$$
\begin{equation*}
\|x\|=\sqrt{\langle x, x\rangle}, \quad \forall x \in X \tag{1}
\end{equation*}
$$

A fuzzy Hilbert space is a complete fuzzy inner product space with the fuzzy norm defined by (1). Therefore by the above definition, any fuzzy inner product space with origin 0 is a subspace of a fuzzy normed linear space.
Definition 2 ([2]). Let X be a fuzzy inner product space. A fuzzy orthogonal set M in X is said to be fuzzy orthonormal if $\langle x, y\rangle=\left\{\begin{array}{ll}\tilde{1}, & x=y \\ \tilde{0}, & x \neq y\end{array}\right.$, for all $x, y \in M$.

Theorem 1. Let X be a fuzzy inner product space and for any $x \in X$ there exists $\left\{x_{n}\right\} \subset X, x_{n} \rightarrow x$. Let $\left\{e_{k}\right\}$ be a fuzzy orthonormal sequence in X then

$$
\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\right|^{2} \leq\|x\|^{2}, \quad x \in X
$$

Theorem 2 (Bessel's inequality). Let H be a fuzzy Hilbert space. If $\left\{e_{k}\right\}$ is a fuzzy orthonormal sequence in H, then

$$
\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\right|^{2} \preceq\|x\|^{2}, \quad x \in H
$$

which is special case of Theorem 1.

References

[1] A. Hasankhani, A. Nazari, M. Saheli, Some properties of fuzzy Hilbert spaces and norm of operators. Iran. J. Fuzzy Syst. 7 (2010), no. 3, 129-157, 169.
[2] B. Daraby, Z. Solimani and A. Rahimi, A note on fuzzy Hilbert spaces. Journal of Intelligent and Fuzzy Systems, to appear.

Hydraulic Calculation of Branched Gas Pipeline

Teimuraz Davitashvili, Givi Gubelidze, Meri Sharikadze

I. Javakhishvili Tbilisi State University, Faculty of Exact and Natural Sciences, I.Vekua Institute of Applied Mathematics, Tbilisi, Georgia
emails: teimuraz.davitashvili@tsu.ge; meri.sharikadze@tsu.ge

As pipelines become one of the main sources of liquid and gas substances transportation so studying behaviour of gas and liquid substances flow in horizontal and inclined branched pipelines became topical problem of today. Recently, many gas flow models have been developed and a number are using by the gas-liquid industry. In spite of the fact that most of those have been based on the result of gas-liquid flow experiments, accounting practices have shown none of them are universal, as yet they needs to be carefully analyzed, retreated, reworked and checked by the flow pattern. It has been shown in modern publications that the most complicated part in the practice especially are connected with branched pipeline networks and as a consequence mathematical models
describing flow in the pipelines having outlets containing essential mistakes, which are owing significant simplification of the modelling environment and processes. For this reason development of the detailed numerical models adequate describing the real non-stationary not isothermal processes processing and progressing in the branched pipeline systems is necessary want. And as a consequence study of the problem by analytical methods from the mathematical point of view is prerequisite and represents a very actual problem. In the present paper gas pressure and flow rate distribution along the branched pipeline is investigated. The study is based on the analytical solution of the simplified nonlinear, non-stationary partial differential equations describing gas quasi-stationary flow in the branched pipeline. The effective solutions of the quasi-stationary nonlinear partial differential equations are presented. Preliminary numerical calculations have shown efficiency of the suggested method.

Heavy Showers Prediction above the Complex Terrain Based on WRF Modelling

Teimuraz Davitashyili ${ }^{1}$, Nato Kutaladze ${ }^{2}$, Ramaz Kvatadze ${ }^{3}$, Giorgi Mikuchadze ${ }^{2}$, Zurab Modebadze ${ }^{4}$
${ }^{1}$ I. Javakhishvili Tbilisi State University, I. Vekua Institute of Applied Mathematics
${ }^{2}$ Georgian National Environmental Agency
${ }^{3}$ Georgian Research and Educational Networking Association
${ }^{4}$ I. Javakhishvili Tbilisi State University, Faculty of Exact and Natural Sciences Tbilisi, Georgia
emails: teimuraz.davitashvili@tsu.ge; cwlamc@gmail.com; ramaz@grena.ge; gmikuchadze@gmail.com; Zurab@tsu.ge

The Weather Research and Forecasting (WRF) model version 3.6 represents a good opportunity for studding regional and mesoscale atmospheric processes such are: extreme precipitations, hails, sensitivity of WRF to physics options, influence of orography on mesoscale atmosphere processes, etc. In the present article the WRF model was applied to the selected weather events for predicting rainfall with numerous combinations of physics options. For fulfillment of this plan we have configured the WRF v.3.6 nested grid, wet model for Caucasus region (Georgian territory), considering geographical-landscape character, topography height, land use, soil type, temperature in deep layers, vegetation monthly distribution, albedo and others. The computations were performed by the Georgian Research and Educational Networking Association (GRENA) GRID system GE-01-GRENA which is integrated in the European GRID infrastructure. Therefore it was a good opportunity for running model on larger number of CPUs and storing large amount of data on the GRID storage element. On the GRENA's cluster WRF was compiled for
both Open MP and MPI (Shared + Distributed memory) environment and WPS was compiled for serial environment using PGI (v7.1.6) on the platform Linux-CentOS. Simulations were performed using a set of 2 domains with horizontal grid-point resolutions of 6.6 km and 2.2 km , both defined as those currently being used for operational forecasts. The coarser domain is a grid of 94×102 points which covers the South Caucasus region, while the nested inner domain has a grid size of 70 x 70 points mainly territory of Georgia. Both use the default 54 vertical levels. We have studied some particulate cases of dangerous unexpected heavy showers which have taken place in warm seasons of 2015 in eastern part of the territory of Georgia and were accompanied with damage results consequences of the events were hard to foresee. The predicted rainfall by WRF model was compared with the observed rainfall data. In this study some comparisons between WRF forecasts was done in order to check the consistency and quality of WRF model with the heavy precipitations occur on the territory of Georgia. Some results of the numerical calculations performed by WRF model are presented.

Acknowledgement. The research leading to these results has been co-funded by the European Commission under the H2020 Research Infrastructures contract no. 675121 (project VI-SEEM).

On One Numerical Method of Solution of the Problem of Optimal Control for Linear Differential Equation

David Devadze
Batumi Shota Rustaveli State University, Department of Computer Sciences, Batumi, Georgia
email: david.devadze@gmail.com

The paper deals with the problem of optimal control for simple linear differential equations of the second order with the Bitsadze-Samarskiĭ boundary condition. Necessary conditions of optimality are received in the form of principle of maximum. Conjugated equations are constructed in the differential and integral form

Using necessary and sufficient condition of optimality, the solution of a linear problem of optimal control is led to the solution of equivalent system of the differential equations. For receiving the numerical solution of the problem, difference scheme on convergence in a class of functions, which have absolutely continuous first products, is constructed and investigated.

For numerical realization, on the basis of necessary and sufficient conditions of optimality, the algorithm for solution of linear problem of optimal control is suggested. There are given the numerical experiments on modeling problems in MathCAD.

References

[1] A. V. Bitsadze, A. A. Samarskiĭ, Some elementary generalizations of linear elliptic boundary value problems. (Russian) Dokl. Akad. Nauk SSSR 185 (1969), 739-740; translation in Sov. Math., Dokl. 10 (1969), 398-400.
[2] D. Gordeziani, H. Meladze, G. Avalishvili, On one class of nonlocal in time problems for first order evolution equations. Zh. Vich. i Prikl. Mat. 88 (2003), no. 1, 66-78.
[3] D. Devadze, V. Beridze, An algorithm of the solution of an optimal control problem for a nonlocal problem. Bull. Georgian Natl. Acad. Sci. (N.S.) 7 (2013), no. 1, 44-48.

Second Order Statistical Moments of the Phase Fluctuations of Scattered Radiation in the Collision Magnetized Plasma

Mzia Diasamidze, Irma Takidze
Department of Exact and Natural Sciences, Batumi State Maritime Academy, Batumi, Georgia
emails: m.diasamidze@bsma.edu.ge; i.takidze@bsma.edu.ge

Statistical characteristics of multiply scattered electromagnetic waves in the turbulent magnetized collision plasma with electron density fluctuations are considered. Analytical expression for the phase correlation function is derived for arbitrary correlation function of fluctuating plasma parameters using modify smooth perturbation method taking into account the diffraction effects. Evolutions of the second order statistical moments are analyzed analytically and numerically for the anisotropic Gaussian correlation function of electron density fluctuations in the polar ionospheric F-region using the experimental data. Investigation of the statistical characteristics of scattered radiation in randomly inhomogeneous anisotropic media is of great interest. The elongated large-scale plasma irregularities are observed in the polar ionosphere.

Electric field of electromagnetic wave in the magnetized collision plasma with electron density fluctuations satisfies the wave equation:

$$
\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}-\Delta \delta_{i j}-k_{0}^{2} \varepsilon_{i j}(r)\right) E_{j}(r)=0
$$

Analytical and numerical calculations are carried out for the anisotropic Gaussian correlation function of electron density fluctuation $[2,8]$:

$$
\widetilde{V}_{n}\left(k_{x}, k_{y}, k_{z}\right)=\sigma_{n}^{2} \frac{l_{\perp}^{2} l_{\|}}{8 \pi^{\frac{3}{2}}} \exp \left(-\frac{k_{x}^{2} l_{\perp}^{2}}{4}-p_{1} \frac{k_{y}^{2} l_{\perp}^{2}}{4}-p_{2} \frac{k_{z}^{2} l_{\perp}^{2}}{4}-p_{3} k_{y} k_{z} l_{\|}^{2}\right) .
$$

Figure 1: Figure depicts 3D picture of the phase correlation function versus distances between observation points in the principle and perpendicular planes.

References

[1] G. V. Jandieri, A. Ishimaru, B. S. Rawat, N. K. Tugushi, Peculiarities of the spatial spectrum of scattered electromagnetic waves in the turbulent collision magnetized plasma. PIER 152 (2015), 137-149.
[2] V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma. Gordon and Beach, New York, USA, 1961.
[3] B. N. Gershman, L. M. Eruxhimov, Yu. Ya. Iashin, Wavy Phenomena in the Ionosphere and Cosmic Plasma. Nauka, Moscow, Russia, 1984 (in Russian).

Basic Boundary Value Problems for the Helmholtz Equation in a Model 2D Angular Domain

Victor Didenko 1, Roland Duduchava ${ }^{2}$, Medea Tsaava ${ }^{3}$
${ }^{1}$ University of Brunei, Brunei Darussalam
${ }^{2}$ Andrea Razmadze Mathematical Institute, Tbilisi, Georgia email: roldud@gmail.com
${ }^{3}$ Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia

A model basic boundary value problems for the Helmholtz equation is investigated in a planar angular domain $\Omega_{\alpha} \subset \mathbb{R}^{2}$ of magnitude α with the boundary $\Gamma_{\alpha}=\mathbb{R}^{+} \cup \mathbb{R}_{\alpha}$, where \mathbb{R}^{+}is the real positive semi-axes and \mathbb{R}_{α} is the ray turned by the angle α from \mathbb{R}^{+}: The Dirichlet BVP

$$
\begin{cases}\Delta u(x)+k^{2} u(x)=f(x), & x \in \Omega_{\alpha} \tag{1}\\ u^{+}(t)=G(t), & t \in \Gamma_{\alpha}\end{cases}
$$

the Neumann BVP

$$
\begin{cases}\Delta u(x)+k^{2} u(x)=f(x), & x \in \Omega_{\alpha} \tag{2}\\ \left(\partial_{\nu} u\right)^{+}(t)=H(t), & t \in \Gamma_{\alpha}\end{cases}
$$

and the mixed BVP

$$
\begin{cases}\Delta u(x)+k^{2} u(x)=f(x), & x \in \Omega_{\alpha} \tag{3}\\ u^{+}(t)=g(t), & t \in \mathbb{R}_{\alpha} \\ \left(\partial_{\nu} u\right)^{+}(t)=h(t), & t \in \mathbb{R}^{+}\end{cases}
$$

is considered in a non-classical setting (the setting is classical for $s=1$ and $p=2$): $u \in$ $\mathbb{H}_{p}^{s}\left(\Omega_{\alpha}\right), f \in \widetilde{\mathbb{H}}_{p}^{s-2}\left(\Omega_{\alpha}\right) \cap \widetilde{\mathbb{H}}_{0}^{-1}\left(\Omega_{\alpha}\right), G \in \mathbb{W}_{p}^{s-1 / p}\left(\Gamma_{\alpha}\right), H \in \mathbb{W}_{p}^{s-1-1 / p}\left(\Gamma_{\alpha}\right), g \in \mathbb{W}_{p}^{s-1 / p}\left(\mathbb{R}_{\alpha}\right)$, $h \in \mathbb{W}_{p}^{s-1-1 / p}\left(\mathbb{R}^{+}\right), 1<p<\infty, \frac{1}{p}<s<1+\frac{1}{p}$. The subset $\widetilde{\mathbb{H}}_{0}^{-1}\left(\Omega_{\alpha}\right) \subset \widetilde{\mathbb{H}}^{-1}\left(\Omega_{\alpha}\right)$ consists of functions $\varphi \in \widetilde{\mathbb{H}}^{-1}\left(\Omega_{\alpha}\right)$ for which $\langle\varphi, \psi\rangle \neq 0$ for some $\psi \in C_{0}^{1}\left(\Omega_{\alpha}\right)$.

The problems (1)-(3) are investigated using the potential method by reducing them to an equivalent boundary integral equation (BIE), which is of Mellin convolution type. By applying the recent results on Mellin convolution equations in Bessel potential spaces obtained by V. Didenko \& R. Duduchava, conditions of the unique solvability of BVPs (1)-(3) are found.

The research was supported by Shota Rustaveli National Science Foundation grants no. $13 / 14$ and $31 / 39$.

On the Application of Uncertain Measure to Find the Uncertain Weighted Stable Set

Mehdi Djahangiri
University of Maragheh, Maragheh, Iran
email: mehdi86math@gmail.com

In the real world applications the data about problems is indeterminate. There exist two axiomatic methods to model indeterminacy. Probability theory and Uncertainty theory. The probability theory is usable when the samples for indeterminate quantity was collected and their size is large enough. Unfortunately in many cases the preparations to use the probability theory is not provided. In these cases, it can be usefull to utilize the believes of some domain experts. To apply these believes, the uncertainty theory was founded by Liu $[1,2]$. Let Γ be a nonempty set and \mathcal{L} be a σ-algebra over \mathcal{L}. A set function \mathcal{M} over \mathcal{L} is said to be uncertain measure if it satisfies the following four axioms: $1: \mathcal{M}\{\Gamma\}=1$ for the universal set Γ.

2: $\mathcal{M}\{\Lambda\}+\mathcal{M}\left\{\Lambda^{c}\right\}=1$ for any Λ.
3 : For every countable sequence of Λ_{i} 's, we have $\mathcal{M}\left\{\bigcup_{i=1}^{\infty} \Lambda_{i}\right\} \leq \sum_{i=1}^{\infty} \mathcal{M}\left\{\Lambda_{i}\right\}$.
$4: \mathcal{M}\left\{\prod_{k=1}^{\infty} \Lambda_{k}\right\}=\bigwedge_{k=1}^{\infty} \mathcal{M}_{k}\left\{\Lambda_{k}\right\}$ for $k=1,2, \ldots$.
The function $f:(\Gamma, \mathcal{L}, \mathcal{M}) \rightarrow \mathbb{R}$ where the \mathbb{R} is the set of real numbers, is said to be measurable if for any Borel set B of real numbers we have $f^{-1}(B)=\{\gamma \mid f(\gamma) \in B\} \in \mathcal{L}$. An uncertain variable ξ is a measurable function on an uncertainty space.

Given a graph $G(V, E)$, a stable set is a set of vertices any two of which are nonadjacent. The maximum size of a stable set in G is called the stable set number of G, and is denoted by $\alpha(G)$. If each vertex v_{i} has the weghit w_{i}, then the problem is called weghited stable set and its parameter is shown by $\alpha_{w}(G)$. A linear integer programming model for uncertain weighted stable set problem could be as:

$$
\min \left\{\sum_{i=1}^{n} \xi_{i} x_{i} \mid x_{i}+x_{j} \leq 1 \quad \forall(i, j) \in E \quad, x_{i} \in\{0,1\}, i=1,2, \ldots, n\right\}
$$

where ξ_{i} 's are uncertain variables. Since an uncertain objective function $\sum_{i=1}^{n} \xi_{i} x_{i}$ can not be directly minimized, we give two following equivalent deterministic models.

$$
\begin{aligned}
& \min \left\{\sum_{i=1}^{n} \phi^{-1}\left(\alpha_{i}\right) x_{i} \mid x_{i}+x_{j} \leq 1 \quad \forall(i, j) \in E \quad, x_{i} \in\{0,1\}, i=1,2, \ldots, n\right\}, \\
& \quad \min \left\{\sum_{i=1}^{n} \mathrm{E}\left(\xi_{i}\right) x_{i} \mid x_{i}+x_{j} \leq 1 \quad \forall(i, j) \in E \quad, x_{i} \in\{0,1\}, i=1,2, \ldots, n\right\},
\end{aligned}
$$

where $\phi^{-1}\left(\alpha_{i}\right)$ and $\mathrm{E}\left(\xi_{i}\right)$ are the inverse uncertain distribution and uncertain expectation of ξ_{i} respectively.

References

[1] B. Liu, Uncertainty Theory, 2nd ed. Springer-Verlag, Berlin, 2007.
[2] B. Liu, Some research problems in uncertainty theory. J. Uncertain Systems 3 (2009), no. 1, 3-10.

Rule-Based Programming with Regular Constraints

Besik Dundua
I. Vekua Institute of Applied Mathematics, Tbilisi State University, Tbilisi, Georgia
email: bdundua@gmail.com

$\mathrm{P} \rho \mathrm{Log}$ is a rule-based system [1], that extends Prolog with strategy conditional sequence transformation rules. These rules (basic strategies))define transformation steps on finite (possible empty) sequences. Strategy combinators help to combine strategies into more complex ones in a declaratively clear way. Transformations are nondeterministic and may yield several results, which fits very well into the logic programming paradigm. Strategic rewriting separates term traversal control from transformation rules. This allows the basic transformation steps to be defined concisely. The separation of strategies and rules makes rules reusable in different transformations. Transformation rules are equipped with four different kinds of variables (individual, sequence, function, and context variables) together with regular constraints. These variables allows to traverse sequences in single/arbitrary width (with individual and sequence variables) and terms in single/arbitrary depth (with functional and context variables). Regular constraints are useful to restrict possible values of sequence and context variables by regular sequence expressions and regular tree (context) expressions, respectively. These features facilitate flexibility in matching, providing a possibility to extract an arbitrary subsequence from a sequence, or to extract subterms at arbitrary depth. These capabilities enable $\mathrm{P} \rho \log$ to have highly declarative programming style that is expressive enough to support concise implementations for: specifying and prototyping deductive systems, solvers for various equational theories, tools for XML querying and transformation, etc. In this talk we give an overview of the P Log system and underline some of its applications [2], [3].

References

[1] B. Dundua, Programming with Sequence and Context Variables:Foundations and Applications. Ph.D. Thesis, Universidade do Porto, 9, 2014.
[2] B. Dundua, T. Kutsia, M. Marin, Strategies in prholog, in Proceedings Ninth International Workshop on Reduction Strategies in Rewriting and Programming, WRS 2009, Brasilia, Brazil, 28th June 2009. (M. Fernández, ed.), vol. 15 of EPTCS, pp. 32-43, 2009.
[3] J. Coelho, B. Dundua, M. Florido, T. Kutsia, A Rule-Based Approach to XML Processing and Web Reasoning, in Proceedings of the 4 th International Conference on Web Reasoning and Rule Systems, RR 2010 (P. Hitzler and T. Lukasiewicz, eds.), vol. 6333 of Lecture Notes in Computer Science, pp. 164-172, Springer, 2010.

Single Fourier Series of Several Variable Functions

Omar Dzagnidze
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: odzagni@rmi.ge

Let the function $f(x), x=\left(x_{1}, \ldots, x_{n}\right)$, be summable in an n-dimensional cube $[0,2 \pi]^{n}$ and be 2π periodic with respect to each variable $x_{j}, 1 \leq j \leq n$.

For the function f we consider a single Fourier series with respect to some variable, say, with respect to the variable x_{n}. It is obvious that the coefficients of this series will be dependent on the rest of the variables x_{1}, \ldots, x_{n-1}.

So, we consider the single Fourier series of the function f with respect to the variable x_{n}

$$
S[f]=\frac{1}{2} a_{0}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x_{n}+b_{k} \sin k x_{n}\right),
$$

where the variable coefficients $a_{k}=a_{k}\left(x_{1}, \ldots, x_{n-1}\right)$ and $b_{k}=b_{k}\left(x_{1}, \ldots, x_{n-1}\right)$ are given by Fourier formulas.

Theorem. If the function f is differentiable at some point $x^{0}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$, then the series $S[f]$ converges at the same point x^{0} to the value $f\left(x^{0}\right)$, symbolically $S[f]\left(x^{0}\right)=$ $f\left(x^{0}\right)$.

This theorem is a particular case of the general theorem where the function f is smooth in the Riemann sense at the point x^{0}.

Guidelines for the Study of the Course "Mathematical and Computer Modeling" on a Specialty "Computer Technology"

Tsiala Dzidziguri

Faculty of Mathematics and Computer Sciences, Sokhumi State University, Tbilisi, Georgia
email: cialadzidziguri@rambler.ru

In this course, the mathematical model of the classic of Ecology (interaction of populations) are considered mainly.

In the proposed guidelines that will facilitate the development of mathematical and computer modeling of these problems.

For practical exercises chosen problem for fixed values of model parameters. In laboratory studies using suitable computer modeling program going and a comparison with the result of mathematical analysis for specific parameters.

To develop common requirements for laboratory work, as well as issues specific labs and requirements of their registration.

 $3^{80} 0$.

On Deflections of a Prismatic Shell Exponentially Cusped at Infinity

Miranda Gabelaia

I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: mirandagabelaia@yahoo.com

In the $N=0$ approximation of hierarchical models the well-posedness of boundary value problems for an equation of deflections of a prismatic shell exponentially cusped at infinity is studied. The thickness of the shell has the form

$$
h=h_{0} e^{-\alpha\left(x_{1}^{2}+x_{2}^{2}\right)}, \quad h_{0}=\text { const }>0, \quad \alpha=\text { const } \geq 0, \quad x_{1} \in(-\infty,+\infty), \quad x_{2} \geq 0
$$

The solution of the posed boundary value problem is given in an integral form.

On Two-Weighted Estimates for Riesz Potentials

M. Gabidzashvili
Georgian Technical University, Tbilisi, Georgia email: gabdato@gmail.com

The goal of our talk is to give some conditions assuring two-weighted inequalities for Riesz potentials both in classical Lebesgue spaces and grand Lebesgue spaces.

On the Approximation of Periodic Functions in Variable Exponent Lorentz Spaces

Inga Gabisonia ${ }^{1}$, Vakhtang Kokilashvili ${ }^{2}$, Dali Makharadze ${ }^{3}$
${ }^{1}$ Sokhumi State University, Tbilisi, Georgia
${ }^{2}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{3}$ Batumi Shota Rustaveli State University, Batumi, Georgia
emails: kokil@rmi.ge; dali_makharadze@mail.ru

We consider results on approximation by trigonometric polynomials in Lorentz spaces with variable exponents. The inequalities are obtained, which establish the connection between the best approximation by trigonometric polynomials and the generalized modulus of smoothness so that the exponents of space metrics are different on both sides of the inequalities. The analogues of Jackson's and inverse inequalities are proved in variable exponent Lorentz spaces.

Some Contact Problem in Elasticity with Natural Nonpenetration Condition

Avtandil Gachechiladze, Roland Gachechiladze
A. Razmadze Mathematical Institute, I. Javakhishili Tbilisi State University, Tbilisi, Georgia
emails: avtogach@yahoo.com; r.gachechiladze@yahoo.com

In the recent work the contact problem of an elastic anisotropic unhomogeneous body with a rigid body (frame) is considered. Usually, such contact is described by Signorini boundary conditions including normal displacement and normal stress (also the tangential components of the stress if the friction arise between bodies). These conditions are derived from the Natural Nonpenetration Condition (NNC) after some linearizations and simplification procedure. We consider the mentioned contact problem by the initial NNC aiming to avoid the simplification procedure. If the contact part of the surface of rigid frame is described by the concave and continuous function, then we give the variational formulation of the problem and prove its unique solvability and stability results under the Dirichlet condition on some part of the boundary of the elastic body.Also, we consider the situation when the frame linearly goes back under the pressure of the elastic body and prove the existence of solution, but the uniqueness we prove under some conditions.

Fermat's Great Theorem

Levan Gavasheli

email: levan_gavasheli@yahoo.com

There don't exist integral numbers x, y, z different from zero for which:

$$
\begin{equation*}
x^{n}+y^{n}=z^{n}, \tag{1}
\end{equation*}
$$

where $n>0$ (it is well known, that at $n=2$ such numbers exist).
Comment. Let's propose, that the solution of equation (1) is whole, different from zero numbers, exist. It's obvious that without losing the commonality, we can consider that it consists of pair positive co-primes. Further, it's obvious that if Fermat's theorem is correct for n index, than it automatically turns out to be correct and for any an index, multiple n, as if the equation

$$
u^{a n}+v^{a n}=w^{a n}
$$

has integral solution u, v, w, than the equation (1) will have integral solution u^{a}, v^{a}, w^{a}. That's why it's enough to prove Fermat's theorem for $n=4$ (this was done by Fermat himself) and for $n \geq 3$ - arbitrary prime number. May be consider as well that $x<y<z$. (If $x=y$, when $2 x^{n}=z^{n}$ or $\left(\frac{z}{x}\right)^{n}=2 ; \frac{z}{x}$ - rational number. It's known that there exist rational numbers n-th degree that is equal to 2 . As in any multitude of natural numbers exist the smallest number, among all such solutions exist the primitive solution the smallest value z. Let's review this solution more precisely:

$$
\left(x^{n}-x\right)+\left(y^{n}-y\right)=z^{n}-(x+y), \quad x+y>z .
$$

Due to the small theorem of Fermat:

$$
x^{n} \equiv x \bmod n ; \quad y^{n} \equiv y \bmod n \Rightarrow z^{n} \equiv x+y \bmod n .
$$

On the other hand, $z^{n} \equiv z \bmod n \Rightarrow x+y \equiv z \bmod n, x+y-z$ - even number,

$$
\begin{equation*}
x+y-z=\lambda n \tag{2}
\end{equation*}
$$

number n is odd and the number λ is even, $(\lambda=2 k)$,

$$
x=\lambda n+(z-y)=\lambda n+x_{1}, \quad \text { where } \quad x_{1}=z-y>0 .
$$

Similarly $y=\lambda n+y_{1}$, where $y_{1}=z-x>0$; and, consequently,

$$
z=\lambda n+x_{1}+y_{1} .
$$

Numerical Modelling of a Mesoboundary Layer of Atmosphere Taking into Account of Some Moments of Solar Radiation

George Geladze, Manana Tevdoradze
Faculty of Exact and Natural Sciences of I. Javakhishvili Tbilisi State University, I. Vekua Institute of Applied Mathematics, Tbilisi, Georgia
email: givi-geladze@rambler.ru; mtevdoradze@gmail.com

It is provided the two-dimensional problem (in the vertical plane $x-z$) about the mesometeorological boundary layer of atmosphere (MBLA) by means of which a number of ecometeorological processes is simulated:

Fog- and cloud formation against a background of MBLA thermohydrodynamics;
Forming of ensemble of fog and clouds and their mutual transformation;
Investigation of a role of turbulence in forming of ensemble of humidity processes.
The problem about MBLA taking into account cooling on borders of a cloud and fog is set and is at a stage of numerical realization. From experimental data it is known that the cloudy and cloudless atmospheres have various optical properties. Therefore because of solar radiation on the upper bounds of a cloud and fog a number of the abnormal phenomena takes place: local temperature inversions, cooling of the atmosphere, squally processes, change of dynamics, strengthening of humidity processes, obviously expressed distortion of an anvil form of a cloud etc. We especially are interested in temperature inversions as their research is very actual from the point of view of both meteorology, and ecology - they are just responsible for any formation of smogs.

Poincare Conjecture, Classical Nonintegrability and Quantum Chaos on the Example of 3 Bodies

Ashot Gevorkyan
Institute for Informatics and Automation Problems, NAS of Armenia; Institute of Chemical Physics, NAS of Armenia, Yerevan, Armenia
email: g_ashot@sci.am

We obtained the system of stochastic differential equations, which describes the classical motion of the three-body system under influence of quantum fluctuations. Using SDEs, for the joint probability distribution of the total momentum of bodies system were
obtained the partial differential equation of the second order. It is shown that the equation for the probability distribution is solved jointly by classical equations, which in turn are responsible for the topological peculiarities of tubes of quantum currents, transitions between asymptotic channels and, respectively for arising of quantum chaos.

Reduction of the Classical Three-Body Problem to 6th Order System

Ashot Gevorkyan
Institute for Informatics and Automation Problems, NAS of Armenia; Institute of Chemical Physics, NAS of Armenia
Yerevan, Armenia
email: g_ashot@sci.am

In the framework of an idea of separation of rotational and vibrational motions, we have examined the problem of reducing the general three-body problem. The class of differentiable functions allowing transformation of the 6D Euclidean space to the 6D conformal-Euclidean space is defined. Using this fact the general classical three-body problem is formulated as a problem of geodesic flows on the energy hypersurface of the bodies system. It is shown that when the total potential depends on relative distances between the bodies, three from six ordinary differential equations of second order describing the nonintegrable Hamiltonian system are integrated exactly, thus allowing reducing the initial system in the phase space to the autonomous system of the 6 th order. In the result of reducing of the initial Newtonian problem, the geometry of reduced problem becomes curved. The latter gives us new ideas related to the problem of geometrization of physics as well as new possibilities for study of different physical problems.

Boundary Value Problems for the Navier-Stokes Equations in the Half-Space
Levan Giorgashvili ${ }^{1}$, Maia Kharashvili ${ }^{1}$, Revaz Meladze ${ }^{2}$
${ }^{1}$ Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
${ }^{2}$ David Agmashenebeli University of Georgia, Tbilisi, Georgia
emails: lgiorgashvili@gmail.com; maiabickinashvili@yahoo.com; r.meladze@yahoo.com

In this paper we consider boundary value problems for the Navier-Stokes equations in the half-space, when limiting values of the tangential components of the stress vectors and
the normal components of the velocity vectors are given on the boundary. We consider also BVPs when limiting values of the normal components of the stress vectors and the tangential components of the velocity vectors are given on the boundary. Uniqueness theorems are proved. Solutions are represented in qaudratures.

Mathematical Problems of Thermoelasticity of Bodies with Microstructure and Microtemperatures

Levan Giorgashvili, Shota Zazashvili
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
emails: lgiorgashvili@gmail.com; zaza-ude@hotmail.com

The purpose of this paper is to construct explicitly in terms of elementary functions, fundamental matrices of solutions to the differential equations of the linear theory of thermoelasticity for elastic materials with microstructure and microtemperatures. We derive the corresponding Green's formulas and construct the integral representation formulas of solutions by means of generalized simple layer, double layer and Newtonian potentials. We formulate the basic boundary value problems in appropriate function space and prove the uniqueness theorems. The existence theorems of regular solutions of the external BVPs are proved using the potential method and the theory of singular integral equations.

Crane-Transport, Building and Road Machines Working Equipments' Structural Research

Vazha Gogadze
Akaki Tsereteli State University, Kutaisi, Georgia
email: Vazha.gogadze@atsu.edu.ge, vajagogadze@rambler.ru

In this work, crane transport, building and road machines working equipments' kinematical analysis is discussed. Researches showed that in some working equipments of above machines extra ties take place.

As the result moving of rings is possible only in the case of existence of slots in the joints or with extra tension of metal constructions.

зŋпьд змдоддомо

gఱ. gmbg̊ol дobsdлmom: guramgog@gmail.com

Periodic Field Configurations in a Theory of Scalar Fields with Brocken $S U(2)$ Symmetry

V. Gogokhia, A. Shurgaia
Deprt. Theor. Phys., WIGNER RCP RMI, Budapest, Hungary;
Deprt. Theor. Phys., A. Razmadze Math. Inst., TSU, Tbilisi, Georgia
email: gavsh@rmi.ge

The periodic field configurations have been of interest regarding phase transitions from classical regime of field theory to a quantum one. It has been turned out that these configurations interpolate between the stable vacuum configurations and sphalerons which are unstable sitting on the top of the potential barrier. In this process the transition from false vacuum to the true one takes place and at the finite energies below the potential barrier temperature assisted quantum tunneling is dominating whereas at higher energies (above the potential barrier) the process is pure classical (thermal activation) - this means that as the energy (temperature) varies the phase transition from classical regime to the quantum tunneling takes place at which periodic field configurations are significant.

The talk is devoted to simple model which lets find a periodic field configurations such that some aspects of phase transitions can be studied. A scalar triplet with broken $S U(2)$ symmetry is considered. Classical equations studied and a set of particular solutions obtained. The solutions are analyzed in view of phase transitions. Charged and neutral solutions are presented. The quantum properties of those solutions are studied. It has been shown that the quantum fluctuations obey an equation which has a negative eigenvalue due to which the system is unstable.

On Estimation of the Two Dimensional Regression Function

David Gogolashvili
I. Vekua Institute of Applied Mathematics, Tbilisi, Georgia
email: dgogolashvili@yahoo.com

On the square $[0 ; 1]^{2}$ consider two dimensional regression function of Bernoulli type $Y(x ; y) ; P\left(Y\left(x_{i} ; y_{j}\right)=1\right)=p\left(x_{i} ; y_{j}\right), \mathrm{P}\left(Y\left(x_{i} ; y_{j}\right)=0\right)=1-p\left(x_{i} ; y_{j}\right)$. On base sample $Y_{i j}=Y\left(x_{i} ; y_{j}\right), i, j=1,2, \ldots, n$, is constructed an estimation of unknown regression function $p(x, y)$. Consistency and asymptotic normality of the estimation are proved.

This investigation is based and extended the results of paper [1].

References

[1] E. Nadaraya, P. Babilua, G. Sokhadze, About the nonparametric estimation of the Bernoulli regression. Comm. Statist. Theory Methods 42 (2013), no. 22, 3989-4002.

Electroelasticity Equilibrium of an Elliptical Cylinder

David Gorgidze
Georgian Technical University, Tbilisi, Georgia
email: dgorgidze@yahoo.com

We consider the elastic equilibrium of a figure bounded by coordinate surfaces in an elliptic cylindrical coordinate system θ, α, ζ. It occupies the following area: $\Omega=\left\{\theta_{0}<\right.$ $\left.\theta<\theta_{1}, \alpha_{1}<\alpha<\alpha_{2}, \zeta_{0}<\zeta<\zeta_{1}\right\}$. On $\theta=$ const surfaces, one of four basic boundary conditions can be performed: on $\zeta=$ const surfaces, the symmetric continuous extension, $w=0, \tau_{\zeta \alpha}=0, \tau_{\zeta \theta}=0$, the antisymmetric continuous extension $\sigma_{\zeta}=0, u=0, v=0$, on $\alpha=$ const surfaces, the symmetric continuous extension has the form $v=0, \tau_{\alpha \zeta}=0$, $\tau_{\alpha \theta}=0$ and the latter as follows $\sigma_{\alpha}=0, u=0, w=0$. According to N. Khomasuridze's method, within theory of electroelasticity, there are general solutions for boundary value type of problems in elliptic cylindrical coordinates system.

Derivation of the System of Equations of Equilibrium for Plates Having Double Porosity

Bakur Gulua ${ }^{1,3}$, Roman Janjgava ${ }^{1,2}$

${ }^{1}$ I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Faculty of Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{3}$ Sokhumi State University, Tbilisi, Georgia
emails: bak.gulua@gmail.com; roman.janjgava@gmail.com

In the report we consider three-dimensional elastic static equilibrium system of equations of bodies with double porosity. From this system of equations, using a reduction method of I. Vekua, we receive the equilibrium equations for the plates having double
porosity. The systems of equations corresponding to approximations $N=0$ and $N=1$ are written down in a complex form and we express the general solutions of these systems through analytic functions of complex variable and solutions of the Helmholtz equation. The received general representations give the opportunity to solve analytically boundary value problems about elastic equilibrium of plates with double porosity.

Acknowledgement. The designated project has been fulfilled by a financial support of Shota Rustaveli National Science Foundation (Grant No. FR/358/5-109/14).

Solution of Boundary Value Problems of Spherical Shells by the Vekua Method in the Approximation $N=2$

Bakur Gulua ${ }^{1,2}$, Manana Tevdoradze ${ }^{1}$

${ }^{1}$ I. Vekua Institute of Applied Mathematics and Faculty of Exact and Natural Sciences of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Sokhumi State University, Tbilisi, Georgia
email: bak.gulua@gmail.com
I. Vekua has constructed several versions of the refined linear theory of thin and shallow shells by means of his method of reduction of three-dimensional problems of elasticity to two-dimensional ones [1]. This method for nonshallow shells in case of geometrical and physical nonlinear theory was generalized by T. Meunargia [2].

In the present paper by means of the I. Vekua method the system of differential equations for the geometrically nonlinear spherical shells is obtained. Using the method of a small parameter, in the approximations of order $N=2$ the complex representations of the general solutions are obtained. Some concrete problems are solved.

Acknowledgment. The designated project has been fulfilled by a financial support of Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14).

References

[1] I. N. Vekua, Shell Theory: General Methods of Construction. Pitman Advanced Publishing Program, Boston-London-Melbourne, 1985.
[2] T. V. Meunargia, On one method of construction of geometrically and physically nonlinear theory of non-shallow shells. Proc. A. Razmadze Math. Inst. 119 (1999), 133-154.

About One Method for Splitting of the Semi-discrete Schemes for the Evolutionary Equation with Variable Operator

David Gulua, Jemal Rogava

Department of Computation Mathematics, Georgian Technical University; Department of Mathematics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: d gulua@gtu.ge

We study the semi-discrete schemes for the following evolutionary problem in the Hilbert space H :

$$
\begin{equation*}
\left.\left.\frac{d u(t)}{d t}+A(t) u(t)=f(t), \quad t \in\right] 0, T\right], \quad u(0)=u_{0} \tag{1}
\end{equation*}
$$

where $A(t)$ is the self-adjoint positively defined operator in H with domain of definition $D(A)$ does not depend on $t ; f(t)$ is a continuously differentiable function with values in $H ; u_{0}$ is a given vector from $H ; u(t)$ is the sought function.

On the interval $[0, T]$, we define the grid $t_{k}=k \tau, k=0,1, \ldots, n$, with the step $\tau=$ T / n. Using the difference formula of second order approximation for the approximation of the first derivative equation (1) can be represented at the point $t=t_{k+1}$ as:

$$
\begin{equation*}
\frac{\Delta u\left(t_{k}\right)}{\tau}+\frac{\tau}{2} \frac{\Delta^{2} u\left(t_{k-1}\right)}{\tau^{2}}+A\left(t_{k+1}\right) u\left(t_{k+1}\right)=f\left(t_{k+1}\right)+\tau^{2} R_{k+1}(\tau, u), \quad R_{k}(\tau, u) \in H, \tag{2}
\end{equation*}
$$

where $\Delta u\left(t_{k}\right)=u\left(t_{k+1}\right)-u\left(t_{k}\right), \tau^{2} R_{k}(\tau, u)$ is the approximation error of the first derivative at the point $t=t_{k}$. Using the perturbation algorithm on the basis of representation (2) we obtain the following system of equations:

$$
\frac{\Delta u_{k}^{(i)}}{\tau}+A\left(t_{k+1}\right) u_{k+1}^{(i)}=f\left(t_{k+1}\right)+\frac{1}{2} \frac{\Delta^{2} u_{k-1}^{(i-1)}}{\tau^{2}}, \quad k=i+1, \ldots, n, \quad i=0,1, \quad u_{k}^{(-1)}=0 .
$$

Let the vector $v_{k}=u_{k}^{(0)}+\tau u_{k}^{(1)}(k=2, \ldots, n)$ be an approximate value of the exact solution of problem (1) for $t=t_{k}, v_{k} \approx u\left(t_{k}\right)$. The following theorem is valid.

Theorem. Let $A(t)$ be a self-adjoint positively defined operator in H with domain of definition $D(A)$ not depending on t. Let solution $u(t)$ be sufficiently smooth function. If

$$
\begin{aligned}
& D\left(A^{m}(t)\right)=D\left(A^{m}(0)\right)(m=2,3) \\
&\left\|\left(A^{m}\left(t^{\prime}\right)-A^{m}\left(t^{\prime \prime}\right)\right) A^{-m}(s)\right\| \leq c\left|t^{\prime}-t^{\prime \prime}\right|, \quad \forall t^{\prime}, t^{\prime \prime}, s \in[0, T], \quad m=1,2,
\end{aligned}
$$

and

$$
\left\|\left(A\left(t_{k+1}\right)-2 A\left(t_{k}\right)+A\left(t_{k-1}\right)\right) A^{-1}\left(t_{k+1}\right)\right\| \leq c \tau^{2}, \quad k=1, \ldots, n-1
$$

then there holds that

$$
\left\|u\left(t_{k}\right)-v_{k}\right\|=O\left(\tau^{2}\right), \quad k=1, \ldots, n .
$$

On the Kinematical Invariants in Line Space

Osman Gursoy
Maltepe University, Istanbul, Turkey
email: osmangursoy@maltepe.edu.tr

As known the geometry of a trajectory surfaces tracing by an oriented line (spear) is important in line geometry and spatial kinematics. Until, early 1980s, although two real
integral invariants, the pitch of angle λ_{x} and the pitch ℓ_{x} of an x - trajectory surface were known, any dual invariant of the surface were not. Because of the deficiency, the line geometry wasn't being sufficiently studied by using dual quantities.

A global dual invariant, Λ_{x} of an x - closed trajectory surface is introduced and shown that there is a magic relation between the real invariants, $\Lambda_{x}=\lambda_{x}-\varepsilon \ell_{x}$, [1]. It gives
suitable relations, such as $\Lambda_{x}=2 \pi-A_{x}=\oint G_{x}$ or $\lambda_{x}=2 \pi-a_{x}=\oint g_{x} d s$ and $\ell_{x}=$ $a_{x}^{*}=\int \oint\left(\partial_{u}+\partial_{v}\right) d u d v$ which have the new geometric interpretations of an x-trajectory surface where a_{x} is the measure of the spherical area on the unit sphere, described by the generator of x-closed trajectory surface and ∂_{u} and ∂_{v} are the distribution parameters of the principal surfaces of the $X(u ; v)$-closed congruence.

Therefore, all the relations between the global invariants, $\lambda_{x}, \ell_{x}, a_{x}, a_{x}^{*}, g_{x}, g_{x}^{*}, K$, T, σ and s_{1} of $x-$ c.t.s. are worth reconsidering in view of the new geometric explanations. Thus, some new results and new explanations are gained. Furthermore, as a limit position of the surface, some new theorems and comments related to space curves are obtained [2, 3].

References

[1] O. Gürsoy, On the integral invariants of a closed ruled surface. J. Geom. 39 (1990), no. 1-2, 80-91.
[2] O. Gürsoy, Some results on closed ruled surfaces and closed space curves. Mech. Mach. Theory 27 (1992), no. 3, 323-330.
[3] O. Gürsoy, A. Kücük, On the invariants of trajectory surfaces. Mech. Mach. Theory 34 (1999), no. 4, 587-597.

Parametrization of Euclidean Nearly Kähler Submanifolds

Abbas Heydari, Nikrooz Heidari
University of Mohaghegh Ardabilbi, Ardabil, Iran
email: nikrooz.heidari@modares.ac.ir

At now one of the most important problem about Nearly Kähler manifolds Was raised by Butruile in 2008. when he was trying to complete the proof of the Wolf-Gray conjecture (this conjecture said that "Every nearly Kahler homogeneous manifold is 3-symmetric space with its canonical almost complex structure [2]") was faced this question "is possible that every compact Nearly Kähler manifold is a 3-symmetric space"? [1] to close this conjuncture we studied in $[3,4,5]$ isometric immersions $f: M^{2 n} \longrightarrow \mathbb{Q}_{c}^{2 n+p}$ from Nearly Kähler manifolds to a space forms of curvature c with co-dimension p, for partially answer this problems. in [3] furthermore of introduce of complex and invariant (under torsion of intrinsic Hermitian connection) umbilic foliation we shown that each leaf of this foliation is itself a 6-dimensional locally homogeneous Nearly Kähler manifolds and in suitable direction of complex and invariant umbilic distribution each leaf of related foliation on a open set of complete base manifold M is Homothetic with 6-dimensional term in Nagy decomposition (at least locally and up to a finite cover). In [4] with further study of each leaf of complex and invariant umbilic foliation we put suitable condition and a almost complex with compatible metric on induced foliation space such that this space convert a Nearly Kähler manifolds. then we can find a condition that under satisfying it the submanifolds can be decomposed. this decomposition like Nagy decomposition but in this new decomposition the 6 -dimensional term is locally homogeneous.

In this article and [5] our goal to more recognize of isometric immersions like f that this map immersed isometrically a nearly Kähler manifolds in Euclidean space. at first for this purpose we introduce a complex and compatible metric on foliation space related to complex and invariant umbilic foliation. this new structure under suitable condition define a Quasi-kähler on this foliation space. with used this foliation f parametrized on leaves and foliation space.this parametrization separately do in codimention $p=1, p=2$ and $p \geq 3$. this describtion of f abels us to construct new example of Nearly Kähler Euclidean submanifolds in a certain codimension. for example in this article was shown how to build a 18-dimensional Nearly Kähler Euclidean heypersurface, Nearly Kähler Euclidean submanifololds of codimension two and some general sample.

References

[1] J.-B. Butruille, Homogeneous nearly Kähler manifolds. Handbook of pseudo-Riemannian geometry and supersymmetry, 399-423, IRMA Lect. Math. Theor. Phys., 16, Eur. Math. Soc., Zürich, 2010.
[2] A. Gray, Riemannian manifolds with geodesic symmetries of order 3. J. Differential Geometry 7 (1972), 343-369.
[3] N. Heidari and A. Heydari, Nearly Kähler submanifolds of a space forms. Mediterr. J. Math., DOI 10.1007/s00009-015-0637-9 2015
[4] N. Heidari and A. Heydari, Decomposition of Euclidean Nearly Kähler submanifolds. Adv. in Geom. Appl., 2015.
[5] N. Heidari and A. Heydari, Parametrization of nearly Kähler submanifolds is standard space forms, Preprint.

зомп̆я олддомо

 @gl.

 lb_{3}.

 з 3 dmbub 3 。

งбృмпஜீ

S(2, D)-Equivalence Conditions of Control Points of Dual Planar Bezier Curves

Muhsin Incesu, Osman Gürsoy
Department of Mathematics Education, Mus Alparslan University, Mus, Turkey
email: m.incesu@alparslan.edu.tr

Let $D=\left\{A=a+\varepsilon a^{*}: a, a^{*} \in R ; \varepsilon^{2}=0\right\}$ be set of dual numbers and $D^{2}=D x D$ be the dual vector space. Then in this study we investigated the $S(2, D)$ - equivalency conditions of control points given in dual plane D^{2} in terms of results of the first fundamental theorem with similarity transformations' group $S(2, D)$ in dual plane. Finally the similarity conditions of dual planar Bezier Curves are expressed.

References

[1] H. Weyl, The Classical Groups, Their Invariants and Representations, 2nd ed., with suppl. Princeton, Princeton University Press, 1946.
[2] H. H. Hacısalihoğlu, Hareket geometrisi ve kuaterniyonlar teorisi, Gazi Üniversitesi, Fen-Edebiyat Fakultesi Yayinlari 2, 1983.
[3] Dj. Khadjiev, Application of Invariant Theory to the Differential Geometry of Curves. "Fan", Tashkent, 1988 (in Russian).
[4] Dj. Khadjiev, Some Questions in the Theory of Vector Invariants. Math. USSRSbornic 1 (1967), no. 3, 383-396.
[5] M. Incesu, The complete system of point invariants in the similarity geometry. Ph.D. Thesis, Karadeniz Technical University, 2008.
[6] M. Incesu, O. Gürsoy, The similarity invariants of bezier curves and surfaces, XX Ulusal Matematik Sempozyumu, Atatürk Üniversitesi, 03-06 Eylül 2007, Erzurum.
[7] O. Idris, Invariants of points for the orthogonal group $\mathrm{O}(3,1)$. Ph.D. Thesis, Karadeniz Technical University, Graduate School of Natural and Applied Sciences, 2007.
[8] Y. Sağıroğlu, Affine differential invariants of parametric curves. Ph.D. Thesis, Karadeniz Technical University, Graduate School of Natural and Applied Sciences, 2002.
[9] A. Schrijver, Tensor subalgebras and first fundamental theorems in invariant theory. J. Algebra 319 (2008), no. 3, 1305-1319.

Boundary Value Problem of the Vallee-Poussin for the Differential Equations Unsolved with Respect to Highest Derivative

S. V. Israilov ${ }^{1}$, A. A. Sagitov ${ }^{2}$
${ }^{1}$ Chechen State Pedagogical University (Petrozavodsk State University), Grozny, Russia
${ }^{2}$ Chechen State University (Chgu), Grozny, Russia
email: segitov@mail.ru

For a differential equation

$$
\begin{equation*}
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0 \tag{1}
\end{equation*}
$$

we consider the problem with the terms

$$
\begin{gather*}
y_{\left(a_{k}\right)}^{(i-1)}=0, \quad i=1, \ldots, \tau_{k}, \quad k=0,1,2, \ldots, m+1, \tag{2}\\
a=a_{0}<a_{1}<a_{2}<\cdots<a_{m}<a_{m+1}=b, \quad \tau_{0}+\tau_{1}+\cdots+\tau_{m+1}=n \\
m \in\{0,1, \ldots, n-2\}, \quad \tau_{k} \in\{1,2, \ldots, n-2\} \quad(k=0,1, \ldots, m-1)
\end{gather*}
$$

It is believed that the function F is continuous in all arguments and there exist continuous partial derivatives $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y^{(k)}}, k=0,1, \ldots, n$, and $\frac{\partial F}{\partial y^{(n)}} \neq 0$.

In place (1) take the differential equation

$$
\begin{equation*}
y^{(n+1)}=-\frac{\sum_{i=1}^{n} \frac{\partial F}{\partial y^{(i)}} y^{(i)}+\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y^{(n)}}}=\Phi\left(x, y, y^{\prime}, \ldots, y^{n}\right) \tag{3}
\end{equation*}
$$

is equivalent to the integro-differential

$$
\begin{equation*}
y_{(x)}^{(n)}=\int_{a}^{x} \Phi\left(x, y, y^{\prime}, \ldots, y^{(n)}\right) d t \tag{4}
\end{equation*}
$$

with the condition $y_{(0)}^{(n)}=0$. For (4) we study the task conditions (2) and proved the theorem of existence and uniqueness of solution [1] with specific restrictions on the Φ, $F, \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y^{(i)}}, i=1, \ldots, n$. The solution of the problem (2), (3) will be the solution of equation (1).

References

[1] S. V. Israilov, The Study of non-standard boundary value problems for ordinary differential equations. Makhachkala, 2014.

A Numerical Method for Solving Integral Equations by Modified Hat Functions

Yousef Jafarzadeh
Sama Technical and Vocational Training College, Islamic Azad University, Karaj Branch, Karaj, Iran
email: Mat2j@yahoo.com

In this paper, modified hat basis functions is proposed for solving system of linear and nonlinear Fredholm integral equations of the second kind. This proposed method can be applied to Voltra integral equations. We briefly describe some properties of Modified Hat Functions. we indicate a new numerical method to solve the system of Fredholm integral equations of the second kind The convergence rate of this method in the nodal points is too high so, it also allows us to get approximate values at other points by another methods based on interpolation. Numerical examples are given to illustrate the efficiency and accuracy of the method.

Keywords: Integral equations, Modified hat functions, Fredholm system of integral equation.

Error Analysis of Fuzzy Fredholm Integral Equations by the Splines Interpolation

Yousef Jafarzadeh
Sama Technical and Vocational Training College, Islamic Azad University, Karaj Branch, Karaj, Iran
email: Mat2j@yahoo.com

In this paper,a numerical procedure is proposed to solve the fuzzy linear Fredholm integral equations of the second kind using splines interpolation. Error analysis is investigated. Numerical examples of this approach have been shown advantages compared with the Lagrange method.

Keywords: Fredholm integral equations, fuzzy spline interpolation, Lagrange interpolation

Non-Classical Problems of Statics of Linear Thermoelasticity of Microstretch Materials with Microtemperatures

Aslan Jaghmaidze, Giorgi Karseladze, Guram Sadunishvili

Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
emails: omari@gmail.com; gkarseladze@gmail.com; g.sadunishvili@mail.ru

In this paper considers the static case of the theory of linear thermoelasticity of microstretch materials with microtemperatures. The representation formulas derived in the paper for a general solution of a homogeneous system of differential equations are expressed in terms of four harmonic and four metaharmonic functions. These formulas are very helpful in solving a lot of particular problems for domains of concrete geometry. An application of such a formula to a (III) ${ }^{+}$and (IV) ${ }^{+}$type boundary value problem for the ball is demonstrated. Uniqueness theorems are proved. Explicit solutions are constructed in the form of absolutely and uniformly convergent series.

A Condition of Existence of Neutral Surfaces for the Shells Consisting of Binary Mixtures

Roman Janjgava
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: roman.janjgava@gmail.com

In the present paper the shells consisting of binary mixtures are considered [1]. Based on I. Vekua's work [2], the question of existence of neutral surfaces in such shells is studied. By neutral surface is called a surface which belongs to a shells but is not subject to tensions and compressions by the deformation of the elastic body.

Acknowledgement. The designated project has been fulfilled by a financial support of Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14).

References

[1] R. Janjgava, Derivation of a two-dimensional equation for shallow shells by means of the method of I. Vekua in the case of linear theory of elastic mixtures. Differential equations and their applications. J. Math. Sci. (N. Y.) 157 (2009), no. 1, 70-78.
[2] I. Vekua, Shell Theory: General Methods of Construction. Pitman Advanced Publishing Program, Boston-London-Melbourne, 1985.

Field of Stresses in Cylindrical Specimen of the Rocks and Other Hard Materials at Indirect Test of Tensile Strength

Levan Japaridze
Gr. Tsulukidze Mining Institute, Tbilisi, Georgia
email: levanjaparidze@yahoo.com

In this work is analyzed the fields of stresses in a cylindrical specimen of hard materials in the indirect, so called Brazilian test.

Brazilian test, developed by Carneiro and Barcellos (1953), has found widespread application because of its practical convenience. The International Society for Rock Mechanics (ISRM, 1988) officially suggested the indirect method for determining the tensile strength of rock materials. The standard test method can be followed according to American Society for Testing and Materials (ASTM, 2008) for different kinds of anisotropy and homogeneity of testing rocks, concretes, glass, and many other brittle and not quite brittle materials (e.g. nuclear wastes (ASTM C1144-89, 2004), asphalt concrete etc.). The European standard for testing the tensile strength of concrete specimens was approved by the European Committee for Standardization (CEN 12390-6: 2000).

In the vast majority of different analytical and numerical solutions and improved schemes of indirect test of tensile strength of materials, main attention of researchers is placed on the tensile and compressive normal stresses, or deformations in the diametrical section of disk specimen. As for the deviatoric shear stresses in the nearby off-diametrical chordal sections, their role in the formation of cracks in the sample long has been seen qualitatively, but they hardly was studied quantitatively, although, as is known, deviatoric stress controls the distortion, and many of the criteria for failure are concerned with distortion.

This study underlines this problem on the basic of the results of experimental and analytic investigations and presents the quantitative assessment of principal normal and
shearing stresses in diametrical as well as nearby chordal sections of a cylindrical specimen, where they can reach critical intensity and create initial local tensile-shear cracks.

The contact width and pressure between loading jaws and cylindrical specimen, obtained through solution of the contact problems, are used as boundary conditions. Analytic solutions are derived in two dimensional closed form, applying N. Muskhelishvili complex potentials method. Numerical examples solved using computer program MATLAB. The results are compared with those of an experimental study of mechanical behavior of brittle, isotropic, homogenous rock materials.

About Reserved Systems with Repair and Replacement Bodies

Revaz Kakubava ${ }^{1}$, Solomon Kurtanidze ${ }^{2}$, Grigol Sokhadze ${ }^{2}$,
${ }^{1}$ Georgian Technical University, Tbilisi, Georgia
${ }^{2}$ I. Javakhishvili Tbilisi State University, Tbilisi, Georgia

emails: r.kakubava@gmail.com; solokurtanidze@hotmail.com; grigol.sokhadze@tsu.ge

Reserved system with one repair and one replacement bodies is considered. General task is raised and studied, particular cases are given.

Short Review of Scientific and Pedagogical Activity of Merab Mikeladze

Murad Kalabegashvili
Agricultural University of Georgia, Tbilisi, Georgia
email: m.kalabegashvili@agruni.edu.ge

Merab Mikeladze first started to investigate anisotropic plastic shells on the basis of Kirchhoff-Liav hypothesis and a rigid-plastic model. The way offered him gives the chance to establish additional dependences between internal forces that it considerably expands a circle of statically solvable tasks. On the basis of his version the rigid-plastic model theorems of extreme balance for the shallow rotating shells and the stretched bent circular plates were stated. The received model of anisotropic shells was developed for the brittle-plastic shells, that gave him possibility to state a problem for the design of evenly strong shells.

Merab Mikeladze directed department of Applied Mechanics in the Mathematical Institute from the moment of the basis of the department until the end of his life. Subject of department were researches of elastic and elastoplastic thin plates and shells taking into account piecewise changes of separate physical, geometrical and kinematic parameters. Many non-classical problems of thin plates and shells were solved in the department.

In 1960-1982 Merab Mikeladze was a head of the Department of Construction Mechanics (Construction Mechanics Chair) at the Georgian Polytechnical Institute. In modernization and improvement of educational process the significant role was played by the textbooks written by him in Georgian.

Blow up of Solutions of Nonlinear Wave Equations with Positive Initial Energy

Varga Kalantarov
Department of Mathematics, Koç University, İstanbul, Turkey email: vkalantarov@ku.edu.tr

We will discuss the problem of blow up of solutions with arbitrary positive initial energy of the Cauchy problem and initial boundary value problems for damped and strongly damped nonlinear wave equation, damped Boussinesq equation and related systems of equations. Recent results on blow up of solutions of initial boundary value problems for generalized Korteweg de Vries equation and nonlinear Schrödinger equation will be also discussed.

The Plane Problems of the Theory of Elasticity for a Doubly-Connected Domain Bounded by the Convex Polygons

Giorgi Kapanadze

I. Vekua Institute of Applied Mathematics \& A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: kapanadze.49@mail.ru
In the present paper we consider a plane problem of elasticity for a doubly-connected domain bounded by the convex polygons. The problem is solved by the methods of conformal mappings and boundary value problems of analytic functions. The sought
complex potentials are constructed effectively (in the analytical form). Estimates of the obtained solutions are derived in the neighborhood of angular points.

Acknowledgment. The designated project has been fulfilled by a financial support of Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14).

The Approximate Solution of a Boundary Value Problem by Grid Method Using Sh. Mikeladze Formula

Liana Karalashvili
University of Georgia, Tbilisi, Georgia
email: liana.qaralashvili@yahoo.com

On the basis of the general formula of Sh. Mikeladze a difference scheme of Dirichlet problem for the Poisson equation is received. This approach generates centrosymmetric matrices of certain properties. The approximation and convergence order of the difference scheme, which depends on the number of knots according to both variables, is established.

On Some Measurability Properties of Additive Functions

Tamar Kasrashvili
Department of Mathematics, Georgian Technical University
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University Tbilisi, Georgia
email: tamarkasrashvili@yahoo.com

Let E be a ground set and let M be a class of measures on E (we assume, in general, that the domains of measures from M are various σ-algebras of subsets of E).

We shall say that a real-valued function f is absolutely non-measurable with respect to M if there exists no measure $\mu \in M$ such that f is μ-measurable (about this definition see [1], [2]).

It is well known that every additive function f which is not of the form

$$
f(x)=k \cdot x
$$

for all $x \in \mathbf{R}$, is nonmeasurable with respect to the Lebesgue measure.
The next statement is true, which is generalization of above-mentioned property from a certain point of view.
Theorem. There exists additive function $f: \mathbf{R} \rightarrow \mathbf{R}$ such that:
(a) f is absolutely nonmeasurable with respect to the class of nonzero sigma-finite diffused measures;
(b) f nonmeasurable with respect to every translation invariant measure on the real line \mathbf{R}, extending the Lebesgue measure.

References

[1] A. B. Kharazishvili, A. P. Kirtadze, On the measurability of functions with respect to certain classes of measures. Georgian Math. J. 11 (2004), no. 3, 489-494.
[2] T. Kasrashvili, A. Kirtadze, Elementary volume and measurability properties of additive functions. Georgian Math. J. 23 (2016), no. 1, 69-73.

About a Safety Issue of Computer System

Nugzar Kereselidze, Beqa Toklikishvili

Mathematical and Computer Science Department, Sokhumi State University, Tbilisi, Georgia
email: nkereselidze@sou.edu.ge; toklikishvili.beqa@mail.ru
The computer system included in a World Wide Web - the Internet, with a high probability is exposed to attacks from malefactors. Therefore abilities and knowledge of how to protect the computer system are extremely important.

In work the possibilities of protection a Host file which is most vulnerable in case of attacks of hackers are considered. The software product for control of a correctness of content a HOST file is offered. Efficiency of the offered protection method a HOST file is compared to work known and popular ant viruses.

References

[1] N. Kereselidze, Ensuring the availability of information through the HOSTS file. Book of abstracts of IV International Conference of the Georgian Mathematical Union dedicated to Academician Victor Kupradze (1903-1985) on the occasion of 110-th anniversary of his birthday and to the Georgian Mathematical Union on the occasion of 90 year from founding, Tbilisi-Batumi, September 9-15, 2013, p. 137.

About Blocking and Unblocking Websites

Nugzar Kereselidze, George Sanaia, Beqa Toklikishvili

Department of Mathematical and Computer Sciences, Sokhumi State University, Tbilisi, Georgia
emails: nkereselidze@sou.edu.ge; giooosanaia@gmail.com; toklikishvili.beqa@mail.ru

Today the Internet resources in the educational process has become common practice. More and more schools and teacher training materials on a variety of the Internet resources, such as for example: youtube; social network - facebook; free hosting ucoz, hostinger and more.

In addition, some campuses are being blocked by the employees working time under the pretext of misuse of the Internet resources. The restriction of access to resources of students can not obtain the relevant knowledge. Therefore, it becomes necessary to be able to block the removal of at least - the teacher, the students in order to pave the necessary access to the resource. Here we encounter a problem, because the majority of pupils and students are not aware of how resources are being blocked on the Internet and how you can access them.

The report concerns the methods of blocking the Internet resources, and removing their decision ways. Proposed as commonly practiced, as well as our own new methods and programs.

bogmajo

Using Graphing Calculators in the Mathematics Teaching Process

Marina Kharazishvili
Ilia State University, Tbilisi, Georgia
email: marina.kharazishvili@iliauni.edu.ge, kharaz777@gmail.com

Nowadays in many foreign countries a graphing calculator is widely used in the processes of teaching and examination students. Moreover, during some exams in mathematics one of necessary requests is extensive usage of graphing calculators, because quite often the contents of suggested tasks substantially need their application. In fact, a graphing calculator is a handheld calculator that is capable for plotting graphs, solving diverse systems of equations, and performing many other tasks with variables.

Graphing calculators are optimal tools of information technologies. Their technical characteristics have many advantages, namely, calculators are of small size and weight, are actually independent of powerful energy sources, are easy in usage, and do not need any special software in the form of computer mathematical systems. Besides, for applications of graphing calculators a computer-equipped classroom is not necessary for practical lessons and seminars.

As a long-term experience shows, students encounter essential difficulties when they are concerned with functions and their graphs, with functional relations between dates and variables, with solving polynomial and transcendental equations, etc. The implementation of graphing calculators in the above-mentioned process enables students to make a visualization of the required results and to easily vary initial parameters of the suggested tasks. This circumstance, in its turn, leads to an essential improvement of the effectiveness of the studying process and its quality, by involving in it a lot of new tasks and the methods of their solving.

On the Cauchy Integrals with the Weierstraß Kernel

Nino Khatiashvili
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: ninakhatia@gmail.com

We consider the integral of the type

$$
\begin{equation*}
W(z)=\frac{1}{2 \pi i} \int_{L_{0}} \phi(t) \zeta(t-z) d t \tag{1}
\end{equation*}
$$

where L_{0} is a piece-wise smooth line, ζ is the Weierstraß zeta-function [1]. The function $W(z)$ is the Cauchy type integral [2] and was investigated in [3, 4]. The integral (1) has various applications in hydrodynamics [5, 6]. The inversion formula for the integral equation $W\left(t_{0}\right)=f\left(t_{0}\right), f \in H^{*}, t_{0} \in L_{0}$, was obtained in [7, 8].

Here is discussed the problem of existence of the solution of the class H^{*} of the nonlinear integral equation $A\left[W\left(t_{0}\right)\right]=\phi\left(t_{0}\right), t_{0} \in L_{0}$, where A is the nonlinear operator.

Keywords and phrases: Cauchy integrals, Weierstraß functions.
AMS subject classification: 45E05, 45G05.

References

[1] K. Weierstraß, Mathematische Werke, 7 Bände, Berlin (1897-1927).
[2] N. I. Muskhelishvili, Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics. Translation by J. R. M. Radok. P. Noordhoff N. V., Groningen, 1953.
[3] N. Khatiashvili, On linear conjugation problems with the doubly periodic jump line. Proc. A. Razmadze Math. Inst. 136 (2004), 63-84.
[4] N. Khatiashvili, On linear conjugation problems with a doubly periodic jump line (the case of open arcs). Georgian Math. J. 12 (2005), no. 3, 461-474.
[5] L. I. Sedov, Two-Dimensional Problems in Hydrodynamics and Aerodynamics. Translated from the Russian and edited by C. K. Chu, H. Cohen and B. Seckler Interscience Publishers John Wiley \& Sons Inc., New York-London-Sydney, 1965.
[6] N. Khatiashvili,On the Stokes Nonlinear Waves in 2D. Recent Advances in Mathematics and Computational Science (ed. Imre J. Rudas), Barcelona, 2016, pp. 81-84.
[7] N. Khatiashvili, The inversion formula of the Cauchy integral taken over a union of a countable number of segments. Bull. Georgian Acad. Sci. 162 (2000), no. 1, 22-25.
[8] N. Khatiashvili, On a singular integral equation with Weierstrass kernel. Complex Var. Elliptic Equ. 53 (2008), no. 10, 915-943.

Optimal Forecasting for Risky Asset Price Evolution in the Models Represented by Gaussian Martingale

Zaza Khechinashvili
Department of Probability and Statistics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: khechinashvili@gmail.com

We have considered two models of risky asset price evolution in discrete time, which are driven by Gaussian martingale. One of these schemes is characterized by so called disorder moment, that is random moment in which distribution law change occurs. Properties of both models are studied and optimal in mean square sense forecasting formulas are obtained.

Topology of Stable Quadratic Mappings into the Plane

Giorgi Khimshiashvili
Ilia State University, Tbilisi, Georgia
email: gogikhim@yahoo.com

We deal with the topological properties of pairs of real quadratic forms considered as mappings into the plane. First, we present algebraic criteria of stability and properness for such mappings in terms of minors of a certain explicitly constructed matrix. Next, using these criteria we show that both stability and properness properties are fulfilled for a dense open subset in the space of pairs of quadratic forms, and the same holds for restrictions of quadratic mappings to algebraic submanifolds of the source space. The latter fact enables us to obtain some new results in an important special case of numerical range of complex non-singular matrix considered as a mapping from an odd-dimensional sphere into the plane. In particular, our results combined with the Whitney's classification of singularities of stable mappings imply that, for a generic non-singular matrix, the numerical range mapping has only singularities of the fold and cusp type. A natural and seemingly unexplored problem is to find formulae for the number of such cusps for a concrete matrix and obtain exact upper estimates for the number of cusps of all non-singular matrices of fixed size N. We deal with this problem in a wider context of estimating topological invariants of stable quadratic mappings not necessarily coinciding with a numerical range mapping. Specifically, we concentrate on the calculation and estimation of the number
of cusps of stable pairs of quadratic forms. Explicit formulae for the number of cusps are given using the so-called signature formulae for topological invariants developed in our previous papers. Moreover, we give a general upper estimate for the number of cusps and show that it is exact for $N=2$. The same estimate appears exact for numerical range of complex non-singular (2×2)-matrices.

Morse Functions on Concentric Configurations of Points

Giorgi Khimshiashvili, Natia Sazandrishvili
Ilia State University, Tbilisi, Georgia
email: gogikhim@yahoo.com

We consider configurations of N points belonging to a system S of N concentric circles in the plane under the assumption that each circle contains one of the given points. The totality $X(S)$ of such configurations is naturally identified with the N-dimensional torus $T N$ and we are concerned with the investigation of critical points of certain smooth functions on $X(S)$. Specifically, we are interested in the two functions P and A defined as the perimeter and oriented area of configuration. Our main results can be formulated as follows.

Theorem 1. For any system S of concentric circles functions P and A are Morse functions on $X(S)$.
Theorem 2. For each of these functions, the number of critical points can be calculated as the signature of a certain algorithmically constructible quadratic form.
Theorem 3. Morse index of a critical configuration can be calculated from the combinatorial structure induced on any of diameters of the outer circle.
Theorem 4. For each of these functions, the critical values can be calculated as the real roots of a certain algorithmically constructible polynomial with real coefficients.

These results arose from certain conjectures suggested by general paradigms of critical theory on configuration spaces developed by the first author. We will also present much more detailed results for $N=3$ and $N=4$ obtained by the second author. Some generalizations and related results will also be outlined.

On the Strong Summability of Fourier-Laplace Series

Vladimir Khocholava
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
email: lado54@mail.ru

Let R^{k} be a k-dimensional Euclidean space and let $S^{k-1}=\left\{x: x \in R^{k} ;|x|=1\right\}$ be the unit sphere.

If $f \in L\left(S^{k-1}\right), k \geq 3$, then the series $S(f ; x)=\sum_{n=0}^{\infty} Y_{n}^{\lambda}(f ; x)$ is called the FourierLaplace series of f, where $Y_{n}^{\lambda}(f ; x)$ is a hyperspherical harmonic of f of order $n, \lambda=\frac{k-2}{2}$ is a critical exponent.

The Cesàro (C, α)-means of the series $S(f ; x)$ are defined as follows

$$
\sigma_{n}^{\lambda, \alpha}(f ; x)=\frac{1}{A_{n}^{\alpha}} \sum_{m=0}^{n} A_{n-m}^{\alpha-1} S_{m}^{\lambda}(f ; x),
$$

where $S_{m}^{\lambda}(f ; x)$ is a partial sum of the series $S(f ; x)$.
A Fourier-Laplase series is (H, q, α)-strong summability in the point x if following assertion is valid:

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{m=0}^{n}\left|\sigma_{m}^{\lambda, \alpha}(f ; x)-f(x)\right|^{q}=0
$$

Let $f \in L_{p}\left(S^{k}\right)$. We call that the point $x \in S^{k}$ is a D_{p}-point of f if

$$
\lim _{h \rightarrow 0} \frac{1}{h^{2 \lambda p+1}} \int_{0}^{h}\left|\int_{(x, y)=\cos \gamma}[f(y)-f(x)] d S^{k-1}(y)\right|^{p} d \gamma=0
$$

We call that the point $x \in S^{k}$ is a D_{p}^{*}-point of f if points x and x^{*} are D_{p}-points, where x^{*} is diametrically opposite point of x.
Theorem. If $f \in L_{p}\left(S^{k}\right), p>1$, then Fourier-Laplase series is (H, q, α)-strong summability for each D_{p}^{*}-point, where $\frac{1}{p}+\frac{1}{q}=1$ and $\alpha>\lambda-\frac{1}{q}$.

Determination of the Parameters of Refracted Wave Stress in the Rock

S. Khomeriki, D. Khomeriki, G. Shatberashvili, E. Mataradze, M. Losaberidze

LEPL Grigol Tsulukidze Mining Institute, Tbilisi, Georgia
email: marinalosaberidze@rambler.ru

For preservation of natural structure of facing stone blocks, mined by explosion technologies, the most efficient decision is attained by the transfer from the stone quasi-static load to the dynamic one by means of the linear charge of the explosive which detonate by rate of $(7-7,5) \mathrm{km}$ hour-1 and are characterized by very small critical diameter or by the use of original construction of mean-power external charges, which transfer the explosion impulse to the rock by means of the blast-hole filling water column. In any case when the shock wave reaches the interface of two media (in this case, the blast-hole wall), then its reflection and refraction takes place. For determination of the parameters of the refracted wave at the rock dynamic load by means of the equations, describing its state, the equations set is derived on the basis of hydrodynamic main equations, of the laws of momentum and mass conservation, which yields the parameters of the refracted wave when the angle of incidence, $\alpha=0^{\circ}$. The analytical expressions were derived for the parameters of the refracted wave by means of the prefrontal parameters of undisturbed part of the body when α varies in the range from 0° to 90°. The equations are readily solved if the elastic characteristics of exploded rock are known.

The work was financed by Shota Rustaveli National Science Fundation (Grant Project NFR/171/3-180-14).

On the MADM Problem Based on TOPSIS with Triangular Hesitant Information

Irina Khutsishvili
Department of Computer Sciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: irina.khutsishvili@tsu.ge

The present work proposes an evaluation methodology for multi-attribute decisionmaking (MADM) problem based on the TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) method in fuzzy environment. In proposed approach both the values and weights of the attributes take the form of triangular fuzzy numbers, given
by all decision makers. For the processing of the triangular hesitant information the triangular hesitant fuzzy TOPSIS is developed. The ranking of alternatives is made in accordance with the proximity of their distance to the fuzzy positive-ideal and fuzzy negative-ideal solutions. In this work the hesitant weighted Hamming distance is used. The report provides an example clearly illustrating the process of decision-making based on the proposed methodology.

Keywords: Multiple-attribute decision-making, fuzzy TOPSIS approach, hesitant fuzzyset, triangular fuzzy number.

About Application of Data Mining Methods Teaching Research Methods for Managements Faculties

Aben Khvoles
Bar Ilan University, Ramat Gan, Israel
email: abenkh@gmail.com

In the report I will tell how to use Data Mining methods during teaching research methods for management and finance

Analysis of Rotating Circular Ring Disk with a Constant Thickness with Rigidly Fixed Internal Circuits

G. Kipiani 1, D. Jankarashvili ${ }^{2}$, A. Tabatadze ${ }^{2}$
${ }^{1}$ The Georgian Aviation University, Tbilisi, Georgia
${ }^{2}$ Georgian Technical University, Tbilisi, Georgia
email: gelakip@gmail.com

Dynamic studies of modern high-speed electro-mechanical actuators are interfaced with the following view of the elastic properties of mechanical transmission elements, which, in turn, requires further improvement of methods and technologies related to the optimization of parametric and structural synthesis of the systems studied. This article discusses the methodological approaches and original mathematical relationships, to further improve the dynamic synthesis methods of drive systems with elastic ties to the mechanical parts. Bending elastic circular disk in the centrifugal force field reduces to
the solution of two differential equations with variable coefficients. The solution of these equations is more convenient to carry out by the method proposed by M.Sh. Mikeladze. Rotary disc rigidly fixed in the centrifugal force field leads to two differential equations with variable coefficients. These differential equations are reduced to a single integral equation of Volterra type of the second kind proposed by M.Sh. Mikeladze. Numerical analysis revealed that the limiting ratio between the angular speed of the disc and the intensity of a load stage in view of the elastic tensile centrifugal forces and without them is within 2.42 .

Plate's Optimization in As ircrafts

Gela Kipiani ${ }^{1}$, Akaki Paresishvili ${ }^{2}$, Nino Chorkhauli ${ }^{3}$
${ }^{1}$ Georgian Aviation University, Tbilisi, Georgia
email: gelakip@gmail.com
${ }^{2}$ Georgian Technical University, Tbilisi, Georgia email: akakifaresishvili@yahoo.com
${ }^{3}$ Georgian Technical University, Tbilisi, Georgia

The optimization of structures, in particular, arrangement of reinforcing elements (edges) and distribution of material between this ribs and the plate is not less important than the estimation of their reliability.

The optimization problem is extremely important in such structures as aircrafts, whose weight reduction with maintaining the reliability is very important.

In the present paper for structurally orthotropic plates are considered the discrete as well as the continual schemes. Studies have been carried out on the basis of the theory of nonlinear buckling that takes into account the interaction between general buckling of plate edges and local buckling. The results of the experimental research of reinforced plates are also presented.

Stability of Thin-Walled Spatial Systems with Discontinuous Parameters

Gela Kipiani ${ }^{1}$, Lery Zambakhidze ${ }^{2}$, Giorgi Rekhviashvi ${ }^{3}$
${ }^{1}$ Georgian Aviation University, Tbilisi, Georgia
email: gelakip@gmail.com
${ }^{2}$ Georgian Technical University, Tbilisi, Georgia email: leri.zamba@mail.ru
${ }^{3}$ Georgian Technical University, Tbilisi, Georgia
email: malnikol@rambler.ru

In the paper in the method of calculation of plates and shells with holes and cuts under conditions of linear and nonlinear deformation that gives the possibility to define with same accuracy stresses and moments in the continual area, as well as in the adjacent of cut edges and vertices areas, is proposed.

The obtained formulas for calculation of shells having ribs and cuts give the possibility to describe the change of singularities of all components of mode of deformation in adjacent of the violation of regularity to reflect in loading process changes and re-distribution of the stresses and moments.

A simplified version of solution is developed and investigated.

On a Classification of Sets and Functions from the Point of View of Their Measurability

Aleks Kirtadze
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia email: kirtadze2@yahoo.com

It is natural, instead of the question of investigating the measurability of sets and functions with respect to a concrete measure μ on ground set E, to turn attention to the more general question of investigating the measurability of sets and functions with respect to a given class M of sigma-finite measures on E.

This approach seems to be a natural and helpful generalization of the classical definition of the measurability of real-valued functions and sets with respect to a fixed single measure μ on E. According to this general approach, if M is a given class of σ-finite measures on E, then all real-valued functions f defined on E can be of the following three categories:

- absolutely non-measurable functions with respect to M (i.e., all those functions f which are not measurable with respect to every measure from M);
- relatively measurable functions with respect to M (i.e., all those functions f for which there exists at least one measure μ from M (certainly, depending on f) such that f turns out to be μ-measurable);
- absolutely (or universally) measurable functions with respect to M (i.e., all those functions f which are measurable with respect to any measure from M).

About of this approach be found [1], [2].

References

[1] A. B. Kharazishvili, Topics in Measure Theory and Real Analysis. Atlantic Press, Amsterdam-Paris, 2009.
[2] A. B. Kharazishvili, A. P. Kirtadze, On measurability of functions with respect to certain classes of measures. Georgian Math. J. 11 (2004), no. 3, 489-494.

Fundamental Inequalities for Trigonometric Polynomials in New Function Spaces and Applications

Vakhtang Kokilashvili ${ }^{1,2}$, Tsira Tsanava ${ }^{3}$

${ }^{1}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ International Black Sea University, Tbilisi, Georgia
${ }^{3}$ Georgian Technical University, Tbilisi, Georgia
emails: kokil@rmi.ge; tsanava@rmi.ge

Our talk deals with the fundamental inequalities for single variable trigonometric polynomilas in new function spaces (variable exponent Morrey, weighted grand Morrey spaces, etc.) and their applications to the trigonometric approximation in appropriate vanishing new function spaces.

Adaptive Forecasting With Alternative Techniques

Tea Kordzadze ${ }^{1}$, Nino Gogoladze ${ }^{1}$, Petro I. Bidyuk ${ }^{2}$
${ }^{1}$ Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia
${ }^{2}$ Institute for Applied System Analysis, National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine
emails: tea_kordzadze@yahoo.com; gogoladze.nino73@mail.ru; pbidyuke_00@ukr.net

Today there exists a growing necessity for development of modern decision support systems (DSS) that would help decision makers (DM) in processing statistical/experimental data and expert estimates, adequate model constructing, estimating of quality forecasts for a given horizon and generating decision alternatives on the basis of the forecasts generated. Appropriately developed DSS provides wide possibilities for adequate models development and computing high quality forecasts with the most different techniques and combine the estimates generated by different methods. Another important task that could be performed is system identification and taking into consideration possible probabilistic and level uncertainties that usually create difficulties with mathematical modeling of selected processes and computing forecasts as well as generating alternative decisions [1, 2].

Modern DSS are complex multifunctional computing systems with architecture of hierarchical type. Define DSS formally as follows:

$$
D S S=\{D K B, P D P, D T, S E, P E, F G, D Q, M Q, F Q, A Q\}
$$

where $\boldsymbol{D K} \boldsymbol{B}$ - data and knowledge base; $\boldsymbol{P D P}$ - a set of procedures for preliminary data processing; $\boldsymbol{D T}$ - a set of statistical tests for determining possible effects contained in data; $\boldsymbol{S E}$ - a set of procedures for estimation of mathematical model structure; $\boldsymbol{P} \boldsymbol{E}$ a set of procedures for estimation of mathematical model parameters; FG - forecasts generating procedures; $\boldsymbol{D Q}, \boldsymbol{M Q}, \boldsymbol{F Q}, \boldsymbol{A} \boldsymbol{Q}$ the sets of statistical quality criteria for estimating quality of data, models, forecasts, and alternatives, accordingly.

The DSS proposed has an architecture consisting of the following elements: the language subsystem, the main processing unit that performs all necessary computations, data and knowledge base (DKB), and subsystem visualizing intermediate and final results of computing [2]. One of the possibility for solving the short-term forecasting problem in random environment provide for such methods as various Kalman filtering techniques, hierarchical (in parameters) models, nonparametric and Bayesian regression, modern immune and genetic algorithms based methodology. Very promising results could be achieved with combined application of regression analysis techniques and modern intellectual data analysis approaches.

References

[1] C. W. Holsapple, A. B. Whinston, Decision Support Systems: a Knowledge-Based Approach. West Publishing Company, New York, 1996. 933 pp.
[2] P. I. Bidyuk, O. P. Gozhyj, L. O. Korshevnyuk, Design of Decision Support Systems. Petro Mohyla Black Sea State University, Mykolaiv, 2012. 380 pp. (in Ukrainian).
[3] R. S. Tsay, Analysis of Financial Time Series. John Wiley \& Sons Inc., Hoboken (New Jersey) 2010. 715 pp.
[4] M. Z. Zgurovsky, P. I. Bidyuk, O. M. Terentyev, T. I. Prosyankina-Zharova, Bayesian Networks for Decision Support Systems. Edelvais, Kyiv, 2015. 300 pp. (in Ukrainian).

Cofinitely E-Supplemented Modules

Berna Koşar, Celil Nebiyev
Department of Mathematics, Ondokuz Mayıs University, 55270
Kurupelit-Atakum/Samsun/Türkiye-Turkey
emails: bernak@omu.edu.tr; cnebiyev@omu.edu.tr

In this work, cofinitely e-supplemented modules are defined and some properties of these modules are investigated. It is proved that any sum of cofinitely e-supplemented modules is cofinitely e-supplemented. It is also proved that every factor module and every homomorphic image of a cofinitely e-supplemented module are cofinitely e-supplemented.

Key words: Cofinite Submodules, Essential Submodules, Small Submodules, Supplemented Modules.

Results

Definition 1. Let M be an R-module. If every cofinite essential submodule of M has a supplement in M, then M is called a cofinitely e-supplemented module.
Proposition 2. Let M be a cofinitely e-supplemented module. Then $M /$ RadM have no proper cofinite essential submodules.

Lemma 3. Any sum of cofinitely e-supplemented modules is cofinitely e-supplemented.
Lemma 4. Every factor module a cofinitely e-supplemented module is cofinitely esupplemented.
Corollary 5. Every homomorphic image of a cofinitely e-supplemented module is cofinitely e-supplemented.

Proposition 6. Let R be a ring. Then ${ }_{R} R$ is e-supplemented if and only if every R-module is cofinitely e-supplemented.

References

[1] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory. Frontiers in Mathematics, Birkhäuser, Basel, 2006.
[2] C. Nebiyev, E-Supplemented modules. Antalya Algebra Days XVIII, Şirince-İzmirTurkey, 2016.
[3] R. Wisbauer, Foundations of module and ring theory. Algebra, Logic and Applications, 3. Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
[4] H. Zöschinger, Komplementierte Moduln über Dedekindringen. J. Algebra 29 (1974), 42-56 (in German).

Unconditional Convergence of Random Series

Vakhtang Kvaratskhelia

N. Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University;
Sokhumi State University, Tbilisi, Georgia
email: v_kvaratskhelia@yahoo.com

Let X be a real Banach space, (Ω, \mathcal{A}, P) - be a probability space. By a random element with values in X we mean a separably valued Borel measurable mapping Ω to X. Let $\left(\xi_{k}\right)_{k=1}^{\infty}$ be e sequence of random elements with values in X.
Definition. A random series $\sum_{k=1}^{\infty} \xi_{k}$ is called a.s. unconditionally convergent in X, if there exists a set $\Omega_{0} \in \mathcal{A}$ of full probability $\left(P\left(\Omega_{0}\right)=1\right)$, such that the series $\sum_{k=1}^{\infty} \xi_{k}(\omega)$ converges unconditionally in the norm topology of X for any $\omega \in \Omega_{0}$. (i.e. for every permutation π of the integers the series $\sum_{k=1}^{\infty} \xi_{\pi(k)}(\omega)$ is convergent for all $\left.\omega \in \Omega_{0}\right)$.

It is easy to see that under the proposed definition the equivalence between a.s. unconditional and absolute convergence of random series in the finite dimensional case remains valid, but for the infinite dimensional case according to the well-known Dvoretzky-Rogers theorem this is not true.

It is clear that if the series $\sum_{k=1}^{\infty} \xi_{k}$ converges a.s. unconditionally then every its permutation is a.s. convergent as well. The converse assertion is not true even in the one dimensional case, because the a.s. unconditionally convergence of all permutations does not provide the existence of a set of convergence with full probability. The corresponding example is the series $\sum_{k=1}^{\infty} \frac{1}{k} \varepsilon_{k}$, where $\left(\varepsilon_{k}\right)_{k=1}^{\infty}$ is a sequence of independent random variables with distribution $P\left[\varepsilon_{k}=-1\right]=P\left[\varepsilon_{k}=1\right]=\frac{1}{2}, k=1,2, \ldots$. It is obvious, that every permutation of the series $\sum_{k=1}^{\infty} \frac{1}{k} \varepsilon_{k}$ is a.s. convergent since $\sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty$, at the same time this series is not a.s. unconditionally (absolutely) convergent since $\sum_{k=1}^{\infty}\left|\frac{1}{k} \varepsilon_{k}\right|=\sum_{k=1}^{\infty} \frac{1}{k}=\infty$.

The presentation is mainly based on the results of the paper [1]. Here the a.s. unconditionally convergent random series are investigated. The connection of the a.s. unconditionally convergence with the geometry of spaces is established as well.

References

[1] V. Kvaratskhelia, Unconditional convergence of random series and the geometry of Banach spaces. Georgian Math. J. 7 (2000), no. 1, 85-96.

On Statistical Estimation of Coefficients of the Ornstein-Uhlenbeck Processes

Levan Labadze
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
email: levanlabadze@yahoo.com

We consider stochastic differential equation in Hilbert space of Ornstein-Uhlenbeck type. For estimation of the coefficients of drift and volatility we use the method of maximal likelihood estimation and minimum of second moment method. Consistency and asymptotic normality are proved.

Numerical Modeling of Fires in the Road Tunnels and Dynamic of Distribution of Damaging Factors

O. Lanchava ${ }^{1,2}$, G. Nozadze ${ }^{2}$
${ }^{1}$ Georgian Technical University, Tbilisi, Georgia
${ }^{2}$ Gr. Tsulukidze Mining Institute, Tbilisi, Georgia
emails: o.lanchava@yahoo.com; g_nozadze@yahoo.com

The article discusses fire security issues in road tunnels with the longitudinal ventilation system. Heat Release Rate of fire is $5-30 \mathrm{Mw}$., as it's required by normative documents of European Union.

In present paper the dynamic of spreading of fire damage factors (temperature, concentrations of toxic gases, visibility) for different boundary condition of ventilation system was studied. In this case, we have considered the quickly flammable fuel fire,that quickly take maximal value of HRR.

Modeling has been fulfilled by software Pyrosim 2015, which was based on FDS method. This software gave possibility to calculate characteristic values for damage factors of fire and obtain 3 D dynamic map of distribution for each factor in the tunnel.

The analysis of calculations give possibility, for scenarios programming of the development of specific fire hazards, calculate the spatial and time scale of spread of damage factors, which gives the possibility to define the critical time of evacuation of people from each factors, which is necessary for right planning of effective rescue service.

This work was supported by Shota Rustaveli National Science Foundation of Georgia AR/61/3-102/13.

References

[1] A. Beard, R. Carvel, Handbook of Tunnel Fire Safety, Second edition, Thomas Telford Limited, 2012, 678 pp.
[2] O. Lanchava, N. Ilias, I. Andras, R. Moraru, I. Neag, On the Ventilation of Transport Tunnels in the Presence of a Strong (Heavy) Fire. In: Annals of the University of Pertosani, Romania, 2007, pp. 219-227.

Strong Coupling Constant from τ Decay

Badri Magradze
Department of heoretical Physics, A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: magr@rmi.ge

We extract numerical value for the strong coupling constant α_{s} from final ALEPH(2013) τ-lepton decay data on vector non-strange spectral function. The distinguished feature of our procedure is that we employ the global quark-hadron duality in the limited interval of the energy squared variable $s_{c}<s<m_{\tau}^{2}, \sqrt{s_{c}} \gg \Lambda_{\mathrm{QCD}}$, where s_{c} is the onset of the perturbative QCD continuum and Λ_{QCD} denotes the QCD scale. On this duality interval, we write Finite Energy Sum Rules (FESRs) taking standard "spectral weights" $w_{\mathrm{k}, 1}(s)$ $(\mathrm{k}, \mathrm{l}=0,1 \ldots)$ determining spectral moments of the invariant mass distribution [1]. The non-perturbative contributions from the QCD condensates are ignored. These sum rules are used together with the chirality constraint, the sum rule that follows from the absence of the dimension $d=2$ operator in the chiral correlator. We have performed several determinations of the strong coupling constant α_{s} and the duality point s_{c} combining different $w_{\mathrm{k}, 1}$ based FESRs with the chirality sum rule. The error analysis is performed using covariance matrixes provided by ALEPH. The numerical values for the parameters obtained from different determinations are found to be consistent among themselves. Using the FESR with the kinematic weight, $w_{0,0}$, we obtain (in the $\overline{\mathrm{MS}}$ scheme at $\mathrm{N}^{3} \mathrm{LO}$) the following values: $\alpha_{s}\left(m_{\tau}^{2}\right)=0.322 \pm 0.011_{\exp .}$. $\left(s_{c}=1.69 \pm 0.03 \mathrm{GeV}^{2}\right)$ using Contour Improved Perturbation Theory and $\alpha_{s}\left(m_{\tau}^{2}\right)=0.298 \pm 0.012_{\text {exp. }}\left(s_{c}=1.69 \pm 0.03 \mathrm{GeV}^{2}\right)$ using fixed order perturbation theory.

References

[1] F. Le Diberder and A. Pich, Testing QCD with τ decays.s Phys. Lett. B 289 (1992), 165-175.

Description of Income and Substation Effect by Using Slutsky Identity

Dali Magrakvelidze

Department of Computing Mathematics, Georgian Technical University, Tbilisi, Georgia email: dali.magraqvelidze@gmail.com

The income effect Δx_{n}^{\prime} is a process of changing demand on goods 1 , when changing amount of income from m^{\prime} to m and living the price p_{1}^{\prime} of goods 1 intact $\Delta x_{1}^{n}=x_{1}\left(p_{1}^{\prime}, m\right)-$ $x_{1}\left(p_{1}^{\prime}, m^{\prime}\right)$.

The overall change of demand Δx_{1} is a price change related to the change of demand while income is the same $\Delta x_{1}=x_{1}\left(p_{1}^{\prime}, m\right)-x_{1}\left(p_{1}, m\right)$. It can be written also as $\Delta x_{1}=$ $\Delta x_{1}^{s}+\Delta x_{1}^{n}$.

$$
x_{1}\left(p^{\prime}, m\right)-x_{1}\left(p_{1}, m\right)=\left[x_{1}\left(p_{1}^{\prime}, m^{\prime}\right)-x_{1}\left(p_{1}, m\right)\right]+\left[x_{1}\left(p_{1}^{\prime}, m\right)-x_{1}\left(p_{1}^{\prime}, m^{\prime}\right)\right] .
$$

This equality shows, that total change of demand equals to the sum of substitution effect and income effect. This equality is called Slutsky identity [1].

When we are presenting Slutsky identity using relatively changes, it turns out that it is convenient to define Δx_{1}^{m} as a reciprocal number of a income effect:

$$
\Delta x_{1}^{m}=x_{1}\left(p_{1}^{\prime}, m\right)-x_{1}\left(p_{1}^{\prime}, m\right)=-\Delta x_{1}^{n}
$$

If we use this definition, the identity of Slutsky will look as: $\Delta x_{1}=\Delta x_{1}^{s}-\Delta x_{1}^{m}$. If we divide both sides by Δp_{1}, we obtain:

$$
\frac{\Delta x_{1}}{\Delta p_{1}}=\frac{\Delta x_{1}^{s}}{\Delta p_{1}}-\frac{\Delta x_{1}^{m}}{\Delta p_{1}}
$$

or

$$
\frac{\Delta x_{1}}{\Delta p_{1}}=\frac{\Delta x_{1}^{s}}{\Delta p_{1}}-\frac{\Delta x_{1}^{m}}{\Delta m} x_{1}
$$

this is identity of Slutsky expressed in terms of relatively changes.
It is possible to express Slutsky's identity by using differentials. Let $x_{1}\left(p_{1}, m\left(p_{1}\right)\right)$ be demand function on goods 1 , when the price of goods 2 is fixed and we know that income is depending on goods 1's price in such way: $m\left(p_{1}\right)=p_{1} \omega_{1}+p_{2} \omega_{2}$. Then we will have:

$$
\begin{gather*}
\frac{d x\left(p_{1}, m\left(p_{1}\right)\right)}{d p_{1}}=\frac{\partial x_{1}\left(p_{1}, m\right)}{\partial p_{1}}+\frac{\partial x_{1}\left(p_{1}, m\right)}{\partial m} \frac{d m\left(p_{1}\right)}{d p} \\
\frac{\partial m\left(p_{1}\right)}{\partial p_{1}}=\omega_{1} . \tag{1}
\end{gather*}
$$

We know from Slutsky equation how demand is changing due to price changes, when cash income is fixed.

$$
\begin{equation*}
\frac{\partial x_{1}\left(p_{1}, m\right)}{\partial p_{1}}=\frac{\partial x_{1}^{s}\left(p_{1}\right)}{\partial p_{1}}-\frac{\partial x\left(p_{1}, m\right)}{\partial m} x_{1} \tag{2}
\end{equation*}
$$

After substituting equation (1) into (2) we will obtain:

$$
\frac{\partial x_{1}\left(p_{1}, m\right)}{\partial p_{1}}=\frac{\partial x_{1}^{s}\left(p_{1}\right)}{\partial p_{1}}+\frac{\partial x\left(p_{1}, m\right)}{\partial m}\left(\omega_{1}-x_{1}\right)
$$

This is a suitable Slutsky's identity.

References

[1] H. R. Varian, Intermediate microeconomics. A Modern Approach, IW. W. Norton and Comp., Inc, 1993.

Bernoulli Type Time Series

Nino Makatsaria
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
email: nini_makatsaria@yahoo.com

The sequence of random values is considered. The distribution of this data is unknown. A method of construct the estimation of the distribution is given. Corresponding asymptotical theorems are proved. Simulation results are given.

The Analysis of Hydrodynamic and Mechanical Processes Impact on Pressure Pipeline Durability and Exploitation Reliability During Hydro Aero-Mixtures Motion with Abrasive Solid and Loose Admixtures in It

Leon Makharadze
LEPL Grigol Tsulukidze Mining Institute, Tbilisi, Georgia
email: lmakharadze@rambler.ru

Today total length of worldwide hydrotransporting system pipelines is up to several thousand kilometers. These systems are used not only for one-phase liquid transportation, but also for multi-phase hydro mixtures as well, which is the cause of the difficulties in pipeline processes due to exploitation specific conditions. The condition of pipeline internal surface and accordingly the strength of pipeline depend on their development a lot, which also means its durability and reliability. Many theoretical researches and also practical experiments are done by G. Tsulukidze Institute about hydrodynamical processes and hydroabrasive wear, foreseeing all characteristics of analogical systems. Namely, these processes definitely impact on the pipeline durability and exploitation reliability, because during exploitation intensive wear of pipeline walls take place. During hydrodynamical processes permanent changes of loading ranges on pipeline walls causes their structural damage. All these have negative impact on pipeline reliability, accordingly on its durability and generally on system exploitation safety. Therefore, the present talk is devoted to reviews and analyses of the research results concerning above mentioned processes.

Homotopy Groups of Infinite Wedge

Leonard Mdzinarishvili
Georgian Technical University, Tbilisi, Georgia
email: l.mdzinarishvili@gtu.ge

In $1959 \mathrm{~S} . \mathrm{T}$. Hu for $X \vee Y$ wedge sum of pointed spaces $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ proved that for $n \geq 2$ there is an isomorphism

$$
\begin{equation*}
\pi_{n}\left(X, \vee Y, u_{0}\right) \approx \pi_{n}\left(X, x_{0}\right) \oplus \pi_{n}\left(Y, y_{0}\right) \oplus \pi_{n+1}\left(X \times Y, X \vee Y, u_{0}\right) \tag{1}
\end{equation*}
$$

where $u_{0}=\left(x_{0}, y_{0}\right)$.
C. J. Knight in 1963 defined the weak product $L Y_{\omega}$ of pointed topological spaces $\left(Y_{\omega}, y_{\omega}^{0}\right), \omega \in \Omega$, and proved that for $n \geq 2$ there is an isomorphism

$$
\pi_{n}\left(L Y_{\omega}, y^{0}\right) \approx \sum \pi_{n}\left(Y_{\omega}, y_{\omega}^{0}\right)
$$

where y^{0} is a base point of $L Y_{\omega}$.
In the present work we consider an infinite wedge $\vee Y_{\omega}, \omega \in \Omega$, of pointed spaces $\left(Y_{\omega}, y_{\omega}^{0}\right)$ and prove that for $n \geq 2$ there is an isomorphism

$$
\pi_{n}\left(\vee Y_{\omega}, y^{0}\right) \approx \sum_{\omega \in \Omega} \pi_{n}\left(Y_{\omega}, y_{\omega}^{0}\right) \oplus \pi_{n+1}\left(L Y_{\omega}, \vee Y_{\omega}, y^{0}\right)
$$

In particular, if Ω is a finite set, then there is an isomorphism (1).

On the Forced Vibration of the Bi-Material Elastic System Consisting of the Hollow Cylinder and Surrounding Elastic Medium

Mahir Aligulu Mehdiyev ${ }^{1,2}$, Surkay Akbarov ${ }^{1,3}$
${ }^{1}$ Institute Mathematics and Mechanics of NAS Azerbaijan, Baku, Azerbaijan
${ }^{2}$ Azerbaijan State Economics University, Dept. Mathematics, Baku, Azerbaijan ${ }^{3}$ Yildiz Technical University, Dept. Mechanical Eng., Istanbul, Turkey

Mathematical modelling of the problems related to the study of dynamics of tunnels and similar type constructions in many cases can be reduced to the study of the forced vibration of the bi-material elastic system consisting of the hollow cylinder and surrounding elastic medium. As an example for such modelling and study, in the present paper the forced vibration of the aforementioned system caused by the radial time-harmonic forces which act on the internal surface of the cylinder is considered. It is assumed that the forces are point-located with respect to the central axis of the cylinder and the axisymmetric problem is analyzed, according to which, the following field equations are satisfied within the framework of the volume of each constituents of the system.

$$
\begin{align*}
& \frac{\partial \sigma_{r r}^{(k)}}{\partial r}+\frac{\partial \sigma_{r z}^{(k)}}{\partial z}+\frac{1}{r}\left(\sigma_{r r}^{(k)}-\sigma_{\theta \theta}^{(k)}\right)=\rho^{(k)} \frac{\partial^{2} u_{r}^{(k)}}{\partial t^{2}}, \quad \frac{\partial \sigma_{r z}^{(k)}}{\partial r}+\frac{1}{r} \sigma_{r z}^{(k)}=\rho^{(k)} \frac{\partial^{2} u_{z}^{(k)}}{\partial t^{2}} \\
& \sigma_{i i}^{(k)}=\lambda^{(k)}\left(\varepsilon_{r r}^{(k)}+\varepsilon_{\theta \theta}^{(k)}+\varepsilon_{z z}^{(k)}\right)+2 \mu^{(k)} \varepsilon_{i i}^{(k)}, \quad i i=r r, \theta \theta, z z ; \quad \sigma_{r z}^{(k)}=2 \mu^{(k)} \varepsilon_{r z}^{(k)} \tag{1}\\
& \varepsilon_{r r}^{(k)}=\frac{\partial u_{r}^{(k)}}{\partial r}, \quad \varepsilon_{\theta \theta}^{(k)}=\frac{u_{r}^{(k)}}{r}, \quad \varepsilon_{z z}^{(k)}=\frac{\partial u_{z}^{(k)}}{\partial z}, \quad \varepsilon_{r z}^{(k)}=\frac{1}{2}\left(\frac{\partial u_{z}^{(k)}}{\partial r}+\frac{\partial u_{r}^{(k)}}{\partial z}\right)
\end{align*}
$$

In (1) a conventional notation is used and the case where $k=1(k=2)$ relate to the surrounding media (cylinder). Note that before writing the equations in (1) we introduce the cylindrical system of coordinates associated with the central axis of the cylinder. Assuming that the cylinder (surrounding media) occupies the region $R-h<r<R$ $(R<r<\infty)$ under $-\infty<z<+\infty$ the corresponding perfect contact conditions on the surface $r=R$ and the following boundary conditions on the surface $r=R-h$ are added to equations in (1):

$$
\begin{equation*}
\sigma_{r r}^{(2)}=-P_{0} e^{i \omega t} \delta(z), \quad \sigma_{r z}^{(2)}=0 \text { at } r=R-h . \tag{2}
\end{equation*}
$$

The foregoing mathematical problem is solved analytically by employing the Fourier transformation with respect to z and using the corresponding algorithm developed in [1] the originals of the sought values are found numerically. Numerical results on the frequency response of the normal and shear stresses acting on the interface surface between the constituents are presented and discussed.

References

[1] S. D. Akbarov, Dynamics of Pre-Strained Bi-Material Elastic Systems. Linearized three-dimensional approach. Springer, Cham, 2015.

Some Algorithms of Solving the Systems of Nonlinear Algebraic Equations on Parallel Computing Systems

Hamlet Meladze ${ }^{1}$, Tinatin Davitashvili ${ }^{2}$
${ }^{1}$ St. Andrew the First Called Georgian University, Tbilisi, Georgia
${ }^{2}$ I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
emails: h_meladze@hotmail.com; tinatin.davitashvili@tsu.ge

Nowadays the use of computing systems with parallel processing of information for numerical modeling of applied complex problems is a perspective direction. The systems of the nonlinear algebraic equations are arising in the course of solution of many applied problems and a scope of application of numerical methods of nonlinear algebra is rather wide, for example, the intermediate and final stages of the solution of practical problems, described by nonlinear differential and integral equations. They can also arise, as intermediate stages in problems of minimization or approximation of functions. The
solving of such systems is one of complex problems in computational mathematics and it demands, as a rule, essential computing resources. One of the ways to reduce the time of the solution of such tasks is to use parallel calculations on the computing systems with multiprocessors.

In the present work the iterative algorithm for solving the systems of nonlinear algebraic equations is constructed, taking into account the features of parallel calculations. Speed of convergence of the offered iterative method is estimated.

 ogobls.

Solution of the Non-classical Problems of Statics of Two-Component Elastic Mixtures for a Half-Space

David Metreveli, David Burchuladze
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
emails: datometreli@hotmail.com; dburchula@yahoo.com

In this paper we consider boundary value problems of statics of two-component elastic mixtures for a half-space, when the normal components of partial displacement vectors and the tangent components of partial rotation vectors are given on the boundary. Uniqueness theorems of the considered problem are proved. Solutions are represented in quadratures.

Integral Functionals of Distribution Densities and Their Derivatives

Tina Mgeladze

Department of Probability Theory and Statistic, Tbilisi State University, Tbilisi, Georgia
email: tikuna.mgeladze13@gmail.com

In this work we study integral functionals of distribution densities and their derivatives. We work on the problem of constructing recurrence Estimates for such functionals. To estimate density and it's derivatives, we use classical Rosenblatt-Parzen kernel estimates and for functionals we make plug-in-estimator type argument. We study limit properties of constructed recurrence.

References

[1] M. Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956), 832-837.
[2] E. Parzen, On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962), 1065-1076.
[3] P. K. Bhattacharya, Estimation of a probability density function and its derivatives. Sankhyā Ser. A 29 (1967), 373-382.
[4] E. F. Schuster, Estimation of a probability density function and its derivatives. Ann. Math. Statist. 40 (1969), 1187-1195.
[5] E. A. Nadaraya, Nonparametric Estimation of Probability Densities and Regression Curves. Translated from the Russian by Samuel Kotz. Mathematics and its Applications (Soviet Series), 20. Kluwer Academic Publishers Group, Dordrecht, 1989.
[6] B. Ya. Levit, Asymptotically efficient estimation of nonlinear functionals. (Russian) Problems Inform. Transmission 14 (1978), no. 3, 65-72.
[7] P. Hall, J. S. Marron, Estimation of integrated squared density derivatives. Statist. Probab. Lett. 6 (1987), no. 2, 109-115.
[8] P. J. Bickel, Y. Ritov, Estimating integrated squared density derivatives: sharp best order of convergence estimates. Sankhyā Ser. A 50 (1988), no. 3, 381-393.
[9] L. Birgé, P. Massart, Estimation of integral functionals of a density. Ann. Statist. 23 (1995), no. 1, 11-29.
[10] B. Laurent, Efficient estimation of integral functionals of a density. Ann. Statist. 24 (1996), no. 2, 659-681.
[11] D. M. Mason, Representations for integral functionals of kernel density estimators. Austrian J. Statistics 32 (2003), 131-142.
[12] D. M. Mason, E. Nadaraya, G. Sokhadze, Integral functionals of the density. Nonparametrics and robustness in modern statistical inference and time series analysis: a Festschrift in honor of Professor Jana Jurečková, 153-168, Inst. Math. Stat. Collect., 7, Inst. Math. Statist., Beachwood, OH, 2010.

Management Tasks Formulation in Geopolitics (Neural approach)

Miranda Mnatsakaniani
Akaki Tsereteli State University, Department of Mathematics, Kutaisi, Georgia
email: mira_mna@mail.ru

Recently a new neural type models were created, which make the current processes formulation and international relationships prediction in society.

The work raises the problem of optimization, which can be solved by using this type of models.

For example, N states are linked by definite interests. Each of them is characterized by parameters- capacity in the given moment. The dynamic of the system will be described by sigmoid function. The system is influenced by internal factors like links between
these states historically developed and assessed by the experts, historically sustainable situations (for example, formations), sustainability towards certain internal processes of the state, as well as external factors (for example change of geopolitical, economic, or environmental situation) and joint (states conclude an agreement, the partial distribution of states capacity within this union takes place, and etc.) factors.

From the states included in the system State A is interested in increasing own capacity at the expense of other states weakening.

The control parameters in the given module can be the links matrix with the limitations as follows: A- State in the definite period of time, can not change sharply the attitude towards other states of the union), and it may be a matrix of joint factors (for example: domestic product shares or investment matrix transferred by A State by other States.)

Quality criteria for the operation of the State A represent generalization of the criterion function reviewed in [1].

Note that this type of neural model can be used in so-called Cooperative option, when the State unions want to increase their total joint capacity.

References

[1] М. С. Берадзе, М. Р. Мнацаканян, Управление в моделях нейросетевого типа. Наукові вісті НТУУ "ККІ", 2001, no. 2, 25-30.

Knapsack Problem over Time

Shahram Morowati-Shalilvand, Sedaghat Shahmorad, Kamal Mirnia
University of Tabriz, Tabriz, Iran
email: Sh_Morowati@Tabrizu.ac.ir

In this abstract we study a variation of the well known knapsack problem [1], [2] called "Knapsack Problem Over Time(KPOT)". In KPOT there exist n items (liquids) namely $J=\{1,2, \ldots, n\}$ and each item $j \in J$ corresponds a weight per unit w_{j}, a value per unit v_{j} and a traverse (pumping) time τ_{j}. Note that when an item j starts to load or pump at time θ, it arrives into container (knapsack) at time $\theta+\tau_{j}$. Using these notations, given a time horizon T, a total capacity W, KPOT aims to maximize the value of liquids in the container (knapsack) up to time T without exceeding its weight capacity W. This
problem can be formulated as follows

$$
\max \left\{\begin{array}{l|ll}
\sum_{j=1}^{n} v_{j} \int_{0}^{T-\tau_{j}} x_{j}(\theta) d \theta \left\lvert\, \begin{array}{ll}
\sum_{j=1}^{n} w_{j} \int_{0}^{T-\tau_{j}} x_{j}(\theta) d \theta \leq W, & \\
\int_{0}^{T-\tau_{j}} x_{j}(\theta) d \theta \leq u_{j}, & j \in J, \\
0 \leq x_{j}(\theta) \leq \eta_{j}, & \theta \in[0, T], \quad j \in J,
\end{array}\right. \tag{1}
\end{array}\right\}
$$

where u_{j} and η_{j} denote the availability and maximum possible pumping rate of item j, respectively; and $x_{j}(\theta):[0, T] \rightarrow\left[0, \eta_{j}\right]$ is a Lebesgue-integrable function which measures the rate of pumping item $j \in J$ at time moment θ; moreover $x_{j}(\theta)=0$ must hold for ($\left.T-\tau_{j}, T\right]$. The complicated problem (1) can not be solved by existing methods in literature. Therefore we attempt to simplify (1) to a solvable problem.

By the well known "mean value theorem for integrals" there exists at least one $\xi \in$ $\left(0, T-\tau_{j}\right)$ such that $\int_{0}^{T-\tau_{j}} x_{j}(\theta) d \theta=\left(T-\tau_{j}\right) x_{j}(\xi)$. Therefore substituting $\int_{0}^{T-\tau_{j}} x_{j}(\theta) d \theta$ by $\left(T-\tau_{j}\right) x_{j}(\xi)$, the problem (1) converts to the following linear programming problem.

$$
\max \left\{\begin{array}{l|ll}
\sum_{j=1}^{n} v_{j}\left(T-\tau_{j}\right) \mu_{j} & \begin{array}{ll}
\sum_{j=1}^{n} w_{j}\left(T-\tau_{j}\right) \mu_{j} \leq W, & \\
\begin{array}{l}
\left.T-\tau_{j}\right) \mu_{j} \leq u_{j},
\end{array} & j \in J \\
0 \leq \mu_{j} \leq \eta_{j}, & \theta \in[0, T], \quad j \in J
\end{array} \tag{2}
\end{array}\right\}
$$

where $\mu_{j}=x_{j}(\xi)$.
Due to taking the time factor into account, KPOT has many variations categorized as continuous time KPOT and discrete time KPOT. Discrete time category includes two types of "carne loading" and "conveyor loading". Some of the variations of KPOT are NP-complete which most of them are solved but a few of them still remain open.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows. Theory, Algorithms, and Applications. Prentice Hall, Inc., Englewood Cliffs, NJ, 1993.
[2] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems. Springer-Verlag, Berlin, 2004.

On Burnside Varieties

Yu. M. Movsisyan
Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
email: yurimovsisyan@yahoo.com

The following algebraic problem is classical: what are all (idempotent) varieties of algebras that do not contain finitely generated infinite algebras? This is an unsolved hard problem even for varieties of classical algebraic structures. Such varieties are called Burnside varieties of algebras (W. Burnside). For instance:

1) A finitely generated distributive lattice is finite;
2) A finitely generated Boolean algebra is finite;
3) A finitely generated De Morgan algebra is finite;
4) A finitely generated Boole-De Morgan algebra is finite;
5) A finitely generated algebra with two binary, one unary and two nullary operations, satisfying the hyperidentities of the variety of Boolean algebras is finite;
6) A finitely generated algebra with two binary and one unary operations, satisfying the hyperidentities of the variety of De Morgan algebras is finite;
7) A finitely generated idempotent semigroup is finite.

In the main result of the current talk we give a general version of the last result concerning idempotent algebras with an associative hyperidentity. As a consequence we obtain new infinitely many idempotent varieties of binary algebras in which every finitely generated algebra is finite.

On Division and Regular Algebras with Functional Equations

Yuri Movsisyan ${ }^{1}$, Sergey Davidov ${ }^{1}$, Aleksandar Krapež ${ }^{2}$
${ }^{1}$ Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
${ }^{2}$ Mathematical Institute of the Serbian Academy of Science and Arts, Belgrade, Serbia

emails: yurimovsisyan@yahoo.com; davidov@ysu.am; sasa@mi.sanu.ac.rs

Functional equations are equations in which the unknown (or unknowns) are functions. We consider equations of generalized associativity, mediality (bisymmetry, entropy), paramediality, transitivity as well as the generalized Kolmogoroff equation. The usefullness of all of them were proved in applications both in mathematics and in other disciplines, particularly in economics and social sciences. We use unifying approach to solve these equations for division and regular operations generalizing the classical quasigroup case.

Prismatic Shell with the Thickness Vanishing at Infinity in the $N=0$ Approximation of Hierarchical Models

Natia Mtchedlidze
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: natia92@yahoo.com

The work is devoted to the prismatic shell with the thickness vanishing at infinity in the $N=0$ approximation of hierarchical models. The thickness of the plate has the form

$$
2 h=2 h_{0} e^{-\kappa\left(x_{1}+x_{2}\right)}, \quad h_{0}=\text { const }>0, \quad \kappa=\text { const } \geq 0, \quad x_{1} \geq 0, \quad x_{2} \geq 0
$$

Two cases are considered:
I. Projection of the plate on $O x_{1} x_{2}$ is the following square

$$
\omega_{l}=\left\{\left(x_{1}, x_{2}\right): 0 \leq x_{1} \leq l ; \quad 0 \leq x_{2} \leq l\right\}
$$

The existence and uniqueness theorems are proved in the Hilbert Space $X^{\kappa}\left(\omega_{l}\right) \equiv$ $W_{2}^{1}\left(\omega_{l}\right)$.
II. Projection of the plate on $O x_{1} x_{2}$ is the following quadrant

$$
\omega:=\left\{\left(x_{1}, x_{2}\right): 0 \leq x_{1}<+\infty ; 0 \leq x_{2}<+\infty\right\} .
$$

The solutions of the set problems are given in integral forms, in some concrete cases they are given in explicit forms.

On Estimations of Distribution Densities in Functional Spaces

Elizbar Nadaraya, Grigol Sokhadze
Faculty of Exact and Natural Sciences, Department of Mathematics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
emails: elizbar.nadaraya@tsu.ge; grigol.sokhadze@tsu.ge

The problems of estimation of functionals of probability distribution densities and it's derivatives in various functional spaces are considered. Asymptotic properties of this estimations are given.

On Selection of Copulas

Vadoud NajJari
Young Researchers and Elite Club, Maragheh branch, Islamic Azad University, Maragheh, Iran
email: vnajjari@iau-maragheh.ac.ir; vnajjari@gazi.edu.tr

In choosing the right copula, existing methods pose numerous difficulties and none of them is entirely satisfactory. In this study, the main endeavor is to propose a simple and reliable new method to choose the right copula family. Hence, we propose goodness of fit test statistic to be a function of copula parameters and then we investigate the minimum of this function. Hereby we are able to estimate copula parameters and also select the right copula between copula families. With an example the new method will be compared with the existent nonparametric method.

References

[1] V. Najjari, T. Bacigál, and H. Bal, An archimedean copula family with hyperbolic cotangent generator. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 22 (2014), no. 5, 761-768.
[2] R. B. Nelsen, An introduction to copulas. Second edition. Springer Series in Statistics. Springer, New York, 2006.

Some Statically Definable Problems for Cylindrical Shells

Miranda Narmania ${ }^{1}$, Roman Janjgava ${ }^{2}$
${ }^{1}$ University of Georgia, Tbilisi, Georgia
email: miranarma19@gmail.com

${ }^{2}$ I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: roman.janjgava@gmail.com

In this paper we consider some statically definable problems for cylindrical shells with constant thickness [1]. The middle surface of the shell expanded in the plane is the rectangle. Hooke's law is not applicable in this case. We assume the transverse stress field as known in advance, and for the other components of the stress tensor we obtain a system of equations, for which we set the physical boundary conditions.

Acknowledgement. The designated project has been fulfilled by a financial support of Shota Rustaveli National Science Foundation (Grant SRNSF/FR/358/5-109/14).

References

[1] I. N. Vekua, Shell Theory: General Methods of Construction. Pitman Advanced Publishing Program, Boston-London-Melbourne, 1985.

The General Solution of the Non-Homogeneous Problem

Natavan Nasibova
Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan
email: natavan2008@gmail.com

Consider the following Riemann problem in $H_{p(\cdot), \rho}^{+} \times{ }_{m} H_{p(\cdot), \rho}^{-}$classes:

$$
\begin{equation*}
F^{+}(\tau)-G(\tau) F^{-}(\tau)=f(\tau), \quad \tau \in \partial \omega \tag{1}
\end{equation*}
$$

where $f \in L_{p(\cdot), \rho}$ is some function. By the solution of problem (1) we mean a pair of analytic functions $\left(F^{+}(z) ; F^{-}(z)\right) \in H_{p(\cdot), \rho}^{+} \times{ }_{m} H_{p(\cdot), \rho}^{-}$, boundary values of which satisfy the relation (1) almost everywhere. Introduce the following functions $X_{i}^{ \pm}(z)$, which are analytic inside (with the + sign) and outside (with the $-\operatorname{sign}$) the unit circle, respectively:

$$
\begin{aligned}
& X_{1}^{ \pm}(z) \equiv \exp \left\{ \pm \frac{1}{4 \pi} \int_{-\pi}^{\pi} \ln \left|G\left(e^{i t}\right)\right| \frac{e^{i t}+z}{e^{i t}-z} d t\right\} \\
& X_{2}^{ \pm}(z) \equiv \exp \left\{ \pm \frac{i}{4 \pi} \int_{-\pi}^{\pi} \theta(t) \frac{e^{i t}+z}{e^{i t}-z} d t\right\},
\end{aligned}
$$

where $\theta(t) \equiv \arg G\left(e^{i t}\right)$. Define

$$
Z_{i}(z) \equiv \begin{cases}X_{i}^{+}(z), & |z|<1 \\ {\left[X_{i}^{-}(z)\right]^{-1},} & |z|>1, \quad i=1,2\end{cases}
$$

Assume

$$
Z^{ \pm}(z) \equiv Z_{1}^{ \pm}(z) Z_{2}^{ \pm}(z)
$$

Theorem. Let $\left\{\beta_{k}\right\}_{1}^{r}$ be defined by

$$
\beta_{k}=\sum_{i=1}^{m} \alpha_{i} \chi_{\left\{t_{k}\right\}}\left(\arg \tau_{i}\right)+\frac{1}{2 \pi} \sum_{i=0}^{r} h_{i} \chi_{\left\{t_{k}\right\}}\left(s_{i}\right), \quad k=\overline{0, l},
$$

and the inequalities $-\frac{1}{p\left(\tau_{k}\right)}<\alpha_{k}<\frac{1}{q\left(\tau_{k}\right)}, k=\overline{1, m},-\frac{1}{q\left(t_{k}\right)}<\beta_{k}<\frac{1}{p\left(t_{k}\right)}, k=\overline{0, r}$, be satisfied. Then the general solution of the Riemann problem (1) in classes $H_{p(\cdot), \rho}^{+} \times{ }_{m} H_{p(\cdot), \rho}^{-}$ can be represented in the following form

$$
F(z)=P_{m_{0}}(z) Z(z)+F_{1}(z),
$$

where $Z(\cdot)$ is the canonical solution of homogeneous problem, $F_{1}(z)=\frac{Z(z)}{2 \pi} \int_{-\pi}^{\pi} \frac{f(t)}{Z^{+}\left(e^{i t}\right)} K_{z}(t) d t$, is the particular solution of non-homogeneous problem (1), and $P_{m_{0}}(\cdot)$ is a polynomial of order $m_{0} \leq m$.

This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan - Grant №EIF/GAM-3-2014-6(21)-24/03/1.

A Numerical Method for Solving Integral Equations by Modified Hat Functions

Babak Nasrinpay, Yousef Jafarzadeh
Islamic Azad university, Central Tehran Branch, Tehran, Iran
Sama Technical and Vocational Training College, Islamic Azad University, Karaj Branch, Karaj, Iran
email: Mat2j@yahoo.com

In this paper, we use hat basis functions to solve the system of Fredholm integral equations (SFIEs) of the second kind. This method converts the system of integral equations into a nonlinear system of algebraic equations. Also, we investigate the convergence analysis of the method. Some examples show its accuracy and efficiency.

Keywords: Integral equations, Hat functions, Convergence analysis, fix point method.

Weakly E-Supplemented Modules

Celil Nebiyev
Department of Mathematics, Ondokuz Mayş University, 55270
Kurupelit-Atakum/Samsun/Türkiye-Turkey
email: cnebiyev@omu.edu.tr

In this work, weakly e-supplemented modules are defined and some properties of these modules are investigated. Let M be an R-module and $M=M_{1}+M_{2}+\cdots+M_{n}$. If M_{i} is weakly e-supplemented for every $i=1,2, \ldots, n$, then M is also weakly e-supplemented. It is proved that every factor module and every homomorphic image of a weakly e supplemented module are weakly e-supplemented.

Key words: Essential Submodules, Small Submodules, Radical, Supplemented Modules.

Results

Definition 1. Let M be an R-module. If every essential submodule of M has a weak supplement in M, then M is called a weakly e-supplemented module.
Proposition 2. Let M be a weakly e-supplemented module. Then M / RadM have no proper essential submodules.
Lemma 3. Let M be an R-module, U be an essential submodule of M and $M_{1} \leq M$. If M_{1} is weakly e-supplemented and $U+M_{1}$ has a weak supplement in M, then U has a weak supplement in M.

Lemma 4. Let $M=M_{1}+M_{2}$. If M_{1} and M_{2} are weakly e-supplemented, then M is also weakly e-supplemented.
Proposition 5. Let R be a ring. Then ${ }_{R} R$ is weakly e-supplemented if and only if every finitely generated R-module is weakly e-supplemented.

References

[1] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules supplements and projectivity in module theory. Frontiers in Mathematics, Birkhäuser, Basel, 2006.
[2] C. Nebiyev, E-Supplemented modules. Antalya Algebra Days XVIII, Şirince-İzmirTurkey, 2016.
[3] R. Wisbauer, Foundations of module and ring theory. Algebra, Logic and Applications, 3. Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
[4] H. Zöschinger, Komplementierte Moduln über Dedekindringen. J. Algebra 29 (1974), 42-56 (in German).

E-Supplemented Lattices

Celil Nebiyev ${ }^{1}$, Hasan Hüseyin Ökten ${ }^{2}$
${ }^{1}$ Ondokuz Mayis University, Department of Mathematics, Kurupelit-Atakum, Samsun, Turkey
email: cnebiyev@omu.edu.tr
${ }^{2}$ Amasya University, Technical Sciences Vocational School, Amasya, Turkey email: hokten@gmail.com

In this work, e-supplemented lattices are defined and some properties of these lattices are investigated. Let L be complete modular lattice and $m_{1} \vee m_{2} \vee \cdots \vee m_{n}=1$. If $m_{i} / 0$
is e-supplemented for every $i=1,2,3, \ldots, n$ then, L is also e-supplemented. All lattices in this paper are complete modular lattices.

Theorem 1. Let L be a lattice, $m_{1} \in L$ and u be an essential element of L. If $m_{1} / 0$ is e-supplemented and $u \vee m_{1}$ has a supplement in L, then u has a supplement in L.
Lemma 2. Let L be a lattice and $m_{1} \vee m_{2}=1$. If $m_{1} / 0$ and $m_{2} / 0$ are e-supplemented, then L is also e-supplemented.

Corollary 3. Let L be a lattice and $m_{1} \vee m_{2} \vee \cdots \vee m_{n}=1$. If $m_{i} / 0$ is e-supplemented for each $i=1,2, \ldots, n$, then L is also e-supplemented.

References

[1] C. Nebiyev, E-Supplemented Modules. Antalya Algebra Days XVIII, Şirince-İzmir, Turkey, 2016.
[2] G. Cǎlugǎreanu, Lattice Concepts of Module Theory. Kluwer Texts in the Mathematical Sciences, 22. Kluwer Academic Publishers, Dordrecht, 2000.
[3] B. A. Davey, H. A. Priestley, Introduction to Lattices and Order. Second edition. Cambridge University Press, New York, 2002.
[4] R. Wisbauer, Foundations of Module and Ring Theory. Algebra, Logic and Applications, 3. Gordon and Breach Science Publishers, Philadelphia, PA, 1991.

Mathematical Modeling of Immunopathogenesis of Rheumatoid Arthritis

Kakhaber Odisharia ${ }^{1}$, Vladimer Odisharia ${ }^{2,4}$, Paata Tsereteli ${ }^{1,4}$, Nona Janikashvili ${ }^{3}$
${ }^{1}$ Informatics, Mathematics and Natural Sciences School, St. Andrew the First-Called Georgian University, Tbilisi, Georgia
${ }^{2}$ Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{3}$ Department of Immunology, Tbilisi State Medical University, Tbilisi, Georgia
${ }^{4}$ Georgian Association of Biomathematics, Tbilisi, Georgia
email: paata.tsereteli@gmail.com

Rheumatoid arthritis is a systemic autoimmune disease characterized by the joint inflammation and the cartilage destruction. Autoreactive B lymphocytes represent integral elements of the pathophysiology of rheumatoid arthritis. Immune balance between
the effector and the regulatory T cell subsets guide the production of autoantibodies by B lymphocytes and, therefore, play a cardinal role in disease severity. While targeted therapeutic approaches are successfully emerging in medical practice, refined personalized analysis of T and B lymphocyte subsets in patients with rheumatoid arthritis are critically needed for rigorous disease management.

Mathematical models of immune mediated disorders provide an analytic framework in which we can address specific questions concerning disease immune dynamics and the choice of treatment. Herein, we present a novel mathematical model that describes the immunopathogenesis of rheumatoid arthritis using non-linear differential equations. The model explores the functional dynamics of cartilage destruction during disease progression, in which a system of differential equations deciphers the interactions between autoreactive B lymphocytes and T helper cells. Immunomodulatory relation between pro-inflammatory and regulatory T lymphocyte subsetsis also solved in these equations. Of importance, our model provides a mechanistic interpretation of targeted immunotherapy which deals with the intervention of pathophysiological immune processes in rheumatoid arthritis.

In conclusion, we propose a novel mathematical model that best describes the immunopathogenic dynamics in patients with rheumatoid arthritis and, therefore, may take a rapid pace towards its implementation in biomedical and clinical research.

References

[1] J. M. Murray. Mathematical biology. Second edition. Biomathematics, 19. SpringerVerlag, Berlin, 1993.
[2] L. G. de Pillis, A. E. Rudinskaya, and C. L. Wiseman, A Validated mathematical model of cell-mediated immune response to tumor growth cancer. Cancer Res. 65 (2005), 7950-7958.
[3] L. G. de Pillis and A. Rudinskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J. Theoretical Medicine 3 (2001), 79-100.

 kolgiga

[1] J. Peradze, The integro-differential representation of a system of one dimensional Timoshenko equations. Abstracts of papers of the conference Methods of solution of Integro-Differential and Operator Equations, pp. 31-32, Tartu, Estonia, 1987.
[2] J. Peradze, V.Odisharia, A Numerical Algorithm for a One Dimensional Nonlinear Timoshenko System. Int. J. Appl. Math. Inform. 2 (2008), no. 3, 67-75.
[3] V. Odisharia, A One-Dimensional Non-linear Static Problem for the Timoshenko Shell. Int. Conf. on Comput. Science and Appl. Math. (TICCSAM 2015), Conf. Proc., pp. 137-139, Tbilisi, 2015.
[4] K. Odisharia, P. Tsereteli, V. Odisharia, Parallel Algorithm for Timoshenko Nonlinear Problem. Int. Conf. of the Georgian Math. Union, Book of Abstr., pp. 158-159, Batumi, Georgia,2015.

On Construction of Full-Strength Holes for the Mixed Problem of Plate Bending

Nana Odishelidze
Iv. Javakhishvili Tbilisi State University, Faculty of Exact and Natural Sciences, Interdisciplinary (Mathematics, Computer Science) Department, Tbilisi, Georgia
email: nana_georgiana@yahoo.com

The paper addresses a problem of bending of an isotropic elastic plate, weakened with a required full-strength hole. Rigid bars are attached to each component of the broken line of the outer boundary of the plate. This plate bends under the action of concentrated moments applied to the middle points of the bars. Unknown part of the boundary is free from external forces. Using the methods of complex analysis the plate deflection and required full-strength contours are determined. The corresponding plots are constructed by Mathcad.

The Process of Semi-Markov Random Walk with Two Delaying Screen

Konul Omarova

Institute of Control Systems of Azerbaijan National Academy of Sciences, Baku, Azerbaijan
email: omarovakonulk@gmail.com
Let $\left\{\xi_{k}, \eta_{k}\right\}_{k \geq 0}, \xi_{k} \geq 0$ be a sequence of independent and identically distributed random variables. By given random variables is constructed process of semi-Markov random walk as

$$
X_{1}(t)=\sum_{i=0}^{k} \eta_{i}, \quad \text { if } \quad \sum_{i=1}^{k} \xi_{i} \leq t<\sum_{i=1}^{k+1} \xi_{i},
$$

where $\xi_{0}=0, \eta_{0}=z$.
By the A. A. Borovkov's method [1] the process is delayed screen at zero as

$$
X(t)=X_{1}(t)-\inf _{0 \leq s \leq t}\left(0, X_{1}(s)\right) .
$$

In the general case a integral equation for the distribution process $X(t)$, if $X(0)=z \geq 0$ is obtained.

Detailed we reference to [2].
Let $\eta_{k}, k \geq 1$, are gamma distributed random variables and $\xi_{k}, k \geq 1$, are exponential distributed random variables. In this case obtained integral equation is reduced to fractional differential equation with constant coefficients.

References

[1] A. A. Borovkov, Probability theory. Gordon and Breach Science Publishers, Amsterdam, 1998.
[2] T. H. Nasirova, Semi-Markov random walk processes. Èlm, Baku, 1984 (in Russian).

Representation of the Dirac Delta Function in $\mathcal{C}\left(R^{\infty}\right)$ in Terms of the $(1,1, \cdots)$-Ordinary Lebesgue Measure

Gogi Pantsulaia, Givi Giorgadze

Georgian Technical University, Department of Mathematics, Tbilisi, Georgia
emails: g.pantsulaia@gtu.ge; g.giorgadze@gtu.ge
Let λ be an $(1,1, \cdots)$-ordinary Lebesgue measure in R^{∞} (cf. [1]). For $\varepsilon>0$, we set $a_{k}(\varepsilon)=e^{-\frac{1}{2^{k_{\varepsilon}}}} / 2$ and $\Delta_{\varepsilon}=\prod_{k=1}^{\infty}\left[-a_{k}(\varepsilon), a_{k}(\varepsilon)\right]$. We set $\eta_{\varepsilon}(x)=e^{\sum_{k=1}^{\infty} \frac{1}{2^{k_{\varepsilon}}}}$ if $x \in \Delta_{\varepsilon}$ and $\eta_{\varepsilon}(x)=0$, otherwise. $\eta_{\varepsilon}(x)$ is called a nascent delta function.

Let f be a continuous real-valued function on R^{∞}. We define a Dirac delta integral as follows

$$
(\delta) \int_{R^{\infty}} \delta(x) f(x) d \lambda(x)=\lim _{\varepsilon \rightarrow O+} \int_{R^{\infty}} \eta_{\varepsilon}(x) f(x d \lambda(x)
$$

We define a Dirac delta functional $\delta: C\left(R^{\infty}\right) \rightarrow R$ by ($1,1, \cdots$)-ordinary Lebesgue measure λ as follows: $\delta(f)=(\delta) \int_{R^{\infty}} \delta(x) f(x) d \lambda(x)$.

In the present talk we will demonstrate the validity of the following properties of the Dirac delta functional δ :

Property 1. δ is a linear functional such that $\delta(f)=f(\mathbf{0})$ for each $f \in C\left(R^{\infty}\right)$, where $\mathbf{0}$ denotes the zero of R^{∞}.
Property 2. For a non-zero scalar α, δ satisfies the following scaling property

$$
(\delta) \int_{R^{\infty}} \delta(\alpha x) d \lambda(x)=|\alpha|^{-\infty}
$$

Property 3. δ is an even distribution provided that

$$
(\delta) \int_{R^{\infty}} \delta(-x) f(x) d \lambda(x)=(\delta) \int_{R^{\infty}} \delta(x) f(x) d \lambda(x) \text { for } f \in C\left(R^{\infty}\right)
$$

which is homogeneous of degree -1 .
Property 4 (sifting property). The following equality

$$
(\delta) \int_{R^{\infty}} \delta(x-T) f(x) d \lambda(x)=f(T)
$$

holds for $f \in C\left(R^{\infty}\right)$.
Property 5. For $\varepsilon>0$, let $\left(Y_{n}(\varepsilon)\right)_{n \in N}$ be an increasing family of finite subsets of Δ_{ε} which is uniformly distributed in the Δ_{ε} (cf. [2]). Then the following equality

$$
\delta(f)=\lim _{\varepsilon \rightarrow \mathbf{0}} \lim _{n \rightarrow \infty} \sum_{y \in Y_{n}(\varepsilon)} f(y) / \#\left(Y_{n}(\varepsilon)\right.
$$

holds true for each $f \in \mathcal{C}\left(R^{\infty}\right)$.
Acknowledgment. The research for this paper was partially supported by Shota Rustaveli National Science Foundation's Grant no. FR/116/5-100/14.

References

[1] G. Pantsulaia, On ordinary and standard Lebesgue measures on \mathbb{R}^{∞}. Bull. Pol. Acad. Sci. Math. 57 (2009), no. 3-4, 209-222.
[2] G. R. Pantsulaia, On uniformly distributed sequences of an increasing family of finite sets in infinite-dimensional rectangles. Real Anal. Exchange 36 (2010/11), no. 2, 325-340.

Numerical Solution for a Two-Point Boundary Value Problem with a Second Order Non-Constant Coefficient Ordinary Differential Equation by Means of Operator Interpolation Method

Archil Papukashvili ${ }^{1,2}$, Meri Sharikadze ${ }^{1,2}$, Ekaterine Namgalauri ${ }^{2}$, Maria Gorgisheli ${ }^{2}$
${ }^{1}$ I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ I. Javakhishvili Tbilisi State University, Faculty of Exact and Natural Sciences, Tbilisi, Georgia

emails: archil.papukashvili@tsu.ge; meri.sharikadze@tsu.ge; eka.namgalauri@yahoo.com; maria.gorgisheli2014@ens.tsu.edu.ge

Functional series and interpolation algorithms for solving identification problems are used in the theory of nonlinear systems. It's constructed interpolation formula of the Newton type and obtained evaluation of residual term in V. Makarov's and V. Khlobistov's works for nonlinear operators functional (see for example [1]). This approach is based on "continual" knots from interpolation conditions in the definition of kernels of functional (operator) polynomials. These "continual" knots represent linear combination of Heaviside functions. The abovementioned works have theoretical and practical importance in applied problems of the theory of operators' approximation. Issues of realization of interpolation approximations on the electronic computers haven't been discussed by the abovementioned authors. Calculating algorithms for approximate solution for boundary value problems of ordinary differential equations with non-constant coefficients are subscribed in the works [2], results of calculations of test problems are given, convergence issues are studied by the numerical-experimental way.

Issues of approximate solutions for two-point boundary value problem with nonconstant coefficient by the use of operator interpolation polynomials of the Newton type are also discussed in the given work. Besides, the Green function of the differential equation of the boundary value problem)as a non-linear operator with respect to the nonconstant coefficient, is replaced by the known kernels of operator interpolation polynomial of the Newton type. Formulas of approximate solution of different type are constructed for finding the solution for two-point boundary value problem. Description of realization algorithm sand the calculation results of test problems are given. The convergence with respect to m parameter from the series of numerical experiments is exposed (m-degree of the operator interpolation polynomial of the Newton type).

References

[1] V. L. Makarov and V. V. Khlobystov, On the identification of nonlinear operators and its application (invited contribution). Boundary elements IX, Vol. 1 (Stuttgart, 1987), 43-58, Comput. Mech., Southampton, 1987.
[2] A. R. Papukashvili, Approximate solution of a two-point boundary value problem with a variable coefficient using operator interpolation polynomials of Newton type. (Russian) Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 44 (1992), 45-74, 221.

On One Method of Approximate Solution of the J. Ball Nonlinear Dynamic Beam Equation

Giorgi Papukashvili

V. Komarovi No. 199 Public School, Georgian Technical University, Tbilisi, Georgia

email: gagapapukashvili@gmail.com

Let us consider the initial boundary value problem

$$
\begin{gather*}
u_{t t}(x, t)+\delta u_{t}(x, t)+\gamma u_{x x x x t}(x, t)+\alpha u_{x x x x}(x, t) \\
-\left(\beta+\rho \int_{0}^{L} u_{x}^{2}(x, t) d x\right) u_{x x}(x, t)-\sigma\left(\int_{0}^{L} u_{x}(x, t) u_{x t}(x, t) d x\right) u_{x x}(x, t)=0 \tag{1}\\
0<x<L, \quad 0<t \leq T \\
u(x, 0)=u^{0}(x), \quad u_{t}(x, 0)=u^{1}(x) \tag{2}\\
u(0, t)=u(L, t)=0, \quad u_{x x}(0, t)=u_{x x}(L, t)=0
\end{gather*}
$$

where $\alpha, \gamma, \rho, \sigma, \beta$ and δ are the given constants among which the first four are positive numbers, while $u^{0}(x)$ and $u^{1}(x)$ are the given functions.

The equation (1) obtained by J. Ball [1] using the Timoshenko [3] theory describes the vibration of a beam. The problem of construction of an approximate solution for this equation is dealt with in [2].

An initial boundary value problem for a J. Ball nonlinear dynamic beam equation is studied. For approximate solution of the problem projection method, symmetrical difference scheme and iteration process have been used. The accuracy of the algorithm is investigated.

The author express hearing thanks to Prof. J. Peradze for his active help in problem statement and solving.

References

[1] J. M. Ball, Stability theory for an extensible beam. J. Differential Equations 14 (1973), 399-418.
[2] S. M. Choo and S. K. Chung, L^{2}-error estimate for the strongly damped extensible beam equations. Appl. Math. Lett. 11 (1998), no. 6, 101-107.
[3] S. Timoshenko, D. Yong, and W. Weaver, Vibratyion problems in Engineering. John Willey, New York, 1967.

Dilation, Functional Model and Spectral Problems of Discrete Singular Hamiltonian System

Bilender Pasaoglu
Suleyman Demirel University, Department of Mathematics, Isparta, Turkey
email: bilenderpasaoglu@sdu.edu.tr

A space of boundary values is constructed for minimal symmetric operator, generated by discrete singular Hamiltonian system, acting in the Hilbert space $\ell_{\mathbf{A}}^{2}\left(\mathbb{N}_{0} ; E \oplus E\right)\left(\mathbb{N}_{0}=\right.$ $\{0,1,2, \ldots\}, \operatorname{dim} E=m<\infty)$ with maximal deficiency indices (m, m) (in limit-circle case). A description of all maximal dissipative, maximal accumulative, self-adjoint and other extensions of such a symmetric operator is given in terms of boundary conditions at infinity. We construct a self-adjoint dilation of a maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We establish a functional model of the dissipative operator and construct its characteristic function in terms of the scattering matrix of the dilation. Finally, we prove the theorem on completeness of the system of eigenvectors and associated vectors (or root vectors) of the maximal dissipative discrete Hamiltonian operator.

References

[1] B. P. Allahverdiev, Extensions, dilations and functional models of discrete Dirac operators in limit point-circle cases. IMA J. Appl. Math. 68 (2003), no. 3, 251267.
[2] B. P. Allahverdiev, Extensions, dilations and functional models of discrete Dirac operators. Illinois J. Math. 47 (2003), no. 3, 831-845.
[3] B. P. Allahverdiev, Dissipative discrete Hamiltonian systems. Comput. Math. Appl. 49 (2005), no. 7-8, 1139-1155.
[4] B. P. Allahverdiev, Extensions and spectral problems of 1D discrete Hamiltonian systems. Math. Methods Appl. Sci. 36 (2013), no. 18, 2554-2563.
[5] B. P. Allahverdiev, Dilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems. Bull. Iranian Math. Soc. 40 (2014), no. 6, 1553-1571.
[6] F. V. Atkinson, Discrete and continuous boundary problems. Mathematics in Science and Engineering, Vol. 8 Academic Press, New York-London, 1964.
[7] V. M. Bruk, On a class of boundary-value problems with a spectral parameter in the boundary conditions. Mat. USSR Sb. 28 (1976), 186-193.
[8] S. Clark and F. Gesztesy, On Weyl-Titchmarsh theory for singular finite difference Hamiltonian systems. J. Comput. Appl. Math. 171 (2004), no. 1-2, 151-184.
[9] Yu. P. Ginzburg and N. A. Talyush, Exceptional sets of analytic matrix functions, contracting and dissipative operators. Izv. Vyssh. Uchebn. Zaved., Mat. 1984, no. 8(267), 9-14 (1984) (in Russian); translation in Sov. Math. 28 (1984), no. 8, 10-16.

Spectral Problems of Singular Sturm-Liouville Boundary Value Transmission Problem in Limit-Point Case

Bilender Pasaoglu
Suleyman Demirel University, Department of Mathematics, Isparta, Turkey
email: bilenderpasaoglu@sdu.edu.tr

In this paper, we consider a dissipative singular Sturm-Liouville boundary value problem in limit-point case and with transmission conditions in interier point. We construct a selfadjoint dilation of the dissipative operator and its incoming and outgoing spectral representations, which makes is possible to determine the scattering matrix of the dilation in terms of the Weyl-Titchmarsh function of selfadjoint operator. Constructing a functional model of the dissipative operator, we also determine its characteristic function in terms of the scattering function of the dilation. The theorems verifying the completeness of the root functions of the dissipative boundary value transmission problem are proved.

References

[1] B. P. Allahverdiev, Dissipative Sturm-Liouville operators in limit-point case. Acta Appl. Math. 86 (2005), no. 3, 237-248.
[2] B. P. Allahverdiev, E. Bairamov, and E. Uğurlu, Eigenparameter dependent SturmLiouville problems in boundary conditions with transmission conditions. J. Math. Anal. Appl. 401 (2013), no. 1, 388-396.
[3] Z. Akdoğan, M. Demirci, and O. Sh. Mukhtarov, Green function of discontinuous boundary-value problem with transmission conditions. Math. Methods Appl. Sci. 30 (2007), no. 14, 1719-1738.
[4] E. A. Coddington and N. Levinson, Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.
[5] P. D. Lax and R. S. Phillips, Scattering theory. Pure and Applied Mathematics, Vol. 26 Academic Press, New York-London, 1967.
[6] B. Sz.-Nagy, C. Foiaş, Harmonic analysis of operators on Hilbert space. Translated from the French and revised North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadámiai Kiadó, Budapest, 1970.
[7] E. Uğurlu and B. P. Allahverdiev, On selfadjoint dilation of the dissipative extension of a direct sum differential operator, Banach J. Math. Anal., 7(2) (2013), 194-207.
[8] J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics, 1258, Springer-Verlag, Berlin, Heidelberg, 1987.

On Possibility of Static and Dynamical Calculations of Extended Bodies with Application of a Solid Deformable Body Discrete Model and Successive Approximation Algorithm

David Pataraia
LEPL Grigol Tsulukidze Mining Institute, Tbilisi, Georgia
email: david.pataraia@gmail.com

Developed by us method of solid deformable body modeling and calculation [1, 2], which is based on discrete presentation and a special algorithm of calculating, except the
static calculations was also applied and examined for the dynamical calculation of extended bodies, such as cableways, space antennas and other similar bodies. For example, we consider the originated as result of cableway carriage transition on support vibration of the traction cable. We also consider vibrations of bilateral fixed cable, when a concentrated force instantly will be applied or removed at a certain point. The present work provides the basis for further inquiry the proposed approach which also will be able to use for dynamical calculation of non-extended bodies, such are buildings and bridges.

References

[1] D. Pataraia, Ein Beitrag zur diskreten Darstellung des Seiles. Wissenschaftliche Arbeiten des Instituts fuer Eisenbahnwesen, (in German) Verkehrswirtschaft und Seilbahnen der TU Wien., Vienna, 32 (1993), no. 2, 32-38.
[2] D. Pataraia, The calculation of rope-rod structures of ropeways on the basis of the new approach - International Organization for Transportation by Rope (O.I.T.A.F.) / World Congress / Rio De Janeiro - Brazil / October, 2011, 24-27 / Papers of the Congress / http:// www.oitaf.org/Kongress, 202011/Referate/Pataraia.pdf.

On Functionals of a Probability Density

Mzevinar Patsatsia, Grigol Sokhadze

I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
emails: mzevip54@mail.ru; grigol.sokhadze@tsu.ge

A probability density functional (nonlinear and unbounded, generally speaking) has been considered. Consistency and asymptotic normality conditions have been established for the plug-in-estimator. A convergence order estimator has been obtained.

On an Integro-Differential Equation of a Nonlinear Static Plate

Jemal Peradze ${ }^{1,2}$

${ }^{1}$ I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Georgian Technical University, Tbilisi, Georgia
email: j_peradze@yahoo.com

Let the static behaviour of a plate be described by the system of equations [1]

$$
\begin{gather*}
\frac{\partial N_{i}}{\partial x_{i}}+\frac{\partial N_{12}}{\partial x_{j}}+p_{i}=0, \quad i, j=1,2, \quad i \neq j \\
D \Delta^{2} w= \tag{1}\\
\frac{\partial}{\partial x_{1}}\left(N_{1} \frac{\partial w}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(N_{12} \frac{\partial w}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(N_{2} \frac{\partial w}{\partial x_{2}}\right) \\
+\frac{\partial}{\partial x_{1}}\left(N_{12} \frac{\partial w}{\partial x_{2}}\right)+q, \quad\left(x_{1}, x_{2}\right) \in \Omega
\end{gather*}
$$

where

$$
\begin{aligned}
N_{i} & =\frac{E h}{1-\nu^{2}}\left\{\frac{\partial u_{i}}{\partial x_{i}}+\frac{1}{2}\left(\frac{\partial w}{\partial x_{i}}\right)^{2}+\nu\left[\frac{\partial u_{j}}{\partial x_{j}}+\frac{1}{2}\left(\frac{\partial w}{\partial x_{j}}\right)^{2}\right]\right\}, \quad i, j=1,2, \quad i \neq j \\
N_{12} & =\frac{E h}{2(1+\nu)}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}+\frac{\partial w}{\partial x_{1}} \frac{\partial w}{\partial x_{2}}\right)
\end{aligned}
$$

Here $u_{i}=u_{i}\left(x_{1}, x_{2}\right)$ are longitudinal, $i=1,2$, and $w=w\left(x_{1}, x_{2}\right)$ transverse displacements of points of the plate midsurface $\Omega, p_{i}=p_{i}\left(x_{1}, x_{2}\right), i=1,2, q=q\left(x_{1}, x_{2}\right)$ are external force components, Δ is the Laplace operator, E and $0<\nu<\frac{1}{2}$ are respectively Young's modulus and Poisson's ratio, D is the plate flexural rigidity, h is the thickness.

Assuming that Ω is the rectangle and for $u_{i}\left(x_{1}, x_{2}\right), i=1,2$, the first and second kind conditions are fulfilled on the boundary $\partial \Omega$ of Ω, from (1) we obtain the following nonlinear equation for the function $w\left(x_{1}, x_{2}\right)$

$$
\begin{aligned}
& D \Delta^{2} w-\sum_{i=1}^{2} \sum_{j=1}^{2}\left\{\int_{\Omega}\left[A_{i j}\left(\frac{\partial w}{\partial \xi_{1}}\right)^{2}-2 C_{i j} \frac{\partial w}{\partial \xi_{1}} \frac{\partial w}{\partial \xi_{2}}+B_{i j}\left(\frac{\partial w}{\partial \xi_{2}}\right)^{2}+d_{1 i j} p_{1}+d_{2 i j} p_{2}\right] d \xi_{1} d \xi_{2}\right. \\
& \left.\quad+\int_{\partial \Omega}\left[a_{i j}\left(\frac{\partial w}{\partial \xi_{1}}\right)^{2}-2 c_{i j} \frac{\partial w}{\partial \xi_{1}} \frac{\partial w}{\partial \xi_{2}}+b_{i j}\left(\frac{\partial w}{\partial \xi_{2}}\right)^{2}\right] d s\right\} \frac{\partial^{2} w}{\partial x_{i} \partial x_{j}}+p_{1} \frac{\partial w}{\partial x_{1}}+p_{2} \frac{\partial w}{\partial x_{2}}=q
\end{aligned}
$$

where the integrand coefficients $A_{i j}, B_{i j}, C_{i j}, d_{1 i j}, d_{2 i j}$ and $a_{i j}, b_{i j}, c_{i j}$ depend on x_{1}, x_{2} and ξ_{1}, ξ_{2}, ds is an element of the boundary $\partial \Omega$.

References

[1] M. Amabili, Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge, 2008.

In the European Union with the Georgian Language
 - the Long-Term Project "Technological Alphabet of the Georgian Language" and the Threats in which is Georgian Language

Konstantine Pkhakadze
Georgian Technical University, Scientific-Educational Center for Georgian Language Technology, Tbilisi, Georgia
email: gllc.ge@gmail.com

From 2012 in the Center of the Georgian Language Technology at the Georgian Technical University there is launched a long-term project "The Technological Alphabet of the Georgian Language" [1], [2]. Thus, in confine of the project there is already financed 5 subprojects [1-5]. They are: 1 "Internet Versions of a Number of Developable (Learnable) Systems Necessary for Creating The Technological Alphabet of the Georgian Language"; 2. "Foundations of Logical Grammar of Georgian Language and Its Application in Information Technology"; 3. "In the European Union with the Georgian Language, i.e., the Doctoral Thesis - Georgian Speech Synthesis and Recognition"; 4. "In the European Union with the Georgian Language, i.e., the Doctoral Thesis - Georgian Grammar Checker (Analyzer)"; 5. "One More Step Towards Georgian Talking Self - Developing Intellectual Corpus".

At the presentation it will be briefly overviewed this long-term project and its direct relation to the national aim of defence Georgian language from the digital extintion in the digital age and, accordingly, to the aim of join European Union or, more generally, the future cultural world with the Georgian language.

Publication prepared in the Center of the Georgian Language Technology at the Georgian Technical University with AR/122/4-105/14 grant support of the Shota Rustaveli National Science Foundation.

References

[1] K. Pkhakadze, The technological alphabet of the Georgian language - the one of the most important Georgian challenge of the XXI century. The Works of The Parlia-
ment Conference "The Georgian Language - The Challenge of The 21st Century", 2013, 98-102.
[2] K. Pkhakadze, G. Chichua, M. Chikvinidze, and A. Maskharashvili, The technological alphabet of the Georgian language - aims, methods and results. Rep. Enlarged Session Sem. VIAM 27 (2013), 48-51.
[3] G. Chichua and K. Pkhakadze, The short overview of the aims and first results of the project "In the European Union with the Georgian language, i.e., the doctoral thesis - Georgian speech synthesis and recognition". Book of Abstracts of VI International Conference of GMU, 2015, 92-93.
[4] M. Chikvinidze and K. Pkhakadze, The short overview of the aims and first results of the project "In the European Union with the Georgian Language, i.e., the doctoral thesis - Georgian grammar checker (analyzer)". Book of Abstracts of VI International Conference of GMU, 2015, 93-94.
[5] K. Pkhakadze, M. Chikvinidze, G. Chichua, and D. Kurtskhalia, The Aims and First Results of the Project "One more step towards Georgian talking self-developing intellectual corpus". Proc. Inter. Conference on "Language and Modern Technology", 2015, 107-112.

[5] K. Pkhakadze, M. Chikvinidze, G. Chichua, and D. Kurtskhalia, The first version of the georgian smart journal and adapted wikipedia. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 30 (2016) (in Publishing).

зопддамо bageg. мо $39^{\text {mbo }}$

[5] K. Pkhakadze, M. Chikvinidze, G. Chichua, and D. Kurtskhalia, The first version of the georgian smart journal and adapted wikipedia. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 30 (2016) (in Publishing).

[^0]

[^1][5] K. Pkhakadze, M. Chikvinidze, G. Chichua, and D. Kurtskhalia, The first version of the georgian smart journal and adapted wikipedia. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 30 (2016) (in Publishing).

kob

[5] K. Pkhakadze, M. Chikvinidze, G. Chichua, and D. Kurtskhalia, The first version of the georgian smart journal and adapted wikipedia. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 30 (2016) (in Publishing).

 bulfişщm-b

 39 mbogals. ${ }^{1}$

[^2]

[5] K. Pkhakadze, M. Chikvinidze, G. Chichua, and D. Kurtskhalia, The first version of the georgian smart journal and adapted wikipedia. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. $\mathbf{3 0}$ (2016) (in Publishing).

 [5]. ${ }^{1}$

 $9^{\text {бо }}$ щпд

[5] K. Pkhakadze, M. Chikvinidze, G. Chichua, and D. Kurtskhalia, The first version of the georgian smart journal and adapted wikipedia. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 30 (2016) (in Publishing).

[^3]

[^4] $9^{\text {бо }}$ щмд

[5] K. Pkhakadze, M. Chikvinidze, G. Chichua, and D. Kurtskhalia, The first version of the georgian smart journal and adapted wikipedia. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. $\mathbf{3 0}$ (2016) (in Publishing).

 Ə̊ [2]-[5]. ${ }^{1}$

[^5]

[5] K. Pkhakadze, M. Chikvinidze, G. Chichua, and D. Kurtskhalia, The first version of the georgian smart journal and adapted wikipedia. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 30 (2016) (in Publishing).

[5] K. Pkhakadze, M. Chikvinidze, G. Chichua, and D. Kurtskhalia, The first version of the georgian smart journal and adapted wikipedia. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. $\mathbf{3 0}$ (2016) (in Publishing).

[^6]

 [2]-[5]. ${ }^{1}$

зงдм

[^7][5] K. Pkhakadze, M. Chikvinidze, G. Chichua, and D. Kurtskhalia, The first version of the georgian smart journal and adapted wikipedia. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 30 (2016) (in Publishing).

[4] з. пъьз

[5] K. Pkhakadze, M. Chikvinidze, G. Chichua, and D. Kurtskhalia, The first version of the georgian smart journal and adapted wikipedia. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math. 30 (2016) (in Publishing).

On a Constructive Theory of Enumerable Species

Valerii Plisko
Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
email: veplisko@yandex.ru

An analogue of the notion of a set in intuitionistic mathematics is a species as an exact condition on the mathematical objects (see [1]). One of the simplest way of defining a species whose members are natural numbers is to describe an algorithm which allows us to make sure that a given number is a member of the species. Thus the collection of the members of such a species is a recursively enumerable set. In addition, the condition defining a species should be understood intuitionistically, i.e., $x \in y$ iff there is a witness of the fact that x satisfies the condition. Thus, in fact, a number x can be considered as a member of a species y only together with a number e coding a justification of the sentence $x \in y$, so it it is necessary to speak about the ordered pair $\langle e, x\rangle$. This idea is a base of the following constructive semantics for the language of the set theory with atoms.

Let $\tau: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be a one-to-one primitive recursive function, the inverse projection functions π_{0} and π_{1} being primitive recursive, too. By $\langle x, y\rangle$ denote $\tau(x, y)$. Let W_{n} be the range of a unary partial recursive function φ_{n} whose Gödelean index is n. The language of the set theory with atoms ZFA contains the usual binary predicate symbols $=$ and ϵ and the unary predicate symbol A for the property to be an atom. For convenience let us suppose that the constants $0,1,2, \ldots$ for the natural numbers are also in the language. The relation $\operatorname{er} \Phi$ for a natural number e and a closed formula Φ is defined inductively. For the atomic formulas the definition is following: $\operatorname{er} A(k) \leftrightharpoons \pi_{0}(k)=0 ; \operatorname{er}[k=l] \leftrightharpoons k=l$; $\operatorname{er}[k \epsilon l] \leftrightharpoons\left[\pi_{0}(k)<\pi_{0}(l) \&\langle e, k\rangle \in W_{\pi_{1}(l)}\right]$. The case of more complicated formulas is
treated in the manner of Kleene's recursive realizability (see [2]). For example,

$$
\begin{gathered}
\operatorname{er}\left[\Phi_{0} \rightarrow \Phi_{1}\right] \leftrightharpoons \forall a\left[\operatorname{ar} \Phi_{0} \Rightarrow \exists b\left(\varphi_{e}(a)=b \& b \mathrm{r} \Phi_{1}\right)\right] ; \\
\operatorname{er} \forall x \Phi_{0}(x) \leftrightharpoons \forall k \exists b\left[\varphi_{e}(k)=b \& b \mathrm{r} \Phi_{0}(k)\right] .
\end{gathered}
$$

A closed formula Φ is realizable iff $\exists e[\operatorname{er} \Phi]$.
Specific axioms of the theory ZFA are the axiom of the empty set $\exists x \mathrm{E}(x)$ and the axiom for atoms $\forall x[A(x) \equiv \neg \mathrm{E}(x) \& \neg \mathrm{~N}(x)]$, where $\mathrm{E}(x)$ is $\neg A(x) \& \neg \exists y[y \epsilon x], \mathrm{N}(x)$ is $\exists y[y \epsilon x]$. The other axioms are slightly modified usual axioms of the Zermelo-Fraenkel set theory. E.g., the regularity axiom is stated as $\forall x[\mathrm{~N}(x) \rightarrow \exists y[y \in x \& \neg \exists z[z \in x \& z \in y]]]$.

Theorem.

1) The following axioms of ZFA are realizable: the axiom of the empty set, the axiom for atoms, the pairing axiom, the union axiom, and the axiom of choice.
2) The following axioms of ZFA are not realizable: the extensionality axiom, the power set axiom, the infinity axiom, the replacement axiom.
3) The regularity axiom is not realizable, but its weakened variant

$$
\forall x[\mathrm{~N}(x) \rightarrow \neg \neg \exists y[y \in x \& \neg \exists z[z \in x \& z \in y]]]
$$

is realizable.
4) In general, the separation axiom $\forall \mathbf{u}, x \exists y[\neg A(y) \& \forall z[z \epsilon y \equiv z \epsilon x \& \Phi(z, \mathbf{u})]]$ is not realizable, but is realizable if $\Phi(z, \mathbf{u})$ is a Σ-formula.

References

[1] A. Heyting, Intuitionism. An introduction. North-Holland Publishing Co., Amsterdam, 1956.
[2] S. C. Kleene, On the interpretation of intuitionistic number theory. J. Symbolic Logic 10 (1945), 109-124.

Dynamic Stress Intensity Factor for Break-Line Shaped Crack at Harmonic SH-Wave Interaction

Vsevolod Popov
Department of Higher Mathematics, National University "Odessa Maritime Academy", Odessa, Ukraine
email: vs_popov@math.onma.edu.ua

The problem of the stress intensity factor (SIF) estimation is solved for the break-line shaped crack which consists of the segments. The crack is situated in the unbounded elastic isotropic body and the plane harmonic waves of the longitudinal shear (SH-waves) interact with it. It is supposed that the edges of the crack are unloaded.

The method of the solution is based on the use of the Helmholtz's equations discontinuous solutions. The diffraction fields displacements are presented as the sum of the discontinuous solutions which are constructed for each cracks segment. As a result of the boundary conditions realization the system of the singular integro-differential equations relatively to the displacements on the segments of the crack is obtained. The numerical solution of this system is complicated by the presence of the fixed singularities in the kernels of the integral operators. It influences at the exponent of power singularity of the systems solution, which is different from. The disadvantages of the known methods of the singular integral equations solving are consisted or in the ignoring of the solutions real exponent of the power singularity or in the formal using of the Gauss-Jacobi quadrature formulas for the integrals with the fixed singularity. Therefore one of the main results of the report is the numerical method for the obtained integro-differential equations systems solving. This collocation method takes into consideration the solutions real exponent of the power singularity and use as the collocation points the second order Jacobi functions zeros. Also it uses the special quadrature formulas for the singular integrals with the fixed singularity. The final result of the numerical solving is the approximation formulas for the SIF calculation.

As an example, the cracks which are consisting of the two and three segments are examined. The results of the methods practical convergence studies and the influence of the cracks geometry and the propagated waves frequency at the SIF values are given.

Stress State of a Cylindrical Body with a Crack under Oscillations in the Plane Strain Conditions

V. G. Popov, O. I. Kirillova
National University "Odessa maritime academy", Department of Higher Mathematics, Odessa, Ukraine
email: vs_popov@math.onma.edu.ua, ol007ga@math.onma.edu.ua

The problem about the determination of the stress state in an infinite elastic cylindrical body with a tunnel crack is solved. The side surface of the cylinder is under the influence of self-balancing normal harmonic loading. Under these conditions the plane strain in the cylinder is realized and the radial and angular components of displacements that satisfy the equations of motion to be determined. The crack surface is considered free of the loading. Also on the crack surface the displacements are discontinuous. The problem is reduced to solving two-dimensional equations of motion in planar regions bounded by any closed smooth curves, with the described boundary conditions. The method of solution is based on the use of discontinuous solutions of two-dimensional equations of motion of an elastic medium with jumps of displacements on the surface. Displacements in the cylinder are represented as the sum of discontinuous solutions, built for the crack, and the unknown function, which provides the satisfaction of the boundary conditions of the body. These functions are searched approximately as a linear combination of linearly independent solutions of the equations of the elasticity theory in the frequency domain with unknown coefficients. This representation makes possible to separately satisfy the boundary conditions on the crack surface and on the boundary of the body. The conditions on the crack are realized as a set of systems of singular integro-differential equations, which differ only in the right-hand sides. The approximate solutions of these systems are obtained by the method of mechanical quadratures. After that, the conditions on the boundary of the body are satisfied, from which by the collocation method the unknown coefficients of the above functions are determined.

The approximate formulas for calculating SIF by which are studied the influence of the value of the oscillation frequency, geometric cylinder size and the location of crack in it are obtained.

Hedging of European Option with Nonsmooth Payoff Function

Omar Purtukhia
A. Razmadze Mathematical Institute of Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
Faculty of Exact and Natural Sciences, Department of Mathematics, Iv. Javakhishvili
Tbilisi State University, Tbilisi, Georgia
email: o.purtukhia@gmail.com

We consider the European Options in the case of Black-Scholes financial market model, which payoff functions is a certain combination of the Binary and Asian options payoff functions and investigate the hedging problem. In spite of the fact that Clark-Ocone formula is the effective tool for solution of the hedging problem there are some problems with its practical realizations. We generalized the Clark-Ocone formula in case, when functional is not stochastically smooth. It has turned out that the requirement of smoothness of functional can be weakened by the requirement of smoothness only of its conditional mathematical expectation ([1]). It is well-known, that if random variable is stochastically differentiable in Malliavin sense, then its conditional mathematical expectation is differentiable too ([2]). In particular, if $F \in D_{2,1}$, then $E\left(F \mid \Im_{s}^{w}\right) \in D_{2,1}$ and $D_{t}\left[E\left(F \mid \Im_{s}^{w}\right)\right]=E\left(D_{t} F \mid \Im_{s}^{w}\right) I_{[0, s]}(t)$. On the other hand, it is possible that conditional expectation can be smooth even if random variable is not stochastically smooth ([1]). For example, it is well-known that $I_{\left\{w_{T} \leq x\right\}} \notin D_{2,1}$ (indicator of event A is Malliavin differentiable if and only if probability $P(A)$ is equal to zero or one $([2])$), but for all $t \in[0, T)$:

$$
E\left[I_{\left\{w_{T} \leq x\right\}} \mid \Im_{t}^{w}\right]=\Phi\left[\left(x-w_{t}\right) / \sqrt{T-t}\right] \in D_{2,1}
$$

In present work we consider the functional of integral type $\int_{0}^{T} u_{t}(\omega) d t$ (with nonsmooth integrand $\left.u_{s}(\omega)\right)$, whose conditional mathematical expectation is not stochastically differentiable too (in spite that $\left.v_{s}=E\left(u_{t} \mid \Im_{s}^{w}\right) \in D_{2,1}\right)$. We prove that if $u_{s}(\omega)$ is not differentiable in Malliavin sense, then the Lebesgue average (with respect to $d s$) also is not differentiable in Malliavin sense. On the other hand, in this case even the conditional mathematical expectation of mentioned functional is not smooth, because it represents as sum

$$
E\left(\int_{0}^{T} u_{t}(\omega) d t \mid \Im_{s}^{w}\right)=\int_{0}^{s} u_{t}(\omega) d t+\int_{s}^{T} v_{t}(\omega) d t
$$

where the first summand is not differentiable, but the second summand is differentiable in Malliavin sense (if $v_{t}(\cdot) \in D_{2,1}$ for almost all t and $v .(\omega)$ is Lebesgue integrable for a.a. ω, then $\left.\int_{s}^{T} v_{t}(\omega) d s \in D_{2,1}\right)$.

References

[1] O. A. Glonti and O. A. Purtukhia, On one integral representation of Brownian functional. Teor. Veroyatnost. i Primenen. 61 (2016), no. 1, 158--164 (in Russian).
[2] D. Nualart, The Malliavin calculus and related topics. Probability and its Applications (New York). Springer-Verlag, Berlin, 2006.

Approximately Dual for Continuous Frames in Hilbert Spaces

Asghar Rahimi, Zahra Darvishi
Department of Mathematics, University of Maragheh, Maragheh, Iran email: rahimi@maragheh.ac.ir

In this manuscript, the concept of dual and approximate dual for continuous frames in Hilbert spaces will be introduced. Some of its properties will be studied.

Definition 1. A weakly-measurable mapping $F: \Omega \rightarrow H$ is called a continuous frame for H with respect to (Ω, μ) if there exist constants $0<A \leq B<\infty$ such that

$$
A\|f\|^{2} \leq \int_{\Omega}|\langle f, F(\omega)\rangle|^{2} d \mu(\omega) \leq B\|f\|^{2}, \quad f \in H
$$

The constants A and B are called continuous frame bounds. The mapping F is called tight continuous frame if $A=B$ and if $A=B=1$ it called a Parseval continuous frame. The mapping is called Bessel if the second inequality holds. In this case, B is called Bessel constant. If $F: \Omega \rightarrow H$ is a Bessel mapping and $\varphi \in L^{2}(\Omega, \mu)$, then $\int_{\Omega} \varphi(\omega) F(\omega) d \mu(\omega)$ defines an element of H. In fact, the operator $T_{F}: L^{2}(\Omega, \mu) \rightarrow H$ weakly defined by

$$
\left\langle T_{F} \varphi, g\right\rangle=\int_{\Omega} \varphi(\omega)\langle F(\omega), g\rangle d \mu(\omega), \quad \varphi \in L^{2}(\Omega, \mu), \quad g \in H
$$

is well defined, linear, bounded with bound \sqrt{B} and its adjoint is given by

$$
T_{F}^{*}: H \rightarrow L^{2}(\Omega, \mu), \quad\left(T_{F}^{*} f\right)(\omega)=\langle f, F(\omega)\rangle, \omega \in \Omega, \quad h \in H
$$

The operator T_{F} is called the synthesis operator and T_{F}^{*} is called the analysis operator of F. For continuous frame F with bounded A and B, the operator $S_{F}=T_{F} T_{F}^{*}$ is called continuous frame operator and this is bounded, invertible, positive and $A I_{H} \leq S_{F} \leq B I_{H}$.

Definition 2. Two Bessel mappings F and G are called approximately dual continuous frames for H if $\left\|I_{H}-T_{G} T_{F}^{*}\right\|<1$ or $\left\|I_{H}-T_{F} T_{G}^{*}\right\|<1$.
Theorem 1. If F and G are approximately dual continuous frames, then F and G are continuous frames for H with respect to (Ω, μ).

References

[1] S. T. Ali, J.-P. Antoine, and J.-P. Gazeau, Continuous frames in Hilbert space. Ann. Physics 222 (1993), no. 1, 1-37.
[2] O. Christensen and R. S. Laugesen, Approximately dual frames in Hilbert spaces and applications to Gabor frames. Sampl. Theory Signal Image Process. 9 (2010), no. 1-3, 77-89.

About a Center of a Biparabolic of Subalgebra of $s l(n)$

Giorgi Rakviashvili, Ekaterine Kuljanishvili
Ilia State University, Tbilisi, Georgia

emails: giorgi.rakviashvili@iliauni.edu.ge, ekaterine.kuljanishvili.1@iliauni.edu.ge

In this paper we investigate the dimension of a center $Z(Q)$ of a biparabolic subalgebra Q of a special linear Lie (simple) algebra $s l(n)$ over the field of complex numbers C; it is well known, that $Z(Q) \simeq H^{0}(Q, Q)$. A subalgebra P of a semisimple Lie algebra L is parabolic, if it contains a Borel subalgebra (i.e. a maximal solvable subalgebra) of L. A subalgebra Q of a semisimple Lie algebra L is biparabolic, if $Q=P \bigcap P_{1}$, there P and P_{1} are such a parabolic subalgebras of L that $P+P_{1}=L$. It is clear that a biparabolic subalgebra of $\operatorname{sl}(n)$ is determined by a pair of compositions $n=a_{1}+a_{2}+\cdots+a_{r}=$ $b_{1}+b_{2}+\cdots+b_{s}$, there a_{i} and b_{j} are natural numbers. Let d be the maximum number of equal partial sums of this compositions (for example, for compositions $10=2+3+2+5=$ $3+2+2+1+4$ the maximum number of equal partial sums is 3). The main result of this work is
Theorem. In the above notations, $\operatorname{dim}(Z(Q))=d-1$.

Basic Properties of Controlled Frames in Hilbert C^{*}-modules

Mehdi Rashidi-Kouchi
Department of Mathematics, Kahnooj Branch, Islamic Azad University, Kerman, Iran
email: m_rashidi@kahnoojiau.ac.ir

Weighted and controlled frames in Hilbert spaces have been introduced in [1] to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces, however they are used earlier in [2] for spherical wavelets. The concept of controlled frames has been extended and generalized to g-frames in [3].

Hilbert C^{*}-modules form a wide category between Hilbert spaces and Banach spaces. Frames and their generalization are defined in Hilbert C^{*}-modules and some properties have been studied for example see [4].

Here we investigate basic properties of controlled frames in Hilbert C^{*}-modules. Also we present a characterization of controlled frames for Hilbert C^{*}-modules and show that any controlled frame in Hilbert C^{*}-module is frame in Hilbert C^{*}-module.

References

[1] P. Balazs, J.-P. Antoine, A. Gryboś, Weighted and controlled frames: mutual relationship and first numerical properties. Int. J. Wavelets Multiresolut. Inf. Process. 8 (2010), no. 1, 109-132.
[2] I. Bogdanova, P. Vandergheynst, J.-P. Antoine, L. Jacques, M. Morvidone, Stereographic wavelet frames on the sphere. Appl. Comput. Harmon. Anal. 19 (2005), no. 2, 223-252.
[3] A. Rahimi and A. Fereydooni, Controlled g-frames and their g-multipliers in Hilbert spaces. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 21 (2013), no. 2, 223236.
[4] M. Rashidi-Kouchi, A. Nazai, M. Amini, On stability of g-frames and g-Riesz bases in Hilbert C^{*}-modules. Int. J. Wavelets Multiresolut. Inf. Process. 12 (2014), no. $6,1450036,16 \mathrm{pp}$.

Numerical Solution of the Eikonal Equation with Applications to an Automatic Piping

Kerstin Rjasanowa
Department of Civil Engineering, University of Applied Sciences, D-67659
Kaiserslautern, Schoenstraße 6, Germany
email: kerstin.rjasanowa@hs-kl.de

The procedure of positioning of pipes, for example for automobile exhaust construction, by the use of 3D-CAD-systems is difficult and time consuming because of the presence of obstacles in an engine compartment. There are also further strong technical requirements and restrictions. An automatic generation procedure based on the level set method and the numerical solution of the Eikonal equation is proposed. The positions of pipes which fulfill the technical requirements are obtained using spline functions.

References

[1] S. R. Hysing and A. Turek, HThe eikonal equation: numerical efficiency vs. algorithmic complexity on quadrilateral grids. 17 th conference on scientific computing, Vysoké Tatry - Podbanské, Slovakia, March 13-18, 2005. Proceedings of contributed papers and posters. University of Technology, Faculty of Civil Engineering, Department of Mathematics and descriptive Geometry, Bratislava, pp. 22-31, 2005.
[2] J. A. Sethian, Level set methods and fast marching methods. Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge Monographs on Applied and Computational Mathematics, 3. Cambridge University Press, Cambridge, 1999.

 ठош:
 уою.

 Боəбgд̀n. sд оgmm

[1] C. L. Chang and R. C. T. Lee, Symbolic logic and mechanical theorem proving. Computer Science and Applied Mathematics. Academic Press, New York-London, 1973.
[2] N. Burbaki, Set theory. Mir, Moscow, 1965 (in Russian).
[3] Sh. S. SPhakadze, Some questions of notation theory. Izdat. Tbilis. Univ., Tbilisi, 1977 (in Russian).
[4] Kh. Rukhaia, L. Tibua, G. Chankvetadze, and B. Dundua, One method of constructing a formal system. Appl. Math. Inform. Mech. 11 (2006), no. 2, 81-89, 92-93.

On an Existence of Dynamical Systems in Polish Topological Vector Spaces

Nino Rusiashvili
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
email: nino.rusiashvili@gmail.com

The investigation and study of various topics of mathematical analysis in infinitedimensional topological vector spaces are often realized within concrete dynamical systems of the form (E, G, S, μ), where E denotes an infinite-dimensional topological vector space, S denotes the σ-algebra of all Borel subsets of E, G denotes a group of transformations of E and μ stands for a G-invariant σ-finite measure on E. In this direction, there is a deep methodology which enables to investigate some important properties of dynamical systems (see, for example, [1-4]).

The next statement is valid.
Theorem. Let E be a complete metric topological vector space. Then following two assertion are equivalent:
(1) there exists a dynamical system in E;
(2) E is separable.

Acknowledgement. The research has been partially supported by Shota Rustaveli National Science Foundation, Grants No. FR/116/5-100/14.

References

[1] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations. Die Grundlehren der mathematischen Wissenschaften, Bd. 115 Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963
[2] A. B. Kharazishvili, Transformation groups and invariant measures. Set-theoretical aspects. World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
[3] A. Kirtadze, Some aspects of theory of dynamical and quasi-dynamical systems. Georgian Technical University, Tbilisi, 2006 (in georgian).
[4] G. Pantsulaia, Invariant and quasiinvariant measures in infinite-dimensional topological vector spaces. Nova Science Publishers, Inc., New York, 2007.

Modular Spaces Associated to Semi-Finite von Neumann Algebras

Ghadir Sadeghi
Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran
email: g.sadeghi@hsu.ac.ir

Non-commutative Orlicz spaces can be defined either in an algebraic way [2] or via Banach function spaces [3]. Al-Rashed and Zegarlióski [1] established the theory of noncommutative Orlicz spaces associated to a non-commutative Orlicz functional. Their noncommutative Orlicz functional is related to those introduced by [4] where the author used a specific Young function $\varphi(x)=\cosh (x)-1$, which has a particular importance in quantum information geometry. They investigated a theory associated with a faithful normal state on a semi-finite von Neumann algebra. In [5] Sadeghi consider another approach based on the concept of modular function spaces. Using the generalized singular value function of a τ-measurable operator, He define a modular on the collection of all τ-measurable operators. This modular function defines a corresponding modular spaces, which is called the non-commutative Orlicz space. Recently, Sadeghi and Saadati introduce the notion of a non-commutative modular function space and look at some geometric properties of such spaces as modular spaces, and generalizes the idea of a function modular [6]. In this talk, we investigate some geometrical properties of noncommutative modular spaces associated to semi-finite von Neumann algebras.

References

[1] M. H. A. Al-Rashed and B. Zegarliński, Noncommutative Orlicz spaces associated to a state II. Linear Algebra Appl. 435 (2011), no. 12, 2999-3013.
[2] W. Künze, Noncommutative Orlicz spaces and generalized Arens algebras. Math. Nachr. 147 (1990), 123-138.
[3] P. G. Dodds, T. K.-Y. Dodds, and B. de Pagter, Non-commutative Banach function spaces. Math. Z. 201 (1989), no. 4, 583-597
[4] R. F. Streater, Quantum Orlicz spaces in information geometry. Open Syst. Inf. Dyn. 11 (2004), no. 4, 359-375.
[5] Gh. Sadeghi, Non-commutative Orlicz spaces associated to a modular on τ-measurable operators. J. Math. Anal. Appl. 395 (2012), no. 2, 705-715.
[6] Gh. Sadeghi and R. Saadati, On geometrical properties of noncommutative modular function spaces. New York J. Math. 21 (2015), 759-781.

Numerical Solution of Natural Convective Heat Transfer for Dilatant Fluids

SERPil ŞAHin ${ }^{1}$, HüsEyin DEmir ${ }^{2}$
${ }^{1}$ Faculty of Sciences and Arts, Department of Mathematics, Amasya University, Amasya, Turkey
${ }^{2}$ Faculty of Sciences and Arts, Department of Mathematics, Ondokuz Mayıs University, Samsun, Turkey
emails: serpil.sahin@amasya.edu.tr; hdemir@omu.edu.tr

In this study, we consider flow properties of Dilatant fluids motion generated by thermal gradients in an enclosed cavity region. Pseudo time derivative is used to solve the continuity, momentum and energy equations with suitable initial and boundary conditions. Therefore, the governing equations of fluid of vorticity-stream function and temperature formulations are solved numerically using finite difference method. The stream function, vorticity and temperature results are obtained for the steady, two-dimensional, incompressible Dilatant flow. These results are presented both in tables and figures. The stream function, vorticity and energy equations are solved separately with the numerical method. Each equation with pseudo time parameter on very fine grid mesh is solved step by step with a pair of tridiagonal system. The advantage of this process is that it gives the solution of the flow problems effectively and accurately.

Key Words: Dilatant fluid, heat transfer, pseudo time parameter, finite difference method.

References

[1] G. K. Batchelor, Heat transfer by free convection across a closed cavity between vertical boundaries at different temperatures. Quart. Appl. Math. 12 (1954), 209-233.
[2] H. Demir, The stability properties of some rheological flows. Ph.D. Thesis, The University of Glamorgan, School of Accounting and Mathematics, Division of Maths and Computing, Glamorgan, 1996.
[3] E. Erturk, T. C. Corke, and C. Gökçöl, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48 (2005), 747-774.
[4] J. A. Lewis, Free convection in commercial insulating materials. Ph.D. Thesis, Graduate Division of Applied Math., Brown University, Providence, RI, 1950.
[5] R. Schreiber and H. B. Keller, Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49 (1983), 310-333.

Intrinsic Equations for a Generalized Relaxed Elastic Line on an Oriented Surface in the Pseudo-Galilean Space

Tevfik Şahin
Faculty of Sciences and Arts, Department of Mathematics, Amasya University, Amasya, Turkey
email: tevfik.sahin@amasya.edu.tr

In this work, we study the elasticity theory in pseudo-Galilean space, a special type of Cayley-Klein spaces. In particular, we derive the intrinsic equations for a generalized relaxed elastic line on an oriented surface in the 3-dimensional pseudo-Galilean space G_{1}^{3}. These equations will give direct and more geometric approach to questions concerning about generalized relaxed elastic lines on an oriented surface in G_{1}^{3}.

Key words: Pseudo-Galilean space, generalized relaxed elastic line, variational problem, intrinsic formulation, geodesic.

References

[1] D. Hilbert and S. Cohn-Vossen, Geometry and the imagination. Chelsea Publishing Company, New York, N. Y., 1952.
[2] L. D. Landau and E. M. Lifshitz, Theory of elasticity. Course of Theoretical Physics, Vol. 7. Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1959.
[3] H. K. Nickerson and G. S. Manning, Intrinsic equations for a relaxed elastic line on an oriented surface. Geom. Dedicata 27 (1988), no. 2, 127-136.
[4] T. Şahin, Intrinsic equations for a generalized relaxed elastic line on an oriented surface in the Galilean space. Acta Math. Sci. Ser. B Engl. Ed. 33 (2013), no. 3, 701-711.
[5] M. Yilmaz, Some relaxed elastic line on a curved hypersurface. Pure Appl. Math. Sci. 39 (1994), no. 1-2, 59-67.
[6] I. M. Yaglom, A simple non-Euclidean geometry and its physical basis. An elementary account of Galilean geometry and the Galilean principle of relativity. SpringerVerlag, New York-Heidelberg, 1979.

Some Remarks on the Geometry of Anti-Kähler-Codazzi Manifolds

Arif Salimov
Department of Mathematics, Faculty of Science, Atatürk University, Erzurum, Turkey
email: asalimov@atauni.edu.tr

In [1] we introduced the notion of an anti-Kahler-Codazzi manifold, for which a twin anti-Hermitian (also known as a twin Norden) metric of neutral signature satisfies the Codazzi equation. We introduced also the notion Ricci* tensor field for Levi-Civita connection of an anti-Hermitian metric and give a characterization of an anti-Kahler-Codazzi manifold in terms of a Ricci* tensor field [2]. Such torsion-free metric connection also emphasise the importance of anti-Hermitian metric connections with torsion in the study of anti-Kahler-Codazzi geometry. With the objective of defining new types of anti-Hermitian metric connections, we consider properties of anti-Hermitian manifolds associated to these connections.

References

[1] A. Salimov, S. Turanli, Curvature properties of anti-Kähler-Codazzi manifolds. C. R. Math. Acad. Sci. Paris 351 (2013), no. 5-6, 225-227.
[2] A. Salimov, K. Akbulut, S. Turanli, On an isotropic property of anti-Kähler-Codazzi manifolds. C. R. Math. Acad. Sci. Paris 351 (2013), no. 21-22, 837-839.

Some Aspects of Teaching Sensitivity Analyses of Economic Problem

Tsitsino Sarajishvili
Department of Computer Sciences, Batumi Shota Rustaveli State University, Batumi, Georgia
email: tsis55@yahoo.com

One of the important issues, that we find in teaching mathematical modeling study course in economics students (and not only them), is to show the practical applications of the subject and proving its practical importance. We should demonstrate the possibilities of the subject on specific examples. In this regard the sensitivity analysis of economics problems' solution is important.

As it is known, linear programming is one of the well-studied areas in operations research, therefore same stands for economic problems that are described by linear correlations. The paper deals with the specific model problems and economic analysis using duality theory elements. In particular, by using of dual assessment we show students the opportunity of improving solution; Show them how the changes of each parameter of problem might affect the optimal solution of the initial problem.

Although today the preference is given to the usage of end-product program packages and linear programming problems are easily solved using computer resources, but we can clearly discuss the sensitivity analysis if we use the tabular form of simplex method in solving problems. By using the tabular simplex-algorithm and the analysis of the corresponding final tab, we can demonstrate to students, how the change of parameters in problem affects the optimal solution.red in [1], [2]). The dependence of well-posedeness of boundary conditions on the character of vanishing the shear modulus is studied.

References

[1] F. S. Hillier, Introduction to operations research. Frederick S. Hillier, Stanford University, Gerald J. Lieberman, late, of Stanford University. - Tenth edition, 2015, 163-220.
[2] A. T. Hamdy, Operation Research an Introduction. University of Arkansas, Fayetteville, 2003.

Using the Wald's Method for Prove of Consistency of Generalized Estimation of Maximal Likelihood Estimation

Aleksandr Sborshchikov
Department of Mathematics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: a.sborshchikov@gmail.com

We consider a problem of estimation unknown parameters in a censored case. Generalized maximal likelihood estimator is constructed. Consistency of the estimator is proved using Wald's method. Applications are given.

Hochstadt's Result for Inverse Sturm-Liouville Problems Using m Transmission and Parameter Dependent Boundary Conditions

Mohammad Shahriari

Department of Mathematics, University of Maragheh, Maragheh, Iran emails: shahriari@maragheh.ac.ir; mohamad.shahriari@yahoo.com

This paper deals with the boundary value problem involving the differential equation

$$
\begin{equation*}
\ell y:=-y^{\prime \prime}+q y=\lambda y \tag{1}
\end{equation*}
$$

subject to the parameter dependent boundary conditions

$$
\begin{align*}
& L_{1}(y):=\lambda\left(y^{\prime}(0)+h_{1} y(0)\right)-h_{2} y^{\prime}(0)-h_{3} y(0)=0 \tag{2}\\
& L_{2}(y):=\lambda\left(y^{\prime}(\pi)+H_{1} y(\pi)\right)-H_{2} y^{\prime}(\pi)-H_{3} y(\pi)=0
\end{align*}
$$

along with the following discontinuity conditions at the points $d_{i} \in(0, \pi)$

$$
\begin{align*}
U_{i}(y) & :=y\left(d_{i}+0\right)-a_{i} y\left(d_{i}-0\right)=0 \\
V_{i}(y) & :=y^{\prime}\left(d_{i}+0\right)-b_{i} y^{\prime}\left(d_{i}-0\right)-c_{i} y\left(d_{i}-0\right)=0, \tag{3}
\end{align*}
$$

where $q(x), a_{i}, b_{i}, c_{i}$ 'for $i=1,2, \ldots, m$ are real, $q \in L^{2}(0, \pi)$ and λ is a parameter independent of x. For simplicity we use the notation $L=L\left(q(x) ; h_{j} ; H_{j} ; d_{i}\right)$, for the problem (1)-(3). We develop the Hochstadt's result [1] based on the transformation operator for inverse Sturm-Liouville problem when there are finite number of transmission and parameter dependent conditions [2]. Furthermore, we establish a formula for $q(x)-$ $\widetilde{q}(x)$ in the finite interval where $q(x)$ and $\widetilde{q}(x)$ are analogous functions.
Theorem If $L\left(q(x) ; h ; \mathcal{H} ; d_{i}\right), \widetilde{L}\left(\widetilde{q}(x) ; h ; \mathcal{H} ; d_{i}\right)$ have the same spectrum and $\lambda_{n}=\widetilde{\lambda}_{n}$ for all $n \in \Lambda$, (where $\Lambda_{0} \subset \mathbb{N}$ be a finite set and $\left.\Lambda=\mathbb{N} \backslash \Lambda_{0}\right)$, then

$$
q-\widetilde{q}=\sum_{\Lambda_{0}}\left(\widetilde{y}_{n} \varphi_{n}\right)^{\prime} w
$$

a.e. on $\left[0, d_{1}\right) \bigcup_{i=1}^{m-2}\left(d_{i}, d_{i+1}\right) \cup\left(d_{m-1}, \pi\right]$, where \widetilde{y}_{n} and φ_{n} are suitable solutions of $\tilde{\ell} y=\lambda_{n} y$ and $\ell y=\lambda_{n} y$, respectively, and

$$
w(x)= \begin{cases}1, & 0 \leq x<d_{1} \\ \frac{1}{a_{1} b_{1}}, & d_{1}<x<d_{2} \\ \vdots & \\ \frac{1}{a_{1} b_{1} \cdots a_{m-1} b_{m-1}}, & d_{m-1}<x \leq \pi\end{cases}
$$

References

[1] H. Hochstadt, The inverse Sturm-Liouville problem. Collection of articles dedicated to Wilhelm Magnus. Comm. Pure Appl. Math. 26 (1973), 715-729.
[2] M. Shahriari, A. J. Akbarfama, and G. Teschl, Uniqueness for inverse SturmLiouville problems with a finite number of transmission conditions. J. Math. Anal. Appl. 395 (2012), no. 1, 19-29.

Reconstruction of the Discontinuous Potential Function for Sturm-Liouville Problems with Transmission Conditions

Mohammad Shahriari, Behzad Abbasi

Department of Mathematics, University of Maragheh, Maragheh, Iran
emails: shahriari@maragheh.ac.ir; mohamad.shahriari@yahoo.com

We consider the Sturm-Liouville problems with discontinuous potentials having jump and transmission conditions. As the main result we obtain a procedure of recovering the location of the discontinuity and the height of the jump.

We consider the boundary value problem

$$
\ell y:=-y^{\prime \prime}+q y=\lambda y
$$

subject to the Robin boundary conditions along with the following discontinuity conditions

$$
y\left(\frac{\pi}{2}+0\right)=a_{1} y\left(\frac{\pi}{2}-0\right), \quad y^{\prime}\left(\frac{\pi}{2}+0\right)=a_{1}^{-1} y^{\prime}\left(\frac{\pi}{2}-0\right)+a_{2} y\left(\frac{\pi}{2}-0\right)
$$

where $q(x), a_{1}, a_{2}$ are real, $q \in L^{2}(0, \pi)$ and λ is a parameter independent of x. In this work we suppose that the potential function $q(x)$ have the special following form

$$
q(x)= \begin{cases}q_{1}(x)+b, & 0 \leq x \leq a \\ q_{1}(x), & a<x \leq \pi\end{cases}
$$

where $q_{1}(x) \in A C[0, \pi]$ and $a_{2}=0$. By using the asymptotic form of eigenvalues of two types of the spectrum Dirichlet $\left\{\lambda_{n}\right\}_{n \geq 1}$ and Dirichlet-Neumann $\left\{\mu_{n}\right\}_{n \geq 1}$ boundary conditions from [2] we have the following relation

$$
\lambda_{n}<\mu_{n}<\lambda_{n+1}<\mu_{n+1}<\cdots, \quad n=1,2,3, \ldots
$$

i.e. the eigenvalues of two spectrum are alternating. So that b_{n} and c_{n} can be obtained by

$$
b_{n}=\left\{\begin{array}{ll}
\lambda_{k}-(k)^{2}, \\
\mu_{k}-\left(k+\frac{(-1) \alpha}{\pi}\right)^{2},
\end{array} \quad c_{n}= \begin{cases}\lambda_{k}-(k)^{2}-A, & n=2 k-1, \\
\mu_{n}-\left(k+\frac{(-1) \alpha}{\pi}\right)^{2}-A, & n=2 k, k=1,2, \ldots\end{cases}\right.
$$

is known for all k and

$$
A=\lim _{n \rightarrow \infty} b_{n}=\lim _{N \rightarrow \infty} \sum_{n=N}^{2 N} \frac{b_{n}}{N+1} .
$$

Let us define the following function

$$
p_{N}(x)=\frac{2 \pi i}{N+1} \sum_{n=N}^{2 N} c_{n} n e^{i n x}, \quad x \in[0, \pi] .
$$

Theorem. The following relation holds

$$
p_{N}(x)=p_{N}^{*}(x)+o(1), \quad N \rightarrow \infty
$$

where

$$
p_{N}^{*}(x)=\frac{b}{N+1} \cdot \frac{e^{i(2 N+1)(x-a)}-e^{i N(x-a)}}{e^{i(x-a)}-1} .
$$

The function $p_{N}(x)$ obtained the discontinuous point and height of jump point in the potential function.

References

[1] L. S. Efremova and G. Freiling, Numerical solution of inverse spectral problems for Sturm-Liouville operators with discontinuous potentials. Cent. Eur. J. Math. 11 (2013), no. 11, 2044-2051.
[2] G. Freiling and V. Yurko, Inverse Sturm-Liouville problems and their applications. Nova Science Publishers, Inc., Huntington, NY, 2001.

Complex Regimes Arising in a Heat-Conducting Flow Between Horizontal Porous Cylinders

Luiza Shapakidze
A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: luiza@rmi.ge

The report presents the results of investigations of stability of heat-conducting liquid motion between two horizontal stationary porous cylinders which is driven under a constant azimuthal pressure gradient acting around the cylinders. The liquid is under the action of a radial flow through the porous cylinder walls and of a radial temperature gradient.

Numerical analysis shows that when the stationary flow losses its stability under the certain parameter values of the problem, there arise intersections between the vortex and
azimuthal wave bifurcations. This indicates that there arise rather complicated regimes. These intersections take place especially when temperature of the outer cylinder is higher than that of the inner one for sufficiently large values of the wave axial number and when the liquid moves through the inner cylinder.

The Solutions of Integral-Differential Equations and Their Applications in the Linear Theory of Elasticity

Nugzar Shavlakadze
A. Razmadze Mathematical Institute of Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
emails: nusha@rmi.ge; nusha1961@yahoo.com

Let a finite or infinite non-homogeneous inclusion with modulus of elasticity $E_{1}(\mathrm{x})$, thickness $h_{1}(x)$ and Poisson's coefficient ν_{1} be attached to the plate which is in the condition of a plane deformation. It is assumed that the inclusion has no bending rigidity, is in the uniaxial stressed state and is subject only to tension, the tangential stress $\tau_{0}(x)$ acts on the line of contact of the inclusion and the plate, the contact condition considers the existence of thin glue layer.

We are required to define the law of distribution of tangential contact stresses $\tau(x)$ on the line of contact, the asymptotic behavior of these stresses at the end of the inclusion and the coefficient of stress intensity.

To define the unknown contact stresses we obtain the following singular integraldifferential equation

$$
\begin{align*}
\frac{\varphi(x)}{E(x)}+\frac{\lambda}{\pi} \int_{0}^{a} \frac{\varphi^{\prime}(t)}{t-x} d t-k_{0} \varphi^{\prime \prime}(x) & =g(x), \quad 0 \leq x \leq a \tag{1}\\
\varphi(0)=0, \quad \varphi(a) & =T_{0}
\end{align*}
$$

where

$$
\begin{gathered}
\varphi(x)=\int_{0}^{x} \tau(t) d t, \quad \int_{0}^{a} \tau(t) d t=T_{0}, \quad T_{0}=\int_{0}^{a} \tau_{0}(t) d t \\
E(x)=\frac{E_{1}(x) h_{1}(x)}{1-\nu_{1}^{2}}, \quad g(x)=\frac{1}{E(x)} \int_{0}^{x} \tau_{0}(t) d t
\end{gathered}
$$

The effective solutions for integro-differential equations (1) related to problems of interaction of an elastic thin finite and infinite inclusion with a plate are considered. If the geometric and physical parameter of the inclusion is measured along its length according to the parabolic and linear law we have managed to investigate the obtained boundary value problems of the theory of analytic functions and to get exact solutions and establish behavior of unknown contact stresses at the ends of an elastic inclusion.

Acknowledgement. The designated project has been fulfilled by a financial support of Shota Rustaveli National Science Foundation (Grant no. FR/86/5-109/14).

Precision of Estimation of Nonperiodical Core Density Constructed by Observation with Chain Dependence

T. Shervashidze ${ }^{1}$, Z. Kvatadze ${ }^{2}$
${ }^{1}$ A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Georgian Technical University, Tbilisi, Georgia
email: zurakvatadze@yahoo.com

In the paper is considered stationary in narrow sense succession $\left\{\xi_{n} ; x_{n}\right\}_{n \geq 1}$. The chain dependence succession $\left\{\xi_{n}\right\}_{n \geq 1}$, terms of that represents observations on arbitrary x occurrence. It is known that $P_{x_{1} / \xi_{1}=\alpha}, \alpha=0,1$ conditional distributions have densities $f_{1}(x)$ and $f_{2}(x)$ accordingly.

In certain conditions is determined the precision $\overline{f(x)}=p\left(\xi_{1}\right) f_{1}(x)+p\left(\xi_{2}\right) f_{2}(x)$ of density approximation by core type it's estimation.

Hyperbolicity Equation of Motion for General Maxwell's Body

Teimuraz Surguladze
Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia
emails: teimurazsurguladze@yahoo.com; surguladze@posta.ge

In this work the equation of the motion of the generalized Maxwell's body

$$
\sigma+\lambda^{\alpha} D^{\alpha}=\lambda^{\beta} G_{0} D^{\beta} \varepsilon, \quad 0 \ll \alpha, \beta \ll 1
$$

is considered, where σ is a tension, ε is a deformation, D^{α} and D^{β} Riemann-Liouville derivative of fractional order.

It is shown that the equation of motion is hyperbolic.
This is another case and it differs from earlier case just, that here $\alpha \neq \beta$.

Universal Topological Abelian Groups

Onise Surmanidze
Department of Mathematics, Batumi Shota Rustaveli State University Batumi, Georgia
onise.surmanidze@mail.ru

A topological group H is called universal for topological group G, if G is isomorphical to some subgroup of H.

For weakly linearly compact topological abelian groups are constructed universal topological abelian groups and proved that each such type universal group is isomorphical to the local direct product of elementary topological abelian groups.

References

[V] N. Ya. Vilenkin, The theory of topological groups. II. Direct products. Direct sums of groups of order 1. Locally compact Abelian groups. Fibered and weakly separable groups. (Russian) Uspehi Matem. Nauk (N.S.) 5 (1950), no. 4(38), 19-74.
[S] O. Surmanidze, Weakly linearly compact topological abelian groups. J. Math. Sci. (N. Y.) 197 (2014), no. 6, 807-857; Translated from Sovrem. Mat. Prilozh. No. 84 (2012), Part 3.

On the Solution of Some Problems of the Theory of Elastic Mixture by the Variation Method

Kosta Svanadze
Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia
e-mail: kostasvanadze@yahoo.com

In the present work in the case of plane theory of elastic mixture the solutions of the non-homogeneous boundary value problem of statics and homogeneous boundary value problem of steady state oscillations when on the boundary of simple connected finite domain is given a displacement vector are reduced to the minimum finding problem of a positively defined functional.

MathBridge

 ду

The Basic BVP of Thermo-Electro-Magneno Elasticity for Half Space

Zurab Tediashvili
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia email: zuratedo@gmail.com

Let \mathbb{R}^{3} be divided by some plane into two half-spaces. Without loss of generality we assume that these half-spaces are $\mathbb{R}_{1}^{3}:=\left\{x \mid x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, x_{3}>0\right\}, \mathbb{R}_{2}^{3}:=$ $\left\{x \mid x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, x_{3}<0\right\}$.

We investigate the following basic boundary value problem of the thermo-electro-magneto-elasticity theory for half-space.
Dirichlet problem $(D)^{ \pm}$. Find a solution vector $U=(u, \varphi, \psi, \vartheta)^{\top} \in\left[C^{1}\left(\overline{\mathbb{R}_{1,2}^{3}}\right)\right]^{6} \cap$ $\left[C^{2}\left(\mathbb{R}_{1,2}^{3}\right)\right]^{6}$ to the system of equations

$$
\begin{equation*}
A(\partial) U=0 \quad \text { in } \quad \mathbb{R}_{1,2}^{3} \tag{1}
\end{equation*}
$$

satisfying the Dirichlet type boundary condition

$$
\begin{equation*}
\{U\}^{ \pm}=f \quad \text { on } \quad S=\partial \mathbb{R}_{1,2}^{3}, \tag{2}
\end{equation*}
$$

where $A(\partial)=\left[A_{p q}(\partial)\right]_{6 \times 6}$ is the matrix differential operator of statics in the theory of thermo-electro-magneto-elasticity [1]. We require that $f \in \stackrel{\circ}{C}^{\infty}\left(\mathbb{R}^{2}\right)$.
Theorem 1. The Dirichlet boundary value problems (1)-(2) have at most one solution $U=(u, \varphi, \psi, \theta)^{\top}$ in the space $\left[C^{1}\left(\overline{\mathbb{R}_{1,2}^{3}}\right)\right]^{6} \cap\left[C^{2}\left(\mathbb{R}_{1,2}^{3}\right)\right]^{6}$ provided

$$
\theta(x)=O\left(|x|^{-1}\right) \quad \text { and } \quad \partial^{\alpha} \widetilde{U}(x)=O\left(|x|^{-1-|\alpha|} \ln |x|\right) \quad \text { as }|x| \rightarrow \infty
$$

for arbitrary multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$. Here $\widetilde{U}=(u, \varphi, \psi)^{\top}$.
Theorem 2. Let $f \in \stackrel{\circ}{C}^{\infty}\left(\mathbb{R}^{2}\right)$ and $\int_{\mathbb{R}^{2}} f(\widetilde{x}) d \widetilde{x}=0, \int_{\mathbb{R}^{2}} f(\widetilde{x}) x_{j} d \widetilde{x}=0, j=1,2$, $\widetilde{x}=\left(x_{1}, x_{2}\right)$. Then the unique solutions of the boundary value problems (1)-(2) can be represented in the form

$$
\begin{array}{ll}
U(x)=\mathcal{F}_{\widetilde{\xi} \rightarrow \widetilde{x}}^{-1}\left[\Phi^{(-)}\left(\widetilde{\xi}, x_{3}\right)\left[\Phi^{(-)}(\widetilde{\xi}, 0)\right]^{-1} \widehat{f}(\widetilde{\xi})\right], & x_{3}>0, \quad \text { or } \\
U(x)=\mathcal{F}_{\widetilde{\xi} \rightarrow \widetilde{x}}^{-1}\left[\Phi^{(+)}\left(\widetilde{\xi}, x_{3}\right)\left[\Phi^{(+)}(\widetilde{\xi}, 0)\right]^{-1} \widehat{f}(\widetilde{\xi})\right], & x_{3}<0 .
\end{array}
$$

Here $\mathcal{F}_{\widetilde{\xi} \rightarrow \tilde{x}}^{-1}$ denotes the inverse generalized Fourier transform and $\Phi^{ \pm}$are the following matrices:

$$
\Phi^{(+)}\left(\widetilde{\xi}, x_{3}\right)=\int_{\ell^{+}} A^{-1}(-i \xi) e^{-i \xi_{3} x_{3}} d \xi_{3}, \quad \Phi^{(-)}\left(\widetilde{\xi}, x_{3}\right)=\int_{\ell^{-}} A^{-1}(-i \xi) e^{-i \xi_{3} x_{3}} d \xi_{3}
$$

where ℓ^{+}(resp., ℓ^{-}) is a closed simple curve of positive counterclockwise orientation (resp., negative clockwise orientation) in the upper (resp., lower) complex half-plane $\operatorname{Re} \xi_{3}>0$ (resp., $\operatorname{Re} \xi_{3}<0$) enveloping all the roots with respect to ξ_{3} of the equation $\operatorname{det} A(-i \xi)=0$ with positive (respectively, negative) imaginary parts.

References

[1] D. Natroshvili, Mathematical problems of thermo-electro-magneto-elasticity. Lect. Notes TICMI 12 (2011), 127 pp.

Convergence of Walsh-Fourier Series in the Martingale Hardy Spaces

George Tephnadze

Department of Mathematics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden
email: giorgitephnadze@gmail.com

In [2] (see also [3]) it was proved that there exists an martingale $f \in H_{p}(0<p \leq 1)$, such that

$$
\sup _{n}\left\|S_{n} f\right\|_{H_{p}}=+\infty
$$

On the other hand, it is well known (for details see e.g. [1], [4] and [5]) that there exists an absolute constant c_{p} depending only on p, such that

$$
\left\|S_{2^{n}} f\right\|_{H_{p}} \leq c_{p}\|f\|_{H_{p}}, \quad f \in H_{p}, \quad p>0
$$

This lecture is devoted to review boundedness of the subsequences of partial sums with respect to Walsh system in the martingale Hardy spaces H_{p}, when $0<p \leq 1$. We also investigate necessary and sufficient conditions for the convergence of subsequences of partial sums in terms of modulus of continuity of the martingale Hardy spaces H_{p}, when $0<p \leq 1$.

References

[1] F. Schipp, W. R. Wade, and P. Simon, Walsh series. An introduction to dyadic harmonic analysis. With the collaboration of J. Pál. Adam Hilger, Ltd., Bristol, 1990.
[2] G. Tephnadze, On the partial sums of Vilenkin-Fourier series. Izv. Nats. Akad. Nauk Armenii Mat. 49 (2014), no. 1, 60-72 (in Russian); translation in J. Contemp. Math. Anal. 49 (2014), no. 1, 23-32
[3] G. Tephnadze, On the partial sums of Walsh-Fourier series. Colloq. Math. (to appear).
[4] F. Weisz, Summability of multi-dimensional Fourier series and Hardy spaces. Mathematics and its Applications, 541. Kluwer Academic Publishers, Dordrecht, 2002.
[5] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis. Lecture Notes in Mathematics, 1568. Springer-Verlag, Berlin, 1994.

A Note on N. Bary's One Conjecture

Shakro Tetunashvili

A. Razmadze Mathematical Institute of Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: stetun@rmi.ge
According to Cantor's well-known theorem (see [1]) if a trigonometric series converges everywhere to zero, then all of its coefficients equal to zero.
V. Kozlov proved (see [2]) that there exists a trigonometric series

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} \sin n x, \quad \sum_{n=1}^{\infty} b_{n}^{2}>0 \tag{1}
\end{equation*}
$$

possesing the following property:
if $\left\{S_{m}(x)\right\}_{m=1}^{\infty}$ is the sequence of partial sums of the series (1), then there exists a sequence of natural numbers $\left\{m_{k}\right\}_{k=1}^{\infty}$ such that $S_{m_{k}}(x) \rightarrow 0$ everywhere as $k \rightarrow \infty$ and $S_{m_{k}}(x) \rightarrow 0$ uniformly on $[\delta, \pi-\delta]$ for any $\delta>0$.

According to N. Bary's conjecture (see [3]) if the trigonometric series (1) posses the above mentioned property indicated by V. Kozlov, then it is necessary that

$$
\begin{equation*}
\frac{m_{k+1}}{m_{k}} \rightarrow \infty \text { as } k \rightarrow \infty \tag{2}
\end{equation*}
$$

We gave a negative answer to this conjecture (see [4]).
In our talk we present a theorem which strengthens our above mentioned result reflected in [4]. Namely, the following theorem holds:
Theorem. There exist a series (1) and a sequence $\left\{m_{k}\right\}_{k=1}^{\infty}$ such that

1) $S_{m_{k}}(x) \rightarrow 0$ everywhere as $k \rightarrow \infty$;
2) $S_{m_{k}}(x) \rightarrow 0$ uniformly on $[\delta, \pi-\delta]$ for any $\delta>0$;
3) $\varlimsup_{N \rightarrow \infty} \frac{1}{N} \max _{m_{k} \leq N}\{k\}=1$.

Remark. It is obvious that condition (2) implies that the upper density of the sequence $\left\{m_{k}\right\}_{k=1}^{\infty}$ equal to zero, while 3) means that the upper density of the sequence $\left\{m_{k}\right\}_{k=1}^{\infty}$ equal to one.

References

[1] G. Cantor, Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen. Math. Ann. 5 (1872), no. 1, 123-132 (in German).
[2] V. Ya. Kozlov, On complete systems of orthogonal functions. Mat. Sbornik N.S. 26(68) (1950), 351-364 (in Russian).
[3] N. K. Bary, On everywhere converging to zero subsequences of partial sums of a trigonometric series. Izv. AN SSSR, Ser. Mathem. 24 (1960), 531-548 (in Russian).
[4] Sh. T. Tetunashvili, On N. Bary's one conjecture. Proc. A. Razmadze Math. Inst. 133 (2003), 164-165.

On Geometrical Realizations of Families of Sets

Tengiz Tetunashvili

I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
Georgian Technical University, Tbilisi, Georgia
email: tengiztetunashvili@gmail.com

In our talk geometrical realizations of families of sets and some algorithms for such realizations in finite dimensional \mathbb{R}^{n} spaces are presented and discussed. Special attention dictated by visibility aspects is paid to geometrical realizations of families of sets in $\mathbb{R}^{1}, \mathbb{R}^{2}$ and \mathbb{R}^{3} spaces. Several of our theorems describe properties of special important cases of geometrical realizations of families of sets and some of their applications are shown. Namely, different statements dealing with geometrical realizations of independent families of sets are presented. These results continue our earlier research work reflected in publications [1] and [2].

Acknowledgement. Presented research was supported by the Shota Rustaveli National Science Foundation Grant for Young Scientists (Contract Number: YS15_2.1.1_31).

References

[1] A. Kharazishvili and T. Tetunashvili, On some combinatorial problems concerning geometrical realizations of finite and infinite families of sets. Georgian Math. J. 15 (2008), no. 4, 665-675.
[2] A. Kharazishvili and T. Tetunashvili, Combinatorial properties of families of sets and Euler-Venn diagrams. Proc. A. Razmadze Math. Inst. 146 (2008), 115-119.

Absolutely Convergence Factors of Fourier Series

Vakhtang Tsagareishvili, Giorgi Tutberidze
Department of Mathematics, Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
emails: cagare@ymail.com; giorgi.tutberidze257@ens.tsu.edu.ge

The talk is devoted to investigate numerical sequences, for which multiplication with Fourier coefficients of finite variation functions provides absolute convergence of Fourier series in the power p, where $p>0$.

We present the theorem, which is a criterion for which the above mentioned numerical sequences are absolute convergence factors of Fourier series of finite variation functions.

Moreover, we also consider efficiency of criterion of main results for trigonometric and Walsh systems.

Solution of the Boundary-Contact Problem of Elastostatics for an Multi-Layer Infinite Cylinder with Double Porosity

Ivane Tsagareli

I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: i.tsagareli@yahoo.com

Green's formulas for systems of equations phoroelasticity are deduced. The uniqueness theorems of solutions are proved. The general solutions of equations are presented by means of harmonic, meta-harmonic and biharmonic functions. Explicit solutions of basic BVPs are obtained in the form of series. The conditions needed for absolute and uniform convergence of series are established.

References

[1] I. Tsagareli and M. M. Svanadze, Explicit solutions of the problems of elastostatics for an elastic circle with double porosity. Mech. Res. Commun. 46 (2012), 76-80.
[2] I. Tsagareli and M. M. Svanadze, The solution of the boundary value problems of poroelastostatic for double porous for a circular ring. International Scientific and Technical Conference "Architecture and Construction-Contemporary problems" (Septeber 30 - October 3, 2010, Yerevan-Jermuk), Conference Proceedings 2 (2010), 219-225.
[3] I. Tsagareli and L. Bitsadze, Explicit solution of one boundary value problem in the full coupled theory of elasticity for solids with double porosity. Acta Mech. 226 (2015), no. 5, 1409-1418.
[4] L. Bitsadze and I. Tsagareli, Solutions of BVPs in the fully coupled theory of elasticity for the space with double porosity and spherical cavity. Math. Methods Appl. Sci. 39 (2016), no. 8, 2136-2145.

Application of Low Rank Approximation for Solution of Large Scale Electromagnetic Problems

P. Tsereteli ${ }^{1,2}$, Z. Sukhiashvili ${ }^{1}$, R. Jobava ${ }^{2}$
${ }^{1}$ EMCoS Ltd, Tbilisi, Georgia
${ }^{2}$ St. Andrew the First-Call Georgian University of Patriarchate of Georgia
email: paata.tsereteli@gmail.com

Solution of large scale and complex electromagnetic (EM) problems by the Method of Moments (MoM) demands a large amount of computer memory (hundreds of GBytes) and requires a big computational time. The used technique finally leads to solution of the system of linear equations with complex coefficients where the number of unknowns may be 100,000 and more [1]. To reduce the required memory and speed up the calculation time, various low rank approximation methods are used. At the last conference we reported about ACA (Adaptive Cross Approximation) algorithm and BICGSTAB (BiConjugate Gradient Stabilized) iterative method for compression of matrix and its solution [2], [3]. Now we would like to report about SVD (Single Value Decomposition) algorithm for the compression and direct method (LU decomposition) for solving of compressed system of linear equations.

In our approach surface of the investigated body is divided approximately into equal areas taking into account their properties. The MoM assumes that these areas interact to each other and various blocks of matrix correspond to these interactions. Diagonal blocks of matrix correspond to interaction of the surface area on themselves and they are filled completely. The blocks which describe interaction between concerning areas are filled completely also or low rank approximation with high accuracy is used for filling. Other blocks are compressed by low rank approximation method. In some cases we obtain 80$90 \%$ compression of matrix. For solving the compressed system of linear equations, block LU method is implemented.

References

[1] R. F. Harrington, J. L. Harrington, Field Computation by Moment Methods. Oxford University Press, 1996.
[2] G. Gabriadze, V. Tskhovrebashvili, F. Bogdanov, P. Tsereteli, R. Jobava, Application of ACA Algorithm and BICGSTAB Solver for Acceleration of MOM Computations of Large Scale Problem. Proc. of the 2nd International Scientific Conference "Advanced Lightweight Structures and Reflector Antennas", October 1-3, Tbilisi, 2014, Georgia, 116-122.
[3] P. Tsereteli, G. Gabriadze, R. Jobava, About Solving of Large Scale Electromagnetic

Problem. VI Annual International conference of the Georgian Mathematical Union, Book of Abstracts, July 12-16, 2015, Batumi, Georgia, 192.

On the Iterative Solution of a System of Discrete Beam Equations

Zviad Tsiklauri

Georgian Technical University, Tbilisi, Georgia
email: zviad_tsiklauri@yahoo.com

The variational and difference methods are used respectively for spatial and time variables to solve a nonlinear integro-differential dynamic beam equation. The resulting algebraic system of cubic equations is solved by the iterative method. The iteration process error is estimated.

On the Fourier Coefficients of a Double Indefinite Integral

Irma Tsivtsivadze
Akaki Tsereteli Kutaisi State University, Kutaisi, Georgia email: irmatsiv@gmail.com

The necessary and sufficient conditions for 2π periodicity are established with respect to each variable of the indefinite double integral F_{f} corresponding to a function f summable on $[0,2 \pi]^{2}$ and 2π periodic with respect to each variable. Give the relation between the Fourier coefficients of functions f and F_{f}.

The Nonstationary Flow of a Conducting Fluid in a Plane Pipe in the Presence of a Transverse Magnetic Field

B. Tsutskiridze, L. Jikidze
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
emails: b.tsutskiridze@mail.ru; levanjikidze@yahoo.com

We consider the nonstationary flow of an incompressible viscous conducting fluid in plane pipe of infinite length in the presence of a transverse magnetic field. Using the Laplace transformation we obtain the expressions for the fluid flow velocity and the electric and magnetic field intensities when the conductivity values of the fluid and pipe walls are arbitrary. Solutions are expressed in terms of complex integrals which are calculated for the particular case of ideally conducting walls.

In recent years, nonstationary flows of a conducting incompressible fluid have been considered in a number of works. A class of exact solutions of magnetohydrodynamic equations for laminar flows has been considered in the papers [1]. The theoretical statement of nonstationary problems and their solvability were investigated by Ladizhenskaya and Solonnikov in [2]. In the papers [3], an exact solution was obtained for a nonstationary flow of a fluid which is produced by the ideally conducting parallel walls in the presence of a transverse magnetic filed. The impulsive motion and oscillations of the plate in a conducting fluid in the presence of a magnetic filed are studied in the works [4].

References

[1] V. Tsutskiridze and L. Jikidze, The conducting liquid flow between porous walls with heat transfer. Proc. A. Razmadze Math. Inst. 167 (2015), 73-89.
[2] K. V. Deshikachar and A. R. Rao, Magnrtohydrodynamic unsteady flow in a tube of variable cross section in an axial magnetic field. Phys. Fluids 30 (1987), 278.
[3] J. V. Sharikadze, V. Tsutskiridze, and L. Jikidze, The unsteady flow of incompressible fluid in a constant cross section pipes in an external uniform magnetic field. Mech. Mach. Theory 50 (2013), no. 1, 77-83.
[4] L. A. Jikidze and V. N. Tsutskiridze, Approximate method for solving an unsteady rotation problem for a porous plate in the conducting fluid with regard for the heat transfer in the case of electroconductivity. Several Problems of Applied Mathematics and Mechanics. Series: Science and Technology Mathematical Physics (ebook), New York, 2013, 157-164.

Cylindrical Deformation of a Prismatic Shell with the Thickness Vanishing at Infinity

Margarita Tutberidze
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: Tutberidze.rita@mail.ru

The present work is devoted to the problem of cylindrical deformation of a prismatic shell with the following thickness

$$
h=h_{0} e^{-\alpha x_{2}}, \quad h_{0}=\mathrm{const}, \quad \alpha=\mathrm{const}, \quad 0 \leq x_{2}<\infty ;-\infty<x_{1}<+\infty, \quad\left(x_{1}, x_{2}\right) \in \omega \text {, }
$$

where ω is the projection of the plate on $O x_{1} x_{2}$,

$$
\omega:=\left\{\left(x_{1}, x_{2}\right):-\infty \leq x_{1}<+\infty, 0<x_{2}<+\infty\right\} .
$$

Solutions of the posed boundary value problems are presented by integral forms, numerical results are also given.

Approximation in Mean on Homogeneous Spaces

Duglas Ugulava

N. Muskhelishvili Institute of Computational Mathematics of Georgian Technical University, Tbilisi, Georgia
email: duglasugu@yahoo.com

Let \mathfrak{W} be a homogenous space, and G be a compact transitive transformation group of \mathfrak{W} with respect to left multiplication(see, for example, [1]). Let further a be a fixed point from \mathfrak{W} and consider its stationary subgroup $H \subset G$. Consider the following one-to-one correspondence φ between \mathfrak{W} and the factor space G / H : if $w \in \mathfrak{W}$ and $g \in G$ transfers a to w, then the corresponding to w element $\varphi(w) \in G / H$ is the class $g H$. To the subgroup H and defined on G a Haar measure, corresponds a G-invariant Radon measure μ on G / H [2]. In turn, by means of such measure μ and the correspondence φ, we may introduce on \mathfrak{W} a translation invariant measure $d_{\mathfrak{W}}$. By $L^{2}(\mathfrak{W})$ we denote the space of quadratic integrable with respect to the measure $d_{\mathfrak{W}}$ functions. In the case of a massive subgroup H [1], some Jackson's type theorems for the space $L^{2}(\mathfrak{W})$ are established and illustrated by examples. It is considered also the case when on a homogenous space acts a locally compact group.

Reference

[1] N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie groups and special functions. Vol. 1. Simplest Lie groups, special functions and integral transforms. Mathematics and its Applications (Soviet Series), 72. Kluwer Academic Publishers Group, Dordrecht, 1991.
[2] G. B. Folland, A course in abstract harmonic analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.

Cohomogeneity One Lorentzian Manifolds

Mohammad J. Vanaei, S. M. B. Kashani
Department of Pure Mathematics, Tarbiat Modares University, Tehran, Iran
emails: javad.vanaei@modares.ac.ir; kashanism@modares.ac.ir

The action of a subgroup of the isometry group of a given semi-Riemannian manifold is called an isometric action. The cohomogeneity of an isometric action is defined as the lowest codimension of its orbits. Each one of the orbits of such an isometric action, as an invariant under the isometries of the ambient manifold, is called an (extrinsically) homogeneous submanifold, and the collection of all the orbits is the orbit foliation of the action. The investigation of homogeneous submanifolds and their generalizations has produced an influential and fruitful area of research along the last decades. Historically, the case of codimension one was the first one to be addressed. The classification of cohomogeneity one actions up to orbit equivalence (which is equivalent to the classification of homogeneous hypersurfaces up to isometric congruence) is an important problem in differential geometry. The main reason is that, if M is a cohomogeneity one manifold, certain partial differential equations that can arise on M can be reduced to ordinary differential equations, which can make its resolution easier. This procedure has proved to be successful, for example, for the construction of Einstein, Einstein-Kähler metrics ([1]). In Riemannian geometry, the orbit structure of a cohomogeneity one action is easy to describe. Indeed, it is well-known that the orbit space M / G is a one dimensional topological space and using this fact one can see that all orbits of a cohomogeneity one action can be reconstructed from one orbit of the action ([1]). The situation in non-Riemannian geometry gets quite different and more interesting. To get a better understanding of cohomogeneity one actions in non-Riemannian setting, we consider cohomogeneity one actions on Lorentzian manifolds of constant curvature. Besides some general results on specific spaces (the anti de Sitter space and the Minkowski space) we classify cohomogeneity one actions in low dimensions which clarify how various and different the orbit structure and
the orbit spaces could be in non-Riemannian manifolds. For example, we can see that it may not be possible to reconstruct the orbits structure even if the orbits are known on an open dense subset of the ambient space.

This is a joint work with J. Berndt, J.C. Díaz-Ramos and E. Straume.

References

[1] L. B. Bergery, Sur de nouvelles variétés riemanniennes d'Einstein. Inst. Élie Cartan, Nancy, 6 (1982), 1-60.
[2] J. Berndt, J. C. Diaz-Ramos, and M. J. Vanaei, Cohomogeneity one actions on Minkowski spaces. Monatsh. Math. 180 (2016), no. 1, 1-16.
[3] J. C. Díaz-Ramos, S. M. B. Kashani, and M. J. Vanaei, New examples of cohomogeneity one actions on the anti de Sitter space H_{1}^{n+1}. (submitted).
[4] M. J. Vanaei, S. M. B. Kashani, and E. Straume, Cohomogeneity one anti de Sitter space H_{1}^{n+1}. Lobachevskii J. Math. 37 (2016), no. 2, 205-214.

Approximate Solution of Antiplane Problem of Elasticity Theory for Composite Bodies Weakened by Cracks Based On Finite-Elements Method

Zurab Vashakidze ${ }^{1,2}$

${ }^{1}$ I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Faculty of Exact and Natural Sciences of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: zurab.vashakidze@gmail.com

Study of boundary value problems for the composite bodies weakened by cracks has a great practical significance. Mathematical model investigated boundary value problems for the composite bodies weakened by cracks in the first approximation can be based on the equations of anti-plane approach of elasticity theory for composite (piece-wise homogeneous) bodies. When cracks intersect an interface or penetrate it at all sorts of angle on the base of the integral equations method is studied in the works [1]-[2]. Approximate solution of the above mentioned problem by finite-difference method have been studied in the articles [3], [4].

In the present article finite-elements solution of anti-plane problems of elasticity theory for composite (piece-wise homogeneous) bodies weakened by cracks is presented. The differential equation with corresponding initial boundary conditions is approximated by finite-elements analogies in the rectangular quadratic area. Such kind set of the problem gives opportunity to find directly numeral values of shift functions in the grid points. The suggested calculation algorithms have been tested for the concrete practical tasks. The results of numerical calculations are in a good degree of approach with the results of theoretical investigations.

The author express hearty thanks to Prof. A. Papukashvili for his active help in problem statement and solving.

Reference

[1] A. Papukashvili, Antiplane problems of theory of elasticity for piecewise-homogeneous orthotropic plane slackened with cracks. Bull. Georgian Acad. Sci. 169 (2004), no. 2, 267-270.
[2] A. Papukashvili, About of one boundary problem solution of antiplane elasticity theory by integral equation methods. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. 24 (2010), 99-102.
[3] A. Papukashvili, D. Gordeziani, T. Davitashvili, and M. Sharikadze, On one method of approximate solution of antiplane problems of elasticity theory for composite bodies weakned by cracks. [On one method of approximate solution of antiplane problems of elasticity theory for composite bodies weakened by cracks] Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. 26 (2012), 50-53.
[4] A. Papukashvili, D. Gordeziani, T. Davitashvili, and M. Sharikadze, On finitedifference method for approximate solution of antiplane problems of elasticity theory for composite bodies weakened by cracks. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. 27 (2013), 42-45.

New Algorithm of the Estimate Operation Number for Product of Polynomials

Tamaz Vashakmadze ${ }^{1,2}$
${ }^{1}$ I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Department of Mathematics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia email: tamazvashakmadze@gmail.com

In the our report will be considered the problem of construction of the new scheme for a product of polynomials of one variable. By our scheme, in particular, this number may be reduced almost twice as in [1] but our approach is different giving some interesting applications. Then we construct an new expansion for arbitrary parameter.Same expression in the simple case give an estimate considering in [2, Exercise 1.2.6] and for the work [3] this result is essential.

Further, we also will present new scheme for product of polynomials, from which particularly follows that the order of numbers of multiplications for the product of two integers is same of Toom-Cook estimate with bounded constant (compare with [4, Theorem C, p. 324]).

By The Georgian Patent Office the corresponding materials of this article was depositing at 17.09.2015, Certificate No. 6353.

References

[1] A. Weimerskirch and C. Paar, Generalizations of the Karatsuba algorithm for efficient implementations. Technical Reports, 2003, 17 p.
[2] G. Strang, Linear algebra and its applications. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976.
[3] A. Karatsuba and Y. Ofman, Multiplication Karatsuba. The ltiplication of manyvalued numbers on Automaton. Sov. Phys., Dokl. 7 (1963), 595-596.
[4] D. E. Knuth, The art of computer programming. Vol. 2: Seminumerical algorithms. Izdat. "Mir" Moscow, 1977 (in Russian).

To Creation and Design of Refined Theories of von Kármán-Koiter Type for Thin-Walled Continuum Medium

Tamaz Vashakmadze
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: tamazvashakmadze@gmail.com

In the first chapter of [1] for elastic plates are constructing of refined theories (such as Kirchhof-Love, von Kármán-A. Feppl, Reissner-Mindlin, Poincare, Donnel, Washizu, Hellinger, Landau, Timoshenko, Vekua, Ball, Goldenveiuser, Lucasiewich, Ciarlet, etc.) and their equivalent new models, depending on arbitrary control parameters. On the other hand, in [2] we formulated the Pinciple:If some phenomenon is discovered for any separate media then this one are true for all forms of continuum mechanics. In this way it's interesting that in [3] we predicted the existence of solution waves for elastic plates which would be confirmed by experiment [4]. Based on works[1], [2] we formulate the problem investigation and decision of which would be for us the main aim: the creation of refined theories with control parameters without applicable of simplifying hypothesis for problems of continuum media with thin-walled structures (for example, the theory of Nagdy-Koiter and Burgers' equation). For clearness and concreteness we consider the cases when the cylindrical pipe conductors of finite or semi-infinite lengths have concentrate circles or confocal elliptical rings with oil, gas and blood.

In historical sense these problematics are connected with the names of I. Vorovich, V. Koiter [some details see1, pp. 3, 4], C. Truesdell [5], Ph. Ciarlet [6]. In [5] Truesdell declared that von Kármán classical systems doesn't have "physical soundness (PS)". Ph. Ciarlet in [6] seeked to proof that this system has PS. But it's impossible as the second differential equation with respect to Airy stress function is Saint-Venant-Beltrami condition of compatibility and no-equilibrium independent equation. This incorrectness discovered more evidently for consideration of dynamical problems.

Thus an aim of this report is determination facilities of construction and investigation a class of mathematical models of von Kármán-Koiter type refined theories; in case when pipeconductors have sections of circle or elliptical rings we will try to construct new algorithms and create new schemes for full designing.

References

[1] T. Vashakmadze, The theory of anisotropic elastic plates. Springer Science \& Business Media, 2010.
[2] T. Vashakmadze, To governing systems of equations of continuum mechanics. J. Georgian Geophysical Society, Tbilisi, 9A (2005), 118-120.
[3] T. Vashakmadze, Some problems of the mathematical theory of anisotropic elastic plates. Tbilis. Gos. Univ., Inst. Prikl. Mat., Tbilisi, 1986 (in Russian).
[4] B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K.-P. Marzlin, and M. K. Oberthaler, Bright Bose-Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett. 92 (2004), 230401.
[5] C. Truesdell, Some challenges offered to analysis by rational thermomechanics. Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Jane, pp. 495-603, North-Holland Math. Stud., 30, North-Holland, AmsterdamNew York, 1978.
[6] Ph. Ciarlet, Mathematical elasticity. Vol. II. Theory of plates. Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, 1997.

Calculation of Thin-Walled Structures with Cracks

Mamuka Vazagashvili ${ }^{1}$, Jumber Kakhidze ${ }^{2}$, David Kipiani ${ }^{3}$
${ }^{1}$ Georgian Technical University, Tbilisi, Georgia email: mamuka_vazagashvili@mail.ru
${ }^{2}$ Shota Rustaveli Batumi State University, Batumi, Georgia email: rezokakhidze@mail.ru
${ }^{3}$ Georgian Technical University, Tbilisi, Georgia
email: kipianidavid@yahoo.com

One of the key issues that determines the crack resistance of thin-walled reinforced concrete structures, is taking into account the specific properties of reinforced concretes. Reinforced concretes as a two-component structural material, differ from other materials in a number of characteristic features such as heterogeneity, anisotropy, transformation of cracks, etc., creates some difficulties for building structures calculation and design.

The paper is devoted to the calculation of reinforced concrete structures with cracks by means of reduction of reinforced concrete elements mode of deformation to the calculation of having variable stiffness rod using the methods of structural mechanics. Due to the integral model of deformation the level of load according to modes and duration of loading, as well as strength, deformation characteristics, and according to cross-section are determined.

On the Number of Representations of a Positive Integer by Binary Forms Belonging to Multi-Class Genera

Teimuraz Vepkhvadze
Department of Mathematics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: t-vepkhvadze@hotmail.com

We extend formulae of P. Kaplan and K. Williams [1] for the number of representations of positive integers by some binary quadratic forms belonging to multi-class genera.

References

[1] P. Kaplan, K. S. Williams, On the number of representations of a positive integer by a binary quadratic form. Acta Arith. 114 (2004), no. 1, 87-98.

Influence of Delamination Type Defects on Parameters of Sandwich Plate

Fatima Verulashvili ${ }^{1}$, Revaz Kakhidze ${ }^{2}$
${ }^{1}$ Georgian Technical University, Tbilisi, Georgia email: gelakip@gmail.com
${ }^{2}$ Shota Rustaveli Batumi State University, Batumi, Georgia
email: rezokakhidze@mail.ru

At design of sandwich plates and shells should be considered a possibility of such type of defects, as the delamination of structure, which may arise at production of structure, or at its operation. The origination of such defects is necessary to take into consideration at design of optimal tasks as restrictions of symmetrical structure.

The analysis of mode of deformation of sandwich slab, which is being under the action of distributed on the surface load and was simply supported on edges, shows that parameters of mode of deformation of such slab that has additional delamination type defect, considerably different from the parameters of mode of deformation of slab without defects. Is clear numerical as well as qualitative difference. Especially in the case when the defect location does not match the force application spot.

In the report is stated the delamination related to shifted loading in the middle of span applied on upper load bearing layer, when the deflection curve becomes asymmetrical and the maximum deflection is increasing in comparison with non-deformed structures. Also occurs the maximum deflection displacement ti the delamination zone. Location of maximum deflection is determined by the sizes of delamination.

Cross-Sections in a Special Class of Semi-Cotangent Bundles

Furkan Yildirim ${ }^{1}$, Kursat Akbulut ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sci. Atatürk University, Narman Vocational Training School, 25530, Erzurum, Turkey
email: furkan.yildirim@atauni.edu.tr
${ }^{2}$ Department of Mathematics, Faculty of Sci. Atatürk University, 25240, Erzurum, Turkey
email: kakbulut@atauni.edu.tr

The main purpose of this paper is to investigate cross-sections in semi-cotangent (pullback) bundle $\mathrm{t}^{*} \mathrm{M}$ of cotangent bundle $\mathrm{T}^{*} \mathrm{M}$ by using projection (submersion) of the tangent bundle TM.

References

[1] D. Husemoller, Fibre Bundles. Third edition. Graduate Texts in Mathematics, 20. Springer-Verlag, New York, 1994.
[2] C. J. Isham, Modern Differential Geometry for Physicists. Second edition. World Scientific Lecture Notes in Physics, 61. World Scientific Publishing Co., Inc., River Edge, NJ, 1999.
[3] H. B. Lawson, M.-L. Michelsohn, Spin Geometry. Princeton Mathematical Series, 38. Princeton University Press, Princeton, NJ, 1989.
[4] L. S. Pontryagin, Characteristic classes of differentiable manifolds. Transl. Amer. Math. Soc. 7 (1962), 279-331.
[5] N. Steenrod, The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 14. Princeton University Press, Princeton, N. J., 1951.
[6] V. V. Vishnevskii, Integrable affinor structures and their plural interpretations. Geometry, 7. J. Math. Sci. (New York) 108 (2002), no. 2, 151-187.
[7] K. Yano, S. Ishihara, Tangent and Cotangent Bundles: Differential Geometry. Pure and Applied Mathematics, No. 16. Marcel Dekker, Inc., New York, 1973.
[8] F. Yıldırım, On a special class of semi-cotangent bundle. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 41 (2015), no. 1, 25-38.
[9] F. Yıldırım and A. Salimov, Semi-cotangent bundle and problems of lifts. Turkish J. Math. 38 (2014), no. 2, 325-339.

A Suggestion for Controlling of a Nonlinear Plate Via Maximum Principle

Kenan Yildirim
Mus Alparslan University, Mus, Turkey
email: kenanyildirim52@gmail.com

In this study, a nonlinear plate equation is considered by means of maximum principle in aspect of well-posedness and controllability. As a conclusion of the present study, an open problem is presented.

Optimal Vibration Control for a Mindlin-Type Beam

Kenan Yildirim
Mus Alparslan University, Mus, Turkey
email: kenanyildirim52@gmail.com

In this study, optimal dynamic response control of a forced Mindlin-type beam is presented. Before giving the controllability results, well-posedness of the system is discussed. Numerical results are presented in tables and graphical forms to demonstrate the effectiveness and capability of the introduced control algorithm.

Study of Stress-Strain State of Infinite Elastic Body with Parabolic Notch

Natela Zirakashvili

I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
email: natzira@yahoo.com

In the parabolic coordinates $\xi, \eta(-\infty<\xi<\infty, 0 \leq \eta<\infty$; if x, y are Cartesian coordinates, then $x=\frac{c}{2}\left(\xi^{2}-\eta^{2}\right), y=c \xi \eta$, where c is the scale factor and equal to 1 in our case) [1] equilibrium equations system and Hook's law are writing. Exact solutions of 2D static boundary value problems of elasticity are constructed for the homogeneous isotropic bodies occupying domains bounded by coordinate lines of system parabolic coordinates. Namely, the elastic body occupies the following domain $\Omega=\{-\infty<\xi<\infty, \leq \eta<$ $\infty\}$. At parabolic border are given normal or tangential loads, and at $\xi=0$ are given symmetrical or anti-symmetrical conditions. The exact solutions are obtained by the separation variables method. In the work the numerical values of the components of stress tensor and displacement vector at some points of the body, and visualization and discussion of gained results are presented.

References

[1] A. F. Bermant, Mappings. Curvilinear coordinates. Transformations. Green's formulas. Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958 (in Russian).

Numerical Solution of Stresses Localization Problem by Boundary Element Method

Natela Zirakashvili, Mariam Mateshvili

I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
emails: natzira@yahoo.com; mmateshvili@yahoo.com

Numerical solution of the non-classical problem, namely problem of localization of stresses, are obtained by the boundary element method [1]. In a certain sense, the problem of localization of stresses in a body is the inverse problem to the delocalization problem [2].

The localization problem is defined as follows: to change a sufficiently uniform stresseddeformed state of a body for a sharply expressed non-uniform stressed-deformed state (in conditions of constant external perturbations) by changing and appropriate selection of parameters of the medium. This will enable us to destroy a military structure, for example, the underground facilities. The problem can be set as follows: find on the part of border half plane distribution of normal stress so that is the same normal stress on the segment given length at a given distance from the boundary half plane is equal of given function (function describes a concentrated force). By the changes of elastic characteristics, the distance and the length of segment of the border will be select the normal stress optimal distribution at part of border half plane. Numerical results, corresponding graphs and mechanical and physical interpretation of above-mentioned problems are presented.

References

[1] S. L. Crouch and A. M. Starfield, Boundary element methods in solid mechanics. With applications in rock mechanics and geological engineering. George Allen \& Unwin, London-Boston, Mass., 1983.
[2] N. Zirakashvili, On the numerical solution of some two-dimensional boundarycontact delocalization problems. Meccanica 48 (2013), no. 7, 1791-1804.

Index

sobulo d．， 225

ззงмоддомо о．， 83
s390 \quad－．， 84

งмоэзо д．১．， 76
งд๐ゝณ๐ д．， 77
งбっちoงdgomo 6．， 77

sðmmeos д．，79， 81
งdnogo b．， 82
sbumsos 3．， 73
дыд̀nmys 3．，85， 86
bsobsmmgs 3．， 89
onmoda 3．，90－92

ogmody ง．， 90
бпツоэдо З．о．， 156

onfidd m．， 97
oobjody b．， 97

3ußghomsdy Ј．， 121
3ußgRomsdy m．， 121

39 mody 8．， 123

зомпйдd．3．， 183
$3^{\text {mgodg 3．}} 3$ ．， 125
змдодапмо $3 ., 126$
змдмемддомп œ．， 127
змgmesta б．， 156
3mgmbos 3．，58， 127

змпдодямп д．， 185

3クщクる か．，128， 129
зクщクs ৎ．， 130

＠ддоœпда ا．， 173

＠лмо о．， 57

＠удоюั๐ 子ె．， 219
＠olbudodๆ д．， 113
œояэбјм 3．， 114

＠ゴœัコ ठ．， 117
9b300s 3．， 81

$3^{\text {Jolbo }} 3$ ．， 64

$399^{\text {bวјд9 ๓．，} 247}$

$3^{\text {memmbo }} 39$ gibo l．b．， 60

0งวdosbodg £．， 154

оэழо১ддом๐ 8．， 231
og3＠mmปdд 2．，123， 129
omgyそnody 6．， 79

osdzomo 3．，133， 135
оっдŋ๐мп д．， 134
osддомо б．，119， 135

омழоппда ј．， 249
омழоподо э．， 248

oybogmá 8．9．， 75
з зодмпо ӟ．， 100

jubodg ๙．， 247
3 ${ }^{\text {sbodg }}$ x．， 246
зコздмол 6．， 79

$33^{\text {obobodg }}$ ．， 63
з33 $3^{\text {ody }}$ м．， 89
зomosdy s．， 154
јоппмщмдя м．о．， 210

зущхзбоддомо $9 ., 213$

зэпъвьмод œ．，196，198，199，201－203， 205， 206

мл6ßьдл м．， 160
membsögnodg д．，87， 151

д七оудјомп д．， 250

д๖flotsmos 8．， 73
2ıfogstnos 6．， 163
duœmうdg ס．， 161
дงbumbdy＠．， 121
дงbsmodg m．， 164
дз9 ${ }^{\text {modg }}$ ๓．， 168

дgmody 3．， 166

aglbos m．， 167

дозŋßっd9 3．， 111

доэјмуศ๐ 3．3．， 64

дм＠gठ̇ンdg 8．， 111
amjbgloubo o．， 173
дmglgbosбo о．д．， 172

дмпмо̊mzo 6．， 57
ambmy3̉os6o a．l．， 66
ддоблподдомо м．， 164

6sòogảo 孔．，157，177， 178
6っ＠っかったs 9．，85， 174

Бงณдงб๐ง д．， 175
6sloòmğ 6．， 176

6mo̊sda 3．， 160

mдงmags f．， 182

3molym 3．， 207
Зм Зм да 3．， 209

moso̊stmga j．， 215

ппmgogs ж．， 130

mybuos d．， 102
mybuos b．， 216
lşợmgo ง．১．， 137
bse9з 3．， 218
しっœうよodzomo 3．， 139

lumodmgo Ј．， 221
bubuos 8．， 145

しठ̀m
ᄂgдомбмдя อ．， 57

lgubudy 3．， 230
lmbsdg 3．，85，86，141，174， 190
lymsos m．， 105
bymodo 3．， 69

bybosdanemo 0．， 237

O゚Sjody $0 ., 113$

g̊odys …， 216

gumglondaneo s．， 153

ээœэмпдо $3 ., 119$
39ำวd x．， 191

gbəзJdy з．，192－194，196－199，201－203， 205， 206
gbbujdy l．， 216
futmbgembd9 3．， 139
fılmsдjomo o．， 143
d3 3oosda $0 ., 228$
d3 somsdy 凸．， 111

yงかっとっддомо щ．， 143
yogosbo 3．，152－154
yogosbo œ．， 246
yogosto щ．， 98

ปงวิศ๐งโ๐ д．， 225

дуாழைо ง．，58， 127

Вдздцзо ๖．， 99

Bomsßogs o．，103－105
BoEßucmoda 3．， 181
ßobßumoda 6．， 106
Bodjobody д．，196－199，202，203，205， 206

Boßys 3．，193，194，196，198，199，202， 203，205， 206
ßмд̀sбosбo l．， 56
Вмпизлјщо 6．， 153
（३ゝ১ろ๖ д．， 114

（̧งbऽjus（3．， 155

дృgutos m．，119， 135
dıg6ody m．， 118
dodogy币ゥ（8．， 118

дзゝœうゝ ๓．， 98

bs凸domody 6．， 81
bumdomsdy m．， 102

bagmaglo s．， 152

bмдуாゥз๐ œ．， 151
bмдупозо b．， 151
bma̧mesza 3．， 150

зu006o 子．， 61
зงбъзддомо б．， 179

злбјелыя п．，128，139， 175

ү．gusmody ※．， 140

xofody m．， 239

3ెgп＠งณゥ๐ 6．， 132

Abbasi B．， 225
Abramidze E．， 73
Akbarov S．， 165
Akbulut K．， 248

Akhalaia G．， 73
Aliashvili T．， 74
Aliev A．B．， 75
Aliev B．A．， 76
Amyari M．， 77
Ananiashvili N．， 77
Aptsiauri G．， 78
Arkania Z．， 79
Ashordia M．，79， 81
Ashrafi S．， 82
Avalishvili I．， 83
Avey A．， 84
Babilua P．，85， 86
Baghaturia Guram， 87
Baghaturia Giorgi， 88
Baisarova G．， 89
Baladze V．，90－92
Bandaliyev R．， 93
Barsegian G．， 94
Beriashvili I．， 194
Beriashvili M．， 95
Beridze A．， 90
Bezhuashvili Yu．， 96
Bhattacharyya T．， 55
Bidyuk P．I．， 156
Bitsadze L．， 96
Bitsadze R．， 97
Bitsadze S．， 97
Botchorishvili N．， 98
Buchukuri T．， 98
Burchuladze D．， 168
Cakmak A．， 99
Cayir H．， 100
Çelebi A．O．， 101
Chakaberia M．， 103
Chankvetadze G．， 102
Chargazia Kh．， 102
Chichua G．，193，194，196，198，199，202， 203，205， 206
Chikovani D．， 98

Chikvinidze M., 196-199, 202, 203, 205, 206
Chilachava T., 103-105
Chinchaladze N., 106
Chinchaladze V., 181
Chkadua O., 98
Chobanyan S., 56
Chorkhauli N., 153
Dahl Yu., 57
Daraby B., 107-109
Darvishi Z., 212
Davidov S., 173
Davitashvili T., 110, 111, 166
Demir H., 219
Devadze D., 112
Diasamidze M., 113
Didenko V., 114
Djahangiri M., 115
Duduchava R., 114
Dundua B., 117
Dzagania T., 119
Dzagnidze O., 118
Dzidziguri Ts., 118
Ekhvaia G., 81
Fadiurashvili V., 119
Fedulov G., 119
Gabelaia M., 120
Gabidzashvili M., 120
Gabisonia I., 121
Gachechiladze A., 121
Gachechiladze R., 121
Gavasheli L., 122
Geladze G., 123
Gevorkyan A., 123, 124
Giorgadze G., 183
Giorgashvili L., 124, 125
Gogadze V., 125
Gogishvili G., 126

Gogokhia V., 58, 127
Gogoladze N., 156
Gogolashvili D., 127
Gol'dshtein V., 59
Golubov B. I., 60
Gorgidze D., 128
Gorgisheli M., 185
Gubelidze G., 110
Gulua B., 128, 129
Gulua D., 130
Gursoy O., 131, 136
Gvinjilia Ts., 104
Heidari N., 132
Heydari A., 132
Iashvili G., 133
Iashvili M., 134, 135
Iashvili N., 119
Incesu M., 136
Israilov S. V., 137
Ivanadze K., 91
Jafarzadeh Y., 138, 177
Jaghmaidze A., 139
Jaiani G., 61
Janikashvili N., 179
Janjgava R., 128, 139, 175
Jankarashvili D., 152
Jikidze L., 239
Jobava R., 237
Kakhidze J., 246
Kakhidze R., 247
Kakubava R., 141
Kalabegashvili M., 141
Kalantarov V., 142
Kapanadze G., 142
Kaplunov J., 62
Karalashvili L., 143
Karseladze G., 139
Kashani S. M. B., 241

Kasrashvili T., 143
Kekelia N., 79
Kereselidze N., 144, 145
Khaburdzania R., 145
Kharashvili M., 124
Kharazishvili M., 146
Kharshiladze N., 81
Kharshiladze O., 102
Khatiashvili N., 146
Khechinashvili Z., 148
Khimshiashvili G., 148, 149
Khocholava V., 150
Khomeriki D., 151
Khomeriki S., 151
Khutsishvili I., 151
Khvoles A., 152
Kikvidze O., 89
Kipiani D., 246
Kipiani G., 152-154
Kipiani L., 98
Kirillova O. I., 210
Kirtadze A., 154
Koşar B., 157
Kokilashvili V., 63, 121, 155
Kordzadze T., 156
Krapež A., 173
Kuljanishvili E., 213
Kurtanidze L., 102
Kurtanidze S., 141
Kurtskhalia D., 196, 198, 199, 201-203, 205, 206
Kutaladze N., 111
Kuthashvili K., 230
Kvaratskhelia V., 158
Kvatadze R., 111
Kvatadze Z., 228
Kvinikhidze A., 63
Labadze L., 159
Lanchava O., 140, 160
Losaberidze M., 87, 151

Müller W. H., 64
Magradze B., 161
Magrakvelidze D., 162
Makatsaria G., 73
Makatsaria N., 163
Makharadze D., 121
Makharadze L., 164
Manjavidze N., 73
Mataradze E., 151
Mateshvili M., 250
Mdzinarishvili L., 164
Mehdiyev M. A., 165
Meladze H., 166
Meladze R., 124
Menteshashvili M., 88
Meskhia R., 167
Metreveli D., 168
Mgeladze T., 168
Mikuchadze G., 111
Mirnia K., 170
Mnatsakaniani M., 169
Modebadze Z., 111
Morowati-Shalilvand S., 170
Morozov N., 57
Moslehian M. S., 66
Movsisyan Yu., 173
Movsisyan Yu. M., 172
Mtchedlidze N., 173
Nadaraya E., 85, 174
Najjari V., 174
Namgalauri E., 185
Narmania M., 175
Nasibova N., 176
Nasrinpay B., 177
Natroshvili D., 98
Nebiyev C., 157, 177, 178
Nozadze G., 160
Odisharia K., 179, 181
Odisharia V., 179, 181
Odishelidze N., 182

Ökten H. H., 178
Omarova K., 182
Paatashvili V., 63
Pantsulaia G., 183
Papukashvili A., 185
Papukashvili G., 186
Paresishvili A., 153
Pasaoglu B., 84, 187, 188
Pataraia D., 189
Patsatsia M., 190
Peradze J., 191
Pkhakadze K., 192-194, 196-199, 201-203, 205, 206
Pkhakadze S., 216
Plisko V., 207
Popov V., 209
Popov V. G., 210
Prikazchikov D., 62
Purtukhia O., 211
Rahimi A., 212
Rakviashvili G., 213
Rashidi-Kouchi M., 214
Rekhviashvi G., 154
Rjasanow S., 67
Rjasanowa K., 215
Rogava J., 130
Rukhaia Kh., 216
Rukhaia M., 102
Rusiashvili N., 217
Sadeghi G., 218
Sadunishvili G., 139
Şahïn S., 219
Şahin T., 220
Sagitov A. A., 137
Salimov A., 221
Sanaia G., 145
Sarajishvili T., 222
Sazandrishvili N., 149
Sborshchikov A., 223

Semenov B., 57
Sergeev A., 68
Shahmorad S., 170
Shahriari M., 223, 225
Shapakidze L., 226
Sharikadze M., 110, 185
Shatberashvili G., 151
Shavlakadze N., 227
Shervashidze T., 228
Shurgaia A., 58, 127
Sokhadze G., 85, 86, 141, 174, 190
Sukhiashvili Z., 237
Sulava L., 105
Sulisz W., 69
Surguladze T., 229
Surmanidze O., 229
Svanadze K., 230
Tabatadze A., 152
Takidze I., 113
Tavzarashvili K., 230
Tediashvili Z., 231
Tephnadze G., 232
Tetunashvili Sh., 233
Tetunashvili T., 235
Tevdoradze M., 123, 129
Tibua L., 216
Toklikishvili B., 144, 145
Topuridze N., 79
Tsaava M., 114
Tsagareishvili V., 235
Tsagareli I., 236
Tsanava Ts., 155
Tsereteli P., 179, 237
Tsiklauri Z., 238
Tsinaridze R., 92
Tsivtsivadze I., 238
Tsutskiridze B., 239
Tutberidze G., 235
Tutberidze M., 240
Ugulava D., 240

Vanaei M. J., 241
Vashakidze Z., 242
Vashakmadze T., 244, 245
Vasuth M., 58
Vazagashvili M., 246
Vepkhvadze T., 247
Verulashvili F., 247
Vilchevskaya E. N., 64
Volosivets S. S., 60
Weiss W., 64
Yildirim F., 248
Yildirim K., 249
Yusifova G. I., 75
Zambakhidze L., 154
Zazashvili Sh., 125
Zirakashvili N., 250

[^0]:

[^1]:

[^2]:

[^3]: ${ }^{1}$ ๓м

[^4]:

[^5]:

[^6]: ${ }^{1}$ ๓м

[^7]:

