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Professor Gvanji Mania (1918 — 1985)

Professor Gvanji Mania was born in the village of Etseri, Georgia on May 29, 1918.
His father, Mikheil Mania, was a Russian language teacher and his mother, Fedosi was
daughter of clergyman. It is noteworthy that Professor Mania’s maternal grandfather and
two of his uncles served at Saint George’s church in the village of Jvari.

From 1932 to 1935 Mania studied at Zugdidi Pedagogical College and immediately
after its graduation he entered the Department of Physics and Mathematics of Thilisi State
University. From 1940 to 1945 he worked as Assistant Professor at Zugdidi Pedagogical
Institute and at the same time, from 1943 to 1946, as an Assistant Professor at Thilisi
Institute of Railway Engineers. In 1945-1946 he was a higher school inspector at the
Ministry of Education of Georgia. In 1945 he was awarded the medal “For labor valor
during the Great Patriotic War”.

From 1946 till 1949 Gvanji Mania studied at the Moscow Potemkin Pedagogical Insti-
tute as a postgraduate student. His research supervisor was a well-known mathematician
Professor Smirnov. Smirnov offered him to study problems similar to those Prof. Smirnov
was working on together with Academician Kolmogorov. Mania had to compare not just
the entire empirical line with the theoretical law of distribution, but only a certain a
priori fixed part of this line — to the respective part of the theoretical line. The relevance
of the stated problem was due to the fact that empirical data often contain unreliable
observations, which, as a rule, are found at the extreme intervals of the distribution line
and therefore break fitting on these intervals. Since such observations do not generally
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define the phenomenon, it is reasonable to omit them when empirical and theoretical
distributions are compared. On October 3, 1949 G. Mania defended his thesis Statistical
Estimation of Distribution Law for Candidate’s degree at the Scientific Council of the
Depart-ment of Physics and Mathematics at Potemkin Institute, his thesis gained a high
appreciation of the opponents.

The official opponents of the thesis were Academician Boris Gnedenko from Kiev and
Professor Liapunov. After the applicant’s speech Academician Gnedenko said: “Glivenko,
Kolmogorov and Smirnov always point out to the drawbacks of their theorems. More ac-
curate facts are necessary here — we should perform estimation not on the whole numerical
axis, but at points where large deviations can be observed. G. Mania, under Smirnov’s
guidance, investigated just these particularly interesting and important problems. The
results obtained in the thesis are of primary importance (Gnedenko uses the phrase:
“nepBokaccHoro 3Hauenus” ), and I think that this topic can make a subject of a doctoral
dissertation. The obtained results — the two beautiful theorems — should be published as
soon as possible and included in statistics manuals. It is advisable to prepare this thesis
for publication”.

The second official opponent, Professor Liapunov, noted: “As a result of calculations,
the author obtained boundary laws of distribution both for the first and the second
deviation. It is obvious that these two theorems will enter the gold fund of mathematical
statistics (3TH JBe TeopeMbl BOMIYT B 30J10TOM (hOHI MaTeMaTHYeCKoi ctarucTuky), while in
a formal review he wrote: “MOXHO cMeN0 cKa3aTh, YTO PEIICHHUS ITHX 3a]1a4, TPOYHO BOUIYT
B 30JI0TOM (hOH/T MAaTEMAaTHYECKUX METOJIOB cTaTucTukK -— undoubtedly, these theorems will
enter the gold fund of mathematical methods in statistics”). Then he added: “I agree with
Academician Gnedenko that extension of this topic will make a firm basis for a doctoral
dissertation”.

We shall present here a fragment from Professor N. Smirnov’s, G. Mania’s thesis
supervisor’s, speech: “I remember the year of 1946 when Gvanji Mania first appeared.
He was very young then, but creative enthusiasm and love for science characterized each
step he took. His Russian was rather poor then. We gave him Hammerstein’s memoirs
to read and were greatly astonished when this young man, who could hardly arrange
Russian words into sentences while speaking, managed to reproduce very precisely heavy
German phrases and present not only all basic ideas, but also all details and proofs in
a brilliant way. Since the time G. Mania started working independently he introduced a
number of different approaches, but some of them led to more difficult problems while
others resulted in very long statements, and it was his intuition that made him choose the
most convenient and useful method that would become a model for statement and proof
of similar problems”.

After the Russian period of his activity G. Mania came back to Georgia and in 1949—
1950 worked as Assistant Professor at Gori Nikoloz Baratashvili Pedagogical Institute. In
1950-1953 he was an Assistant Professor at Georgian Polytechnic Institute. In 1955-1956
he became a Senior Researcher at Thilisi Andrea Razmadze Institute of Mathematics.
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One cannot overestimate Professor G. Mania’s share in the foundation of new scientific
centers, such as Computational Centre and Institute of Applied Mathematics. Hence it
is quite natural and noteworthy that when during the celebration of the 40-th anniver-
sary of the Institute of Applied Mathematics (later — Academician 1. Vekua Institute of
Applied Mathematics) in 2009 a scientific conference dedicated to this event was held, it
was decided that the session devoted to Professor G. Mania’s 90-th anniversary, prepared
on the initiative and under the leadership of Georgian Mathematical Society, would take
place just within the walls of this Institute. In 1956-1964 Professor G. Mania was Deputy
Director for Science at the Computational Center of Georgian Academy of Sciences (later
— Academician Nikoloz Muskhelishvili Institute of Computational Mathematics) and in
1966-1972 he worked as Deputy Director for Science at The Institute of Applied Mathe-
matics of TSU.

G. Mania’s doctoral dissertation titled Some Methods of Mathematical Statistics was as
successful as his Candidate’s thesis. It was a result of his fruitful ten-year scientific studies.
G. Mania defended his doctoral dissertation at A. Razmadze Institute of Mathematics in
1963. His official opponents were Academicians: Khvedelidze, Prokhorov and Sirazhdinov.
In 1964 he was elected for the position of TSU Professor.

In 1963 G. Mania organised, basically singlehandedly, very large and important confer-
ence — All-Union Conference in Probability Theory and Mathematical Statistics. In Soviet
Union, in 1963, the conference was allowed “10 participants from capitalist countries and
15 participants from socialist countries” — an unseen luxury for the times. H. Cramér,
was a participant, and Martin Loff, E. Parzen, J. Wolfowitz and M. Rosenblatt, David
Kendall. Not just probabilists and statisticians, but some of the best specialists in the
theory of functions and functional analysis, such as Prof. S. Stechkin, also participated.
Prof. Yu. Linnik was there with some of his pupils, and young M. Stratonovich, who at
that time, worked in approximation methods for PDE in Physics. A. Kolmogorov, along
with his pupils and collaborators B. Gnedenko, A. Shityaev, Ya. Sinai, A. Borovkov, and
others, formed the scientific “core”, but myriads of problems, small and large, have been
laid on shoulders of one young, not yet professor, person — Gvanji Mania.

Some 20-25 years later, and more, colleagues everywhere remembered the Conference
as a great and joyful event of they experienced.

The foundations of studies in probability theory and mathematical statistics were laid
by the first Georgian mathematician, one of the founders of Thilisi University — Profes-
sor Andrea Razmadze (1889-1929). He was a lecturer at the newly established Tbilisi
University, while Gvanji Mania (1918-1985) was his successor developing this field of
mathematics in Georgia. In 1968 under the direction of Professor G. Mania Probability
Theory and Mathematical Statistics Chair was founded at Thilisi State University, the
head of which he remained till the end of his life. This year we celebrate both Profes-
sor Mania’s centenary and the 100-th anniversary of his native university and the 50-th
anniversary of the chair he founded (today the Head of the Chair is Professor Elizbar
Nadaraya, Member of Georgian Academy of Sciences). At the same time in the period,
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1973-1983 Professor G. Mania was Head of the Sector at the Institute of Economics
and Law of Georgian Academy of Sciences, while since 1983 he was Head of the Sector
of Probability Theory and Mathematical statistics at Thilisi A. Razmadze Institute of
Mathematics.

Professor G. Mania was actively engaged in scientific and pedagogical work. He is
an author of more than 50 scientific works. It was G. Mania who laid the foundations
for the development of Probability Theory and Mathematical Statistics as a branch of
mathematics in Georgia. He is the author of first Georgian manuals and a number of
monographs in this field. As a result of his activity since the 50-th of the last century
teams of scientists were formed studying problems of probability theory and mathematical
statistics and solving both theoretical and practical problems using probabilistic and
statistical methods. Under the direction of Professor Mania 10 Master’s Theses were
prepared.

Professor G. Mania took an active part in the work and organization of a number of
All-Union and international conferences and symposia. In 1969 he participated in the
work of the 37-th session of the International Institute of Statistics in London and in 1970
he was delegated to the International Congress of Mathematicians held in Nice, France.

Under G. Mania’s leadership All-Union Winter School in Probability Theory and
Mathematical Statistics was yearly held in Bakuriani, Georgia, in the course of 20 years.
It soon became International since it was regularly attended by famous foreign scientists.
In 1982 under Professor G. Mania’s direct supervision Thilisi hosted the VI USSR-Japan
Symposium in Probability Theory and Mathematical Statistics. After coming back home
Academician Kolmogorov in a letter to Professor G. Mania wrote: “Thank you very much
for all your efforts in Thilisi and Sukhumi. During my visit [ was happy to witness
and appreciate your major part in the progress of probability theory and mathematical
statistics in Georgia”.

Professor J. Mania was a member of various scientific societies and councils, includ-
ing Georgian Mathematical Society, where he was a member of the Presidium, of the
International Institute of Statistics, since 1969 — of International Bernoulli Society for
Application of Statist-ics in Probability Theory and Mathematical Statist-ics, a member
of American Mathematical Society, a member of the Editorial Board of the international
“Statistics” Journal (published in Berlin). He got two government awards and Academi-
cian Iv. Javakhishvili Medal.

In 1989, to commemorate his 70-th anniversary, a book of his works was issued titled
Probability Theory and Mathematical Statistics, which entered the 92-th volume of scien-
tific articles published by A. Razmadze Institute of Mathematics of Georgian Academy of
Sciences, where together with a number of other works by outstanding scientist, Academi-
cian Korolyuk’s paper “Asymptotic Behavior of Mania’s Statistics” was also published.

As we have noted earlier, Gvanji Mania’s first works were written under Professor
Smirnov’s guidance, where Mania studied the maximum deviation behavior of the con-
tinuous distribution function F'(x) from the empirical distribution function F,(z) taken
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not on the entire axis, but only on the maximum growth interval of the function F(z).
He found the limit distribution of the following statistics:

Dt (0:,0,) = sup (Fn(x) — F(:z:)),
2:01 <F(z)<0
Dn(91,92) = sup ‘Fn($) _F(:C>‘7

2:01<F(x)<02

where 0; are 0, given numbers, 0 < 0; < 0 < 1 (later, he also tabulated the limit distribu-
tion of these statistics when 0y = 1 — 6). The sharp-witted proof of the above-mentioned
results is based on Abel and Tauber type theorems, where errors made in Feller’s similar
theorems were eliminated. This result brought about immediate attention of specialists
and it was often used by other scientists. In scientific literature these statistics are referred
to as Mania’s statistics (criteria).

In 1961, G. Mania introduced two independent normal sample homogeneity criteria

where ® is a standard normal distribution function while Z; and s; are, respectively,
empirical mean and variance constructed according to the n;-size sample, © = 1,2. He
showed that the limit distribution of the statistics

1 - No

n1 + na

- L

(when ny,ny — 00) is independent of normal distribution parameters and is based on the
limit distribution of Smirnov’s statistics
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In the same year G. Mania introduced the two-dimensional distribution density

AhlAhg Fn(xa y)

fn(xay) = 4h1h2

He found the optimal value of h; and hs in the sense of integral square deviation and
showed that

wn

7 7 B(fula.y) — F(w,y)? dady ~ en”?,

—00 —0O0

where ¢, in a certain sense, depends on the second-order derivative of f(x,y).
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After that G. Mania studied the properties of normal distribution density nonpara-
metric estimate. In particular, that of density parametric estimate n(z|a,C) of the k-
dimensional normal distribution (by the mean and covariance matrix C') for the square
error

o, = / [n(z|a,C) — n(zla, 6)]2dl’.
Rk
He found the limit distribution:

P{n2k+37rk/2vdet C®, <u} — G(u),

where G(u) coincides with a certain type of square distribution of normal values. Thus
G. Mania’s above-mentioned results imply (the same as the book by L. Devroye and
L. Gyofhi) that it is impossible to improve the famous Boyd and Still’s Theorem.

Professor G. Mania’s above mentioned results and a number of his works and studies
in Estimation Theory are published in the monograph Statistical Estimates of Probability
Distribution issued in 1974, which deserved specialists’ appreciation. Before the mono-
graph was published Academician Gnedenko wrote in his review of the manuscript: “B
MaTeMaTH4eCcKOM OTHOIICHUHU PYKOIIHCH BBITIOJTHEHA Oe3ynpeuHo. OHa mocie omyOInKoBaHus,
HECOMHEHHO O)KMBHUT WHTEPEC K TOMY HAIIPABJICHHUIO HUCCIICAOBAaHHN, KOTOPOE MPEICTABISCT
aBrop” (“As far as mathematics is concerned the manuscript is perfect. After its pub-
lication it will undoubtedly enliven the interest in the field of mathematics the Author
presents”). After the publication of the monograph on density statistical estimation in
International Statistical Review in 1979 in Werz and Schneider Reference Book G. Mania’s
17 works are mentioned and International Statistical Review calls the above-mentioned
book “an excellent book in the given field”.

The monograph Some Methods of Mathematical Statistics, which appeared in Georgian
in 1963 together with the book Mathematical Statistics in Technology, issued in 1985 were
of primary importance for Georgian scientists and engineers enabling them to become
aware of certain probabilistic and statistical methods, described in their native language,
and apply them for the solution of some practical problems. For years specialists in
different fields used to come to Professor G. Mania’s Chair to consult on the practical
application of probabilistic and statistical methods for the solution of various problems.
Among them there were doctors, biologists, engineers, members of the administration of
Rustavi Metallurgical Factory and others. His younger collegues also participated in this
activity, and they remember clearly Professor G. Mania’s qualified help he rendered to
those specialists in different fields.

Professor G. Mania’s last studies were devoted to problem of estimation of sustain-
able distributions’ parameters and also to the investigation of infinitely divisible and
sustainable distribution analogues within the scope of models with random number of
summands.

G. Mania’s role as a teacher and a tutor cannot be overestimated. His students and
younger colleagues always felt his constant support. Caring for them was an important
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part of his life. The success achieved by contemporary Georgian scientists in the field
of probability theory and mathematical statistics largely owes to Professor G. Mania’s
dedication and help.

Professor G. Mania’s wife, Mrs. Irina Nodia, was a scholar specializing in Byzantian
Studies. Their son Michael Mania is Head of the Department of Probability Theory and
Mathematical Statistics at the A.Razmadze Institute of Mathematics. Their daughter
Maia Mania is an Architectural Historian and a Professor at the Thilisi State Academy
of Arts. Both are married.

Professor G. Mania died on March 16, 1985 at the age of 67.

A. Razmadze Institute issued a collection of articles (1989) titled Theory of Probability
and Mathematical Statistics to celebrate G. Mania’s 70-th Anniversary.

In 2008, under the auspices of Georgian Mathematical Society G. Mania’s 90-th An-
niversary was celebrated.

In 2013, for his 95-th Anniversary lecture hall number 335 of the XI Building of
Iv. Javakhishvili Thilisi State University was given Professor G. Mania’s name.

In the current 2018, to celebrate G. Mania’s centenary, Georgian Statistical Associa-
tion Office decided to establish Professor G. Mania Scholarship at Iv. Javakhishvili Thilisi
State University.

E. Nadaraya, O. Purtukhia
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4. Mathematical statistics in technics. (Georgian) Sabchota Sakartvelo, Tbilisi, 1958,
345 pp.

5. The course of probability theory. (Georgian) Tbilisi University Press, Tbilisi, 1962,
340 pp.

6. Linear programming. (Georgian) “Ganatleba”, Tbilisi, 1967, 295 pp.

7. The course of high mathematic. (Georgian) Tbilisi State University, Tbilisi, 1967,
498 pp. (with P. Zeragia).



44

In Memoriam Batumi, September 3-8, 2018

10.

llia Vekua. (Georgian) Publishing House of Thilisi State University, 1967, 75 pp.
(with B. Hvedelidze).

Probability theory and mathematical statistic. (Georgian) Publishing House of
Thilisi State University, 1976, 350 pp.

A book of problems in probability theory and mathematical statistic. (Georgian)
Publishing House of Tbilisi State University, 1976, 120 pp. (with A. Ediberidze and
N. Anthelava).
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Quadratic error of an estimation of twodimensional normal density by empirical
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Quadratic error of the estimation of normal density by empirical data. (Russian)
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On one method of constructing of confidence regions for two samples from general
population. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 27 (1961), no. 2,
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Remark on non-parametric estimations of twodimensional densities. (Russian) Soob-

shch. Akad. Nauk Gruzin. SSR 27 (1961), no. 4, 385-390.

Square estimation of divergence of twodimensional normal distribution densities by
empirical data. (Russian) Trudy BC Akad. Nauk Gruzin. SSR 2 (1961), 153-211.
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Math. Stat., 1962, 407-409.

Quadratic error of an estimation of densities of normal distributions by two samples.
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by empirical data. Congres international des Mathematicians, Nice, Paris, 1970,
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(Russian) Soobshch. Akad. Nauk Gruzin. SSR 67 (1972), no. 2, 301-304.

One approximation of distributions of positive defined quadratic forms of normal
random variables. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 107 (1982), no. 2,
241-244 (with E. Khmaladze and V. Felker).

On the estimation of parameters of type of stable laws. Proceedings of the first
International Tampere Seminar on linear Statistical Models and their Applications
(1983) Tampere University, 1985, pp. 202-223 (with L. Klebanov and I. Melamed).

One problem of V. M. Zolotarev and analogue of infinitely divisible and stable
distributions in the scheme of the sum of random number of random variables.
(Russian) Probability Theory and Appl. 29 (1984), 757-760 (with L. Klebanov and
[. Melamed).
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All Extensions of (5 by (o x Cyn are Good
for the Morava K-Theory
MALKHAZ BAKURADZE

Faculty of Exact and Natural Sciences, Iv. Javakhishvili Thilisi State University
Thilisi, Georgia

email: malkhaz.bakuradze@tsu.ge

This talk is concerned with analyzing the 2-primary Morava K-theory of the classifying
spaces BG of the groups G in the title. In particular it answers affirmatively the question
whether transfers of Euler classes of complex representations of subgroups of G suffice to
generate K (s)*(BG). Here K(s) denotes Morava K-theory at prime p = 2 and natural
number s > 1. The coefficient ring K(s)*(pt) is the Laurent polynomial ring in one
variable, Fy[v,, v 1], where Fy is the field of 2 elements and deg (v,) = —2(2° — 1).

References

[1] M. Bakuradze, All extensions of Cy by Con x Can are good. arXiv:1603.04021v2;
https://arxiv.org/pdf/1603.04021.pdf.

Metric Spaces, Lattices, Atoms, and Models

MIKHAIL BELISHEV!, SERGEI SIMONOV?

1St-Petersburg Department of the Steklov Mathematical Institute, Russian Federation

belishev@pdmi.ras.ru

2St-Petersburg Department of the Steklov Mathematical Institute, Russian Federation

sergey.a.simonov@gmail.com

Let Q be a metric space, A’ the metric neighborhood of A C € of radius ¢, A" := A;
9 the lattice of the open sets in €2 with the partial order C and the order convergence
topology. The lattice of the O-valued functions of ¢ € [0,00) with the point-wise order
and topology contains the family 79 = {A(-)| A(t) = A", A € O}. Let Q be the set of
the atoms of TO. We describe a class of spaces such that the set Q endowed with the
relevant metric is isometric to the original €.

The space Q (wave spectrum) is the key element of the program of constructing a new
functional model for symmetric semi-bounded operators [1]. The given results provide a

step towards realization of this program.
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Neumann Problem in Polydomains
AHMET OKAY CELEBI
Yeditepe University, Department of Mathematics, Istanbul, Turkey

email: acelebi@yeditepe.edu.tr

In this presentation, we will discuss the Neumann problem for higher order model
equations in the unit polydisc of C5. We derive the integral representations of the func-
tions defined in the unit polydisc of Cy which may particularly be suitable for Neumann
problems.
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100 Years of Alma Mater

ROLAND DUDUCHAVA!, OMAR PURTUKHIA?

'Department of Mathematics, The University of Georgia & A. Razmadze Mathematical
Institute, Ivane Javakhishvili TSU, Thilisi, Georgia

email: RolDud@gmail.com

?Department of Mathematics, Ivane Javakhishvili Thilisi State University (TSU)
& A. Razmadze Mathematical Institute, TSU, Thbilisi, Georgia

email: o.purtukhia@gmail.com

A short survey of development of mathematical schools during 100 years of Ivane
Javakhishvili Thilisi State university.

Frobenius Lie Algebras and ¢-Hypergeometric
Functions

ALEXANDER ELASHVILI!, MAMUKA JIBLADZE?

Department of Geometry and Topology, A. Razmadze Mathematical Institute of
Iv. Javakhishvili Thilisi State University, Thilisi, Georgia

email: alela@rmi.ge

2Department of Mathematical Logic, A. Razmadze Mathematical Institute of
Iv. Javakhishvili Thilisi State University, Thilisi, Georgia

email: jibQrmi.ge

Classification of Frobenius Lie algebras is of interest because of their relationship with
geometric approaches in quantum field theory.

A particularly tractable class of such algebras arises from the so called seaweed alge-
bras, introduced by Dergachyov and Kirillov in 2000.

For seaweed algebras the Frobenius property can be expressed through a purely com-
binatorial problem — enumeration of meanders of special kind, which we call lieanders.

Enumeration general meanders is a long standing open problem, dating back at least
to Poincaré. In 1988 Arnold gave new impetus to it in connection with the study of certain
branched coverings. Some partial progress has been achieved. There is some interesting
work by physicists (di Francesco with collaborators). In 1993 Lando and Zvonkin obtained
functional equation for the generating function of irreducible meandric systems. In 2017
Zorich with collaborators have related meander statistics with quadratic differentials on
Riemann surfaces.
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Lieanders have their specifics which gives hope that their enumeration may be rel-
atively simpler compared to the general case. We will describe some of our findinds
about the generating functions of various lieandric systems. In particular, we will explain
relationship between these generating functions and ¢-hypergeometric series.

A Problem about Partitions
PAATA TVANISHVILI

Department of Mathematics, University of California, Irvine, USA
email: paatai@math.princeton.edu

Let X be an arbitrary finite collection of sets (clusters), some of them may intersect
and some of them may be disjoint. Denote by |X| the total number of clusters in X.
Given n > 1 the question is to count the total number of ways a cluster A in X can be
written as a disjoint union of n other clusters in X. We will estimate this number in
terms of | X| and n.

References

[1] P. Ivanisvili, Convolution estimates and the number of disjoint partitions. Electron.
J. Combin. 24 (2017), no. 2, Paper 2.43, 6 pp.

[2] D. Kane, T. Tao, A bound on partitioning clusters. Electron. J. Combin. 24 (2017),
no. 2, Paper 2.31, 13 pp.

Approximate Matrix Wiener—Hopf Factorisation
and Applications to Problems in Acoustics
ANASTASIA KISIL
University of Cambridge, UK

email: akb28@Qcam.ac.uk

In this talk I will introduce some of the techniques which are employed in the study
of Helmholtz equation with various boundary conditions.

I will introduce the Wiener-Hopf method which extends the separation of variables
technique (in Cartesian coordinate) used to investigate PDEs. It provided analytic and
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systematic methodology for previously unapproachable problems. I will focus on con-
structive solutions to matrix Wiener-Hopf problems which come from acoustics. The first
matrix Wiener—Hopf problems is motivated by studying the effect of a finite elastic trailing
porous on noise production, joint work with Dr. Ayton. The approximate factorisation
of this matrix with exponential phase factors is achieved using an iterative procedure
which makes use of the scalar Wiener—Hopf problem arising for each junction. This is an
extension to the pole removal method with explicit error and convergence criteria. We
gained new important insight into noise reduction: the porous extension had the effect of
changing the direction of emitted sound.

The second matrix problem arise from scattering of sound waves by an finite grating
composed of rigid plates, joint work with Prof. Abrahams. The approximate factorisation
of this matrix resulting from a periodic structure is performed using conformal mapping,
rational approximation and the recent procedure by Mishuris and Rogosin.

Lastly, I will introduce some methods which relay on special function called Mathieu
functions. They result in applying the change of variable techniques in elliptic coordinates
to the Helmholtz equation and the boundary conditions. This allows to investigate the
effect of various porosity in a plate. This is used to investigated the effect of a porous
trailing edge on an airfoil motivated by the design of an owl wing.

Geometric Dynamics of a Harmonic Oscillator,
Non-Admissible Mother Wavelets
and Squeezed States
VLADIMIR V. KISIL
School of Mathematics, University of Leeds, Leeds, England

email: kisilv@maths.leeds.ac.uk

We present a new method of geometric solution of a partial differential equation by
a reduction through an integral transform to an equivalent first-order PDE. The new
equation shall be restricted to a specific subspace with auxiliary conditions which are
obtained from group a representation construction of the integral transform.

The method is applied to the fundamental case of the harmonic oscillator with the
Hamiltonian H = $(p?/m + mw?¢?), where m is its mass and w — the frequency. The
coherent state transform is generated by the minimal nilpotent step three Lie group A. Its
Lie algebra has a basis { X7, X5, X3, X4} with the following non-vanishing commutators

[X17X2] :X37 {X17X3] :X4-

Note that {X1, X3, X4} span the Lie algebra of the Heisenberg group.
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We demonstrated that the coherent state transform on the group A for an arbitrary
minimal uncertainty state (aka squeezed state) used as a mother wavelet produces a
geometric dynamic of the harmonic oscillator. In contrast, it is shown that the well-
known Fock—Segal-Bargmann transform for the Heisenberg group requires the specific
fiducial vector (with the squeeze parameter £ = mw) to produce a geometric solution.
The larger group A creates the image space with a bigger number of auxiliary conditions.
These conditions give additional flexibility in reduction of the PDE’s order, leading to a
richer set of geometric solutions.

There are some natural bounds of a possible squeeze parameter, they are determined
by the degree of singularity of the solution of the auxiliary condition in the form of the
heat equation. Then, the radius of analytic continuation of the time parameter into the
complex plane defines the limits for allowed squeeze. A technical aspect of the group A
is that its representations are not square-integrable and a respective modification of a
coherent state transform is required [1, 2.

The talk is based on joint work [3] with co-author Fadhel Almalki.
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Integral Transforms on Measure Metric Spaces
and Applications
VAKHTANG KOKILASHVILI

A. Razmadze Mathematical Institute, I. Javakhishvili Thilisi State University
Thilisi, Georgia

email: vakhtangkokilashvili@yahoo.com

The goal of our talk is to present our recent results dealing with the bounded-
ness of integral operators in new function spaces defined on general structures. We



dom7do — mdoeobo, 3-8 lyd@gddgdo, 2018 Jegbotmmo & 3mfggamo Imdbligbgdengdols mgdoligdo 55

plan to discuss mapping criteria of Hardy—Littlewood maximal functions and Calderén—
Zygmund operators,including one-sided versions and integral transforms defined on prod-
uct spaces.Application to BVP for analytic function will be given.

Three-Body Equations in Quantum Field Theory
ALEXANDER KVINIKHIDZE

A. Razmadze Mathematical Institute of Iv. Javakhishvili Thilisi State University
Thilisi, Georgia

email: sasha-kvinikhidze@hotmail.com

Faddeev’s three-body equations represent a powerful tool in Quantum Mechanics.

Derivation of similar equations in Quantum Field Theory (QFT) encounters two prob-
lems: due to a possibility of particle creation and annihilation the number of them is not
fixed, and particles can get ”dressed” the phenomenon that complicates analytic proper-
ties of particle propagation functions. It will be shown how to overcome these problems
to derive the three-body equations in QFT and some applications will be discussed.

Representations of Free Algebras of
Varieties and Hypervarieties
YURI MOVSISYAN
Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia

email: movsisyan@ysu.am

The free Boolean algebra on n free generators is isomorphic to the Boolean algebra
of Boolean functions of n variables. The free bounded distributive lattice on n free gene-
rators is isomorphic to the bounded lattice of monotone Boolean functions of n variables
(R. Dedekind, 1897). A problem posed by B. I. Plotkin in 1970s has required finding the
varieties (and hypervarieties) of algebras with analogous functional representations of free
finitely generated algebras. In this talk we give a solution of this problem.



56  Abstracts of Plenary and Invited Speakers Batumi—Thilisi, September 3-8, 2018

Differentiation of Integrals with respect
to Translation Invariant Convex Density Bases
GIORGI ONIANI
Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia

email: oniani@atsu.edu.ge

For a translation invariant convex density basis B it is shown that its Busemann-Feller
extension Bgp has close to B properties, namely, Bgp differentiates the same class of
non-negative functions as B, moreover, the integral of an arbitrary non-negative function
f € L(R™) at almost every point x € R™ has one and the same type limits of indeterminacy
with respect to the bases B and Bgp. This theorem provides a certain general extension
principle of results obtained for Busemann—Feller bases to bases without the restriction
of being Busemann—Feller. Some such type applications of the theorem are given.

Right-Angled Polytopes, Hyperbolic Manifolds
and Torus Actions
TARAS PANOV

Department of Mathematics and Mechanics, Lomonosov Moscow State University
Moscow, Russia

email: tpanov@mech.math.msu.su

A combinatorial 3-dimensional polytope P can be realised in Lobachevsky 3-space
with right dihedral angles if and only if it is simple, flag and does not have 4-belts of
facets. This criterion was proved in the works of Pogorelov and Andreev of the 1960s. We
refer to combinatorial 3-polytopes admitting a right-angled realisation in Lobachevsky
3-space as Pogorelov polytopes. The Pogorelov class contains all fullerenes, i.e. simple
3-polytopes with only 5-gonal and 6-gonal facets.

There are two families of smooth manifolds associated with Pogorelov polytopes. The
first family consists of 3-dimensional small covers of Pogorelov polytopes P, also known
as hyperbolic 3-manifolds of Loebell type. These are aspherical 3-manifolds whose fun-
damental groups are certain finite abelian extensions of hyperbolic right-angled reflection
groups in the facets of P. The second family consists of 6-dimensional quasitoric manifolds
over Pogorelov polytopes. These are simply connected 6-manifolds with a 3-dimensional
torus action and orbit space P. Our main result is that both families are cohomologically
rigid, i. e. two manifolds M and M’ from either family are diffeomorphic if and only if their
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cohomology rings are isomorphic. We also prove that a cohomology ring isomorphism im-
plies an equivalence of characteristic pairs; in particular, the corresponding polytopes P
and P’ are combinatorially equivalent. This leads to a positive solution of a problem of
Vesnin (1991) on hyperbolic Loebell manifolds, and implies their full classification.

Our results are intertwined with classical subjects of geometry and topology such as
combinatorics of 3-polytopes, the Four Colour Theorem, aspherical manifolds, a diffeo-
morphism classification of 6-manifolds and invariance of Pontryagin classes. The proofs
use techniques of toric topology.

This is a joint work with V. Buchstaber, N. Erokhovets, M. Masuda and S. Park.
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Multipliers in Sobolev Spaces and Their Applications
in the Theory of Differential Operators
ANDREY A. SHKALIKOV

Department of Mechanics and Mathematics, Lomonosov Moscow State University
Moscow, Russia

email: shkalikov@mi.ras.ru

Denote by H,(R"), p > 1, s € R, the Bessel potential spaces (for integer s they coincide
with the Sobolev spaces W (R")). We shall present the last results on the description of
the spaces of multipliers acting from the space H, (R™) to another space H, " f(R™). The
main attention we will pay to the case when the smooth indices are of different signs, i.e.
s,t > 0. Such a space of multipliers (we denote it by M[H3(R") — H_*(R")]) consists of
distributions v € D" which obey the estimate

luell e < Cllgllug V¢ €D,

where D is the space of the test functions and a constant C'is independent of .
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It turns out that always the following embedding with the norm estimate holds

MIH;(R") — H,'(R")] C H"

q,unif

(R*) OV H 2 i (RY),

pl7 unlf

where H,! . .(R") is the so-called uniformly localized Bessel potential space.

In the case when p < ¢ and one of the following conditions
s=>t>0,s>n/p or t>s>0,t>n/q¢ (where 1/q+1/¢ =1),
holds one has an explicit representation

(R™) OV Hy i (RT),

p',unif

M[H;(R™) — HY(R™)] = H,*

q,unif

where p and p’ are Holder conjugate numbers. Representations of this kind are impossible,
provided that s > n/p or t > n/q’. Then the spaces of multipliers should be described
in terms of capacities. In the important case s =t < n/max(p,q’) we can establish the
two-sided embeddings with the norm estimates

Hy* i (R € MIHS(R™) — H*(R™)] © Hi* (R,

r1, unif ro, unif

where the numbers r; > ry > 1 can be written down explicitly.
The obtained results have important applications in the theory of differential operators
with distribution coefficients. Some simple applications will be presented in the talk.
The talk is based on the joint papers with Alexey A. Belyaev. The work is supported
by the Russian Scientific Fund, grant number No 17-11-01215.

The Riemann—Hilbert Problem for
the Moisil-Teodoresku System
ALEXANDER SOLDATOV
Dorodnicyn Computing Centre, FRC CSC RAS, Moscow, Russia

email: soldatov48@gmail.com

The Moisil-Teodoresku system

a 0 Cl <2 CS
B G 0 =G G
M (%) w(z) =0, M) = P S (1)

G —CG G 0
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is considered in a bounded domain D C R?® with smooth boundary I'. It is posed an
analogue of the Riemann-Hilbert problem

But = f (2)

B— Po D1 P2 D3
o @ @ g )’
whose rows are linear independent at each point of T,
Let us introduce the vector

with (2 x 4)-matrixes

I = pogq — qop — [P, qJ,

where p = (p1,p2,p3), ¢ = (q1,G2,¢q3). If I' is homeomorphic to sphere the problem was
investigated by V.I. Shevchenko[1]. He proved that after assumption

In #0, (3)

where n is unit normal to I', the problem (1), (2) is Fredholmian and its index is equal
to —1.

We give the analogues result for general domain D and we establish that under the
assumption (3) the index of the problem is equal to s — m — 1. Here s is a number of
connected component of I' but m is an order of the first group cohomology H'(D) of the
domain D. This result is based on the integral representation of a general solution of (1).

Note that the number m can be calculated explicitly. Let I';, 1 <17 < s, be connected
components of I' and let m; be genus of I';. Then m =my + ...+ ms.
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Compatible Topologies for Vector Spaces
and Abelian Groups
VAJA TARIELADZE

Muskhelishvili Institute of Computational Mathematics (MICM) of the
Georgian Technical University, Thilisi, Georgia

email: v.tarieladzeQgtu.ge

Dedicated to 130-th birthday anniversary of G. M. Fichtenholz

It can be said that the topic of my talk originates from articles [1] by Russian-Soviet
mathematician Grigorii Mikhailovich Fichtenholz (June 5, 1888 — June 26, 1959) and
[2] by American mathematician George Whitelaw Mackey (February 1, 1916-March 15,
2006) in which [1] is cited.

Given a real vector space X and a topology 7 on it, let us write (X, 7)* for the set of
all T-continuous linear functionals f : X — R. A topology n on X is said to be compatible
with 7 (or with the pair (X,Y), where Y := (X, 7)*) if (X,n)* = (X,7)*.

Similarly, given an Abelian group X and a topology 7 on it, let us write (X, 7)" for
the set of all 7-continuous group homomorphisms (characters) x : X — R/Z. A topology
n on X is said to be compatible with 7 (or with the pair (X,Y’), where Y := (X, 7)") if
(X,n)" = (X, 7)"

We will survey some old and new results about compatible topologies in either cases.
The talk is based mainly on [3]-[5].
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Braids, Lie Algebras and Homotopy Groups
of Spheres
VLADIMIR VERSHININ
Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, France

email: vladimir.verchinine@umontpellier.fr

We start with the standard definitions of braids as the system of curves in tree-
dimensional space up to isotopy, and as a fundamental groups of configuration spaces.
Then we present their classical properties and give some applications, in particular to
Knot Theory.

Next we explain classical constructions based on braid groups, namely Lie algebras of
pure and similar braids.

After that we introduce certain generalizations of braids as well as specific types of
braids, in particular Brunnian braids. We describe the properties of these objects.

Connections between braids and homotopy groups of spheres will be given also.

The talk is based on author’s survey articles [1, 2].
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Vibrodynamics as the Best Part
of Applied Mathematics

VLADIMIR A. VLADIMIROV
DOMAS, Sultan Qaboos University, Muscat, Oman

email: vladimir@squ.edu.om

Department of Mathematics, University of York, UK
email: vvb00@york.ac.uk
DAMTP, University of Cambridge, UK,
School of Mathematics, University of Leeds, UK

Vibrodynamics represents a high-impact and flourishing interdisciplinary research di-
rection, unifying various phenomena and theories, which take place under the influence
of time-oscillations and vibrations. Mathematically, Vibrodynamics deals with ODEs,
PDEs, difference equations, integral equations, etc. with time-periodic (or oscillating)
coefficients and/or oscillating right-hand sides. For the introducing this research direc-
tion to applied mathematicians, I start with its general idea, which can be classified as a
two-timing method, or a multi-scale method, combined with an averaging method. The
mathematical heart of the subject lies in the proper choosing of time-scales, which al-
lows one to build up regular asymptotic solutions. I present the related ideas, which
allow such a choice, using simple ODE examples. Then I give several winning examples,
including the describing of self-propulsion of micro-robots and explanation of Langmuir
circulations induced by water waves below the free surfaces of lakes, seas, and oceans. The
latter case brought a theoretical breakthrough to the classical Craik-Leibovich equation
and its generalizations to magneto-hydrodynamics, acoustics, and other areas of applied
mathematics and physics. The talk is based on the papers quoted below.
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How Non-Positively Curved is the
Mapping Class Group?
RicHARD WEBB
DPMMS, Centre for Mathematical Sciences, Cambridge, UK

email: webb@maths.cam.ac.uk

The mapping class group Mod(S) of a surface S is the group of homeomorphisms
S — S modulo the isotopy relation. It is also the (orbifold) fundamental group of the
moduli space of Riemann surfaces. Particular examples include the braid group and the
outer automorphism group of a surface group.

In this talk we shall discuss the study of the mapping class group from the point of
view of geometric group theory. Geometric group theory is a flourishing and quickly-
evolving area that has found many applications across various fields of mathematics from
the solution of the virtual Haken conjecture in the study of 3-manifolds to the discovery
of normal subgroups in the Cremona group.

A major theme in geometric group theory is the notion of non-positive curvature.
Much can be learned about a group if it acts nicely by isometries on a non-positively
curved space. There are two widely considered versions of non-positive curvature. The
first is Gromov hyperbolicity which captures the large-scale geometry of the space and
forgets the small scale. The second is more infinitesimal in flavour: a metric space is
CAT(0) if all of its geodesic triangles are at least as thin as their comparison triangles in
the Fuclidean plane.
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In the 90s Masur and Minsky proved that the mapping class group acts on an infinite-
diameter, Gromov-hyperbolic metric space called the curve complex. Therefore some of
the theory of Gromov-hyperbolic groups can be applied to study Mod(.S). This has led
to breakthroughs in the study of the geometry of the mapping class group and also its
algebra e.g. for each countable group G there is some embedding G — @ for some quotient
group @ of Mod(S). Despite much success, many notorious problems still remain open
for Mod(S), which are much easier to answer for certain CAT(0) groups. For instance,
does there exist a finite-index subgroup of Mod(.S) with a surjective homomorphism to
Z? These problems would be more easily approached if Mod(S) had a suitable CAT(0)
space to act on.

In this talk I will start by surveying some highlights of geometric group theory and
the key properties of mapping class groups. I will explain why they are such interesting
groups worth studying in their own right. I will define the curve complex and arc complex
of S, and state their basic properties and applications to Mod(.S). I will then prove that
the arc complex does not admit a CAT(0) metric invariant under Mod(S) by using a
theorem from combinatorics and some topology.
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Integral Modeling of the Filtration Process
in Gas Wells

ELKHAN ABBASOV
Mechanics — Faculty of Mathematics, Baku State University, Baku, Azerbaijan

email: aelhan@mail.ru

The integral model of the non-stationary filtration process in gas wells is constructed
and solutions of differential equations are presented. Methods are being developed to
simplify the solution of the task. The obtained analytical expressions allow determining
the parameters at the bottom hole and the formation by wellhead information, which is
of great practical importance.

An integral model of the pressure build-up process is constructed and solutions of
related differential equations are presented. An analytical expression is obtained to de-
termine the dynamics of the pressure build-up process taking into account the dynamic
connection between the formation and the well.

On Embedding Theorems between Variable
Morrey Spaces

ARIZ ABDULLAYEV!, ROVSHAN BANDALIYEV?

'Department of Mathematical Analysis, Ganja State University, Ganja, Azerbaijan

email: ariz.abdullayev88@gmail.com

2Department of Mathematical Analysis, Institute of Mathematics and Mechanics of
ANAS, Baku, Azerbaijan

email: bandaliyevr@gmail.com

In this abstract we introduce an embedding theorem between variable Morrey spaces.

We note that the variable Morrey spaces have recent history. The variable exponent
Morrey spaces was introduced and studied in [1].

In particular, we obtained the embedding criterion between two different variable
Lebesgue spaces (see [2]).
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Inverse System in the Category of Intuitionistic
Fuzzy Soft Modules

S. E. ABDULLAYEV, S. A. BAYRAMOV

Department of Algebra and Geometry, Baku State University, Baku, Azerbaijan

email: sebuhi_abdullaye@mail.ru; baysadi@gmail.com

We introduce inverse system in the category of intutionistic fuzzy soft modules and
prove that its limit exists in this category. Generally, limit of inverse system of exact
sequences of intutionistic fuzzy soft modules is not exact. Then we define the notion
l'&nm which is first derived functor of the inverse limit functor. Finally, using methods of
homology algebra, we prove that the inverse system limit of exact sequence of intutionistic
fuzzy soft modules is exact.
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Several New Inequalities about the Average
VLADIMER ADEISHVILI, IVANE GOKADZE

Department of Teaching Methods, Akaki Tsereteli State University
Kutaisi, Georgia

email: vladimer.adeishvili@atsu.edu.ge

Today, when science has achieved great progress in every aspect of math as a dis-
cipline, it is very difficult to find something new, even less important, such as not yet
mentioned, despite this, math lovers try to find something new and by doing this, say
their independent words in mathematics, which will not be repeated or replaced option.
We think the subject of our research is just the latest and requires further survey to be
more in-depth study of the issue.

Our task is to study the attitudes between the average values of positive, real numbers.
In particular, as it is known that real, positive numbers can be determined by the following
values: average harmonic, average geometric, average arithmetic, medium square, for
some, some types of inequalities are true. These inequalities are very well known for
those who love solving Olympic mathematical tasks. We think it is interesting that no
information has been found in any of the mathematical books available at our own, nor
on the Internet if the above mentioned four dimensions depend on each other, If we are
going to pair them twice, specifically, if we compare the sum multiplication of the two
and the sum multiplication of the rest. Of course, it is interesting to compare only the
average square and the average harmonic “set” with the average arithmetic and average
geometry set, because in other cases, the average square and its partner’s advantages are
obvious.

Several tasks discussed in the work are a kind of novelty, and we continue to work to
get more interesting results, which will definitely introduce a wide audience.
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On the Stochastic Property of the Continuous
Transformations of Metric Compacts
with n-adic Property
SHOTA AKHALAIA

Faculty of Mathematics and Computer Sciences, Sokhumi State University
Thilisi, Georgia

email: shiaxalaia@yahoo.com

The continues transformation 7" : X — X of the metric compact X induces a dynamic
system {X,T}. The one of the stochastic property of the dynamic system is the existence
of T-invariant the Borel ergodic measure on X entropy of which the is positive (see, [1]).

We proof that the continuous n-adic transformation of the metric compact has the
analogous property.

Let n be an natural number. We say that the continuous transformation 7": X — X
has the n-adic property if there exist the the closed subsets A;, ..., A, from X such that

k=1 k=1

k=1
In addition, the cap of any n — 1 elements from the set Ay,..., A, is nonempty.

Theorem. If the continuous transformation T : X — X has the n-adic property, then
on the metric compact X, there exists the Borel T'-invariant ergodic measure with positive
entropy.
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Topology of Quadratic Endomorphisms
of the Plane

TEIMURAZ ALIASHVILI
Ilia State University, Thilisi, Georgia

email: aliashviliQyahoo.com

We discuss topological properties of quadratic endomorphisms of the plane. Let F' be
a quadratic endomorphism of the plane explicitly given by the components (F, Fy).

In particular, an algebraic criterion of properness of F' is given in terms of coefficients
of components Fy, F;. Moreover, an algebraic formula for topological degree of map F'
using the signature formula of Khimshiashvili-Eisenbud—Levine. In addition a complete
description of the possible structure of singularity set and bifurcation diagram of F' is
obtained.

The aforementioned results are used to obtain the criteria of surjectivity and stability
of such an endomorphism. In special case, when F' is the gradient of homogeneous poly-
nomial of third degree, the structure of the local algebra at the origin is also determined.

The proofs are based on the normal forms of quadratic endomorphisms obtained in
a recent paper “Classification of critical sets and their images for quadratic maps of
the plane” (arXiv:1507.02732v1 [math.DS| 9 Jul 2015) by Chia—Hsing Nien, Bruce B.
Peckham and Richard P. McGehee.

Keywords: quadratic map, endomorphism, singularity, critical set, topological degree of
mapping.
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The Mixed Problem for a System of Nonlinear Wave
Equations with ¢-Laplasian Operators
AKBAR B. ALIEV!, ASIF F. PASHAYEV?

! Azerbaijan Technical University;

Institute of Mathematics and Mechanics of National Academy of Sciences of Azerbaijan
Baku, Azerbaijan

email: aliyevakbar@gmail.com

2Azerbaijan University;

Institute of Mathematics and Mechanics of National Academy of Sciences of Azerbaijan
Baku, Azerbaijan

email: as abd@rambler.ru

We study the initial boundary value problem

Urg — Dguq + (—A)*uy — fr (u1,u2) =g
Uy — Aqua + (—A) w9y — fo (ur,u2) = g1(t, ),

Uk (Oax) = Yk (l’), Ukt (O,l‘) = wk ($)7 x € Q.
Heret >0, 2 € Q;0<a; <1,5=1,2; fi(ur,us) = [un )"~ |ua)’" wy;

f2(u17u2) = |U1|p+1|u2|p_lu2; 91(t7$)792(t7$) € LQ([OaT] X Q)?

Aqu = i aii ()gg

i=1

20
)

and 2 is a bounded domain in R", n > 1, with the smooth boundary 09, (—A)%u =
AT (u, 05) s, where 0 < Ap < Ay < A3 < -oo) 01,00, 93,... are the sequence of
j=1

eigenvalues and eigenfunctions of —A in H} (), respectively.
Assume that g and p satisfy the conditions

for n > g,

0<p<
n—q

0<p<+oo for n<g,
2<q¢g<2p+1 or ¢g>max{2, 2p+1}.

Under these conditions we investigate the existence and nonexistence of global solu-

tions.
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Solvability of a Boundary Value Problem
for a Second Order Differential-Operator Equation
with a Complex Parameter
B. A. ALEvV

Institute of Mathematics and Mechanics;
Azerbaijan State Pedagogical University, Baku, Azerbaijan

email: aliyevbakhram@yandex.ru

In separable Hilbert space H we consider the following boundary value problem for a
second order elliptic differential equation:

L\, D)u = Nu(z) — v’ (z) + Au(z) = f(z), =€ (0,1), (1)
Li(Nu = ' (1) + (Bo + BiA + X)u(1) = fi, 2)
LQU = 'LI/(O) = f2,
da
dx”
Theorem. Let the following conditions be fulfilled:
1. Ais a linear, closed, densely defined operator in H and ||R(\, A) || gy < c(1+[A]) 7

for larg\| > m — ¢, where ¢ € (0,m) is some number, ¢ > 0 is some constant
independent on \.

where \ is a complex parameter; D :=

2. Po, b1 are any complex numbers and 31 # 0.

Then the operator L(A) : u — L(A)u := (L(A, D)u, L1 (AN, Lou) for sufficiently large
Al from the angle |argA| < £ < % is an isomorphisim from W2((0,1); H(A), H) to
L,((0,1); H) 4 (H(A), H)g, , + (H(A), H)g,p, where 0, = 1 + ﬁ, by = 2%, p € (1,00),
and for these X the following estimation is valid for solving the problems (1), (2)

2
RY HUHLP((O,l);H) + HUI/HLP((O,I);H) + ”AUHLP((O,l);H)
2

—0
< el NIy qoan + O (Wil , + NP 15l ) ]

k=1

Solvability of boundary value problems for second order differential-operator equations
in the case when one and the same complex parameter is contained in the equation and
in the boundary conditions, were studied in in different aspects in [1], [2].
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Optical Solutions in Higher Order Nonlinear
Schrodinger Dynamical Equation
ALIREZA ALIZADEDIZ

Department of Mathematics, Shahid Madani University, Tabriz, Iran

email: a.alizade1986@gmail.com

In this research, we apply an analytical method on the modified Benjamin-Bona-
Mahony which is one of the basic models in fluid mechanics and the coupled Klein-Gordon
equations that is a relativistic version of the Schrodinger equation which considered as the
basic model in the optical fiber. This method called extended simple equation method.
We try to get exact and solitary wave solutions for both equations and we also try to
investigate what is the difference between this method by making the comparison between
the results that obtained by literature. We show how the method is very direct and
powerful method and it ability to apply on different kinds of nonlinear evolution equations.
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Column Sum Majorization
ALl ARMANDNEJAD

Department of mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

email: armandnejad@vru.ac.ir

Let M, ,,, be the set of all n x m real or complex matrices. Let ¢(A) := Ae, where
e=(1,...,1) € R". For A,B € M,,,,, we say that A is column-sum majorized by B
(written as A < B) if ¢(A) < ¢(B), i.e. there exists a doubly stochastic matrix D such
that ¢(A) = Dc¢(B). The structure of all linear operators T' : M,, ,, = M,, ,,, preserving
or strongly preserving column-sum majorization will be characterized in this note. Also
some other kinds of majorization are considered and their sum column majorization are
investigated.
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On the Solvability of the Modification
Cauchy Problem for Systems of Linear Impulsive
Differential Equations with Singularities
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email: natokharshiladze@ymail.com

Let I C R be an interval non-degenerate in the point, ¢ty € I, I, = I \ {to}. Consider
the linear system of impulsive differential equations with fixed points of impulses actions

= = Pt)x+q(t) for aa. tel,\{n}, (1)
r(n+)—x(n—)=Gz(n)+q (1=1,2,...); (2)
im 5 (i=1,...,n), (3)

where P € Lje(Iyy, R"™™), ¢ € Lipe(Iy,, R"), i.e. P and ¢ are, respectively, matrix-
and vector-functions with integrable components on the every closed interval from Iy ;
Gie R (I=112..),geRR(I=12..),7n#nifi#j ty<n4 <7
(l=1,2,...) and lim;_,, o, 7} = to; x; is i-th component of the vector-function x for every
ie{l,...,n},and p; >0 (i =1,...,n) are some numbers.

The singularity of the system (1), (2) is considered in the sense that the matrix P and
vector ¢ functions, in general, are not integrable at the point .

We assume that det(I, +G;) #0 (I =1,2,...), where I, is the identity n X n-matrix.

There are given the effective sufficient conditions for the existence of the unique solu-
tion of the problem (1), (2); (3). The solutions are finding in the set of the vector-functions
whose restrictions on the every closed interval from the set I;, are absolutely continuous.
In connection with these there is obtained the effective (un-improvable) condition guaran-
teeing absolutely continues of the restrictions of the solutions on the every closed interval
from the interval [.

The analogous problem has been investigated in [1] for ordinary differential systems.
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On Asymptotics of the Function of Distribution
of Spectrum for Higher Order Partial
Operator-Differential Equation in Hilbert Spaces
HaMIDULLA ASLANOV, NIGAR GADIRLI
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Sumgait State University, Azerbaijan
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Let H be a separable Hilbert space. In Hilbert space H; = Ly (H; R") we consider an
operator

9*"uy

k1 9..k2 kn,
0xi'0xy? - - - Oxk

Lu=(=1)" S Akt (g

ki+ko+-+ks=2m

+ Q (z) u.

Here x = (1,3, ...,%,) € R", A¥*2F (1) are real valued functions bounded on all
the space and satisfying the Lipshitz condition:

| ARt () — AR () < Klo =€ i o —¢ <1, 0<y<L
We suppose that the form of the leading terms is uniformly elliptic, i.e.

Cy )™ < S Alkkn gy Shigh Gk < Gy ¢

kitke+-+kn=2m

where C', Cy are positive constants.

Under some assumptions with respect to the operator function @ (x) we show that
the operator L has a discrete spectrum, and we find asymptotic formula for the function
of distribution of eigenvalues of the operator L.

We note that, for a scalar operator of higher order given in all the space R", discrete-
ness of spectrum and asymptotic distribution of eigenvalues were studied by A. G. Kos-
tyucenko. Spectrum and asymptotic distributions of eigenvalues for elliptic operators
given in bounded or unbounded domains were investigated by S. Clark, T. Karleman,

G. I. Aslanov, Sh. G. Baimov.
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On Two-Dimensional Models of
Thermoelastic Shells in the Framework of
Green—Lindsay Nonclassical Theory of

Thermoelasticity
MARIAM AVALISHVILI

School of Informatics, Engineering and Mathematics, University of Georgia
Thilisi, Georgia

email: mavalish@yahoo.com

The present paper is devoted to the investigation of Green-Lindsay nonclassical three-
dimensional model of thermoelastic bodies, and construction and investigation of two-
dimensional hierarchical models of shells in curvilinear coordinates in the framework of the
three-dimensional model. We consider the nonclassical three-dimensional model, which
was obtained by A. E. Green and K. A. Lindsay [1] to eliminate shortcomings of the
classical thermoelasticity. Note that in Green-Lindsay model the constitutive relations
for the stress tensor and the entropy are generalized by introducing two different relaxation
times.

Applying variation formulation and suitable a priori estimates the existence and
uniqueness of solution of the linear three-dimensional initial-boundary value problem is
proved for anisotropic inhomogeneous thermoelastic bodies. For general thermoelastic
shells with variable thickness, which may vanish on a part of the lateral surface, two-
dimensional hierarchical models in curvilinear coordinates are constructed by applying
spectral approximation method, which is a generalization of the dimensional reduction
method suggested by I. Vekua [2] in the theory of elasticity for plates with variable
thickness. Note that the classical Kirchhoff-Love and Reissner-Mindlin models can be
incorporated into the hierarchy obtained by I. Vekua so that it can be considered as an
extension of the frequently used engineering plate models.

The existence and uniqueness of solutions of the obtained two-dimensional initial-
boundary value problems is proved in suitable spaces of vector-valued distributions. The
relationship between the hierarchy of dynamical two-dimensional models of thermoelas-
tic shells obtained from Green-Lindsay model and the original three-dimensional initial-
boundary value problem is investigated. The convergence of the sequence of vector-
functions of three space variables constructed from the solutions of the reduced problems
to the exact solution of the original three-dimensional initial-boundary value problem is
proved in the corresponding Sobolev spaces pointwise with respect to the time variable
and under additional conditions estimate of the rate of convergence is obtained. Note that
the first approximations of the constructed hierarchies of two-dimensional initial-boundary
value problems can be considered as independent nonclassical models for thermoelastic
shells and can be used for mathematical modeling of engineering structures.
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About One Test for Homogeneity
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The new test for homogeneity for p > 2 independent samples based on Parzen’s type
estimators of distribution density is constructed. The limiting power of the constructed
tests is found for Pitman’s type “close” alternatives. Also is considered the comparison
of constructed tests with Pearson’s chi-square test for two samples. For this is found
the limiting power of chi-square homogeneity test for above-mentioned alternatives. It
is established the limiting power of constructed test is grater then the limiting power of
chi-square homogeneity test.
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On Some Goodness-of-Fit Tests Based on
Wolverton—Wagner Type Estimates of

Distribution Density

PETRE BABILUA, ELIZBAR NADARAYA

Department of Mathematics, Faculty of Exact and Natural Sciences,
Iv. Javakhishvili Thilisi State University, Thilisi, Georgia

email: petre.babilua@tsu.ge; elizbar.nadaraya@tsu.ge

Let X1, X,,..., X, be a sequence of independent, equally distributed random vari-
ables, having a distribution density f(z). Based on sample Xi, Xy, ..., X, it is required
to check the hypothesis

Hy : f(x) = fo(z).

here we consider the hypothesis Hj testing, based on the statistics

T, = na;’ / (fulz) — fola)Pr(z)dr,

where f,(x) is the recurrent Wolverton-Wagner kernel estimate of probability density
defined by:

fulz) =n"" ZaiK((ai(fc - Xi))),

where a; is an increasing sequence of positive numbers tending to infinity, K(z), fo(x)
and r(z) satisfy certain regularity conditions.

1. Question of consistency for the constructed criterion against any alternative H; :
f(z) = fi(z), where fi(x) is such that [(f.(x) — fo(z))*r(x)dx > 0 is studied.

2. The limiting behavior of the power is studied for sequence of close to hypothesis
Hy alternatives of type Pitmen and Rosenblatt [1] and it is shown that the tests based on
T,, for above mentioned alternatives are more powerfull in limits than the tests based of
Bickel-Rosenblatt [2].
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Non-Classical Problems for
Second Order Quasi-Linear Equations

with Rectilinear Characteristics
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One class of second order quasi-linear equations with rectilinear characteristics is con-
sidered [1]. For this special class of equations a general integral is constructed in terms
of characteristics invariants. By using the method of characteristics, some variants of
non-local problems are investigated. The conditions of existence of regular solutions are
obtained.
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On Fejer—Steinhaus Theorem
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According to [1, Notes and remarks to Ch. VIII, p. 382] the following theorem was
proved by L. Fejer 2] and H. Steinhaus [3].

Theorem 1 ([1, Ch. VIII, Theorem 1.13, p. 300]). There ezists a continuous function
whose Fourier series converges pointwise, but not uniformly.

Based on [4 |we will discuss the questions whether the function from Theorem 1 can
be taken odd or even.
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The (Co)shape and (Co)homological Properties of
Continuous Maps
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Batumi, Georgia
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The purpose of this paper is to investigate continuous maps from the standpoint
of geometric topology and algebraic topology. Using a direct system approach and an
inverse system approach of continuous maps, we study the (co)shape and (co)homological
properties of continuous maps. Applications of the obtained results include:

I. Constructions of long exact sequences of continuous maps for the (co)homology
pro-groups, (co)homology inj-groups, spectral Cech (co)homology groups, spectral
singular (co)homology groups, Chogoshvili projective (co)homology groups groups.

II. Axiomatic characterizations of spectral and projective (co)homology groups without
using the relative (co)homology groups.

References

[1] V. Baladze, Fiber shape theory. Proc. A. Razmadze Math. Inst. 132 (2003), 1-70.

[2] V. Baladze, On coshapes of topological spaces and continuous maps. Georgian
Math. J. 16 (2009), no. 2, 229-242.



05017790 — mdoobio, 3-8 lgd@gdogmo, 2018 dmbofomgms Imbligbgogools mgdoligdo 83

[3] V. Baladze, The coshape invariant and continuous extensions of functors. Topology
Appl. 158 (2011), no. 12, 1396-1404.

[4] V. Baladze, On homology and shape theories of compact Hausdorff spaces. Abstracts
of the I1I International Conference of the Georgian Mathematical Union, pp. 82-83,
Batumi, Georgia, 2012.

[5] G. Chogoshvili, On the homology theory of topological spaces. Mitt. Georg. Abt.
Akad. Wiss. USSR [Soobshchenia Gruzinskogo Filiala Akad. Nauk SSSR] 1 (1940),
337-342.

[6] G.S. Chogoshvili, Singular homology groups with compact coefficient group. (Rus-
sian) Soobshch. Akad. Nauk Gruzin. SSR 25 (1960), 641-648.

[7] S.-T. Hu, On axiomatic approach to homology theory without using the relative
groups. Portugal. Math. 19 (1960), 211-225.

[8] D. A. Edwards, P. Tulley McAuley, The shape of a map. Fund. Math. 96 (1977),
no. 3, 195-210.

[9] S. Eilenberg, N. Steenrod, Foundations of Algebraic Topology. Princeton University
Press, Princeton, New Jersey, 1952.

[10] S. Mardesi¢, Approximate polyhedra, resolutions of maps and shape fibrations.
Fund. Math. 114 (1981), no. 1, 53-78.

[11] S. Mardesi¢, T. Watanabe, Approximate resolutions of spaces and mappings. Glas.
Mat. Ser. III 24(44) (1989), no. 4, 587-637.

[12] T. Watanabe, Approximative shape. 1. Basic notions. Tsukuba J. Math. 11 (1987),
no. 1, 17-59.

On (Co)homological Properties of

Stone—Cech Compactifications of
Completely Regular Spaces
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Using the set of functionally open finite covers of completely regular spaces in the paper
are constructed Cech type functional homology functor H, f (=, —; @) : Top? — Ab and
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functional cohomology functor ﬁ%(—, —; G) : Top2. — Ab from the category of pairs of
completely regular spaces and their completely closed subspaces to the category of abelian
groups, defined Bokstein—Nowak type functional coefficient of cyclicity nf : Toper —
N U {—1,00} from the class of completely regular spaces to the set of integers t > —1,
proved the equalities HX (X, A; G) = H,(8X, BA: G), HL(X, A; G) = H"(8X, BA; G) and
nE(X) = na(BX), where H,(8X, BA; G), H"(BX, BA; G) and ng(BX) are Cech homology
group, Cech cohomology group and Bokstein-Nowak coefficient of cyclisity of Stone-Cech
compactifications of pair (X, A) € ob(Top2.) and space X € ob(Top.), respectively.
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Functions with the Thick Graphs and
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The problem of investigating the measurability of sets and functions with respect to
a concrete measure m on a base (ground) set F, to turn attention to the more general
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question of investigating the measurability of sets and functions with respect to a given
class M of measures on E. We study the measurability properties of sets and real-valued
functions with respect to various classes M of measures on the base set E.

We say that a function f is relatively measurable with respect to the class M if there
exists at least one measure p € M such that f is measurable with respect to p.

Let (E1, S1, 1) and (Es, S, pe) be measurable spaces equipped with sigma-finite mea-
sures. We Recall that a graph I' C E; x Fy is (u1 X pe)-thick in E; x Es if for each
(1 X po)-measurable set Z C Fy X Ey with (g X p2)(Z) > 0, we have ' Z # 0.

Notice that, the thickness of graphs is pathological phenomenon for subsets of basic
set. However, this feature plays an essential role in the problem of extensions of measures.

Theorem 1. Let Ey be a set equipped with a sigma-finite measure p and let f : By — Fo
be a function satisfying the following condition: there exists a probability measure ps on
ran(f) such that the graph of f is a (1 X pg)-thick of the product set Ey x ran(f). Then
there exists the measure p' such that:

1) u' is measure extending pi;;

2) f is relatively measurable with respect to 1.
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Triangulation and the Graphs Associated
with a Triangulation
SHALVA BERIASHVILI

Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: shalva_89@yahoo.com

Certain triangulations of simple polygons in the plane R? are presented and the graphs
associated with these triangulations are considered. Analogous questions are studied
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for simple polyhedrons in the space R3. This topic is central in modern combinatorial
geometry (see, for instance, [1]-[4]).

Let P be a simple polygon. The partition of the interior of P in triangles, by means
of a set of non-crossing diagonals is called a triangulation of the polygon. Similarly, one
can define a triangulation of a simple polyhedron in R2 into tetrahedrons, without adding
new vertices.

Also, one can define some kinds of geometric graphs which are canonically associated
with a triangulation T € T(P), in particular, the flip graph and the dual graph.

We call the flip graph of a triangulation of P the graph, whose nodes are all the
triangulations of P and whose edges are determined by elementary operations between
the nodes.

We call the dual graph of a triangulation the graph whose vertices are some interior
points of triangles of the triangulation (exactly one point in each triangle) and the edges
connect those nodes which correspond to neighboring triangles (see [1], [3]).

In analogous way the concepts of flip graph and dual graph are introduced for trian-
gulations of simple polyhedrons in R3.

We study some combinatorial properties of the dual graphs of triangulations in the
space R3 and compare those properties with the ones of the dual graphs of triangulations
in the plane R2.
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The Law of Large Numbers for Weakly Correlated
Random Elements in Hilbert Spaces
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In this communication the law of large numbers for weakly dependent random elements
with values in separable Hilbert spaces is presented and proved.

One Kind of Olympic Tasks in Mathematical School

Curriculum and Methodical Peculiarities
of Teaching Their Solutions

GIORGI BERDZULISHVILI, BAKUR BAKURADZE

Department of Teaching Methods, Akaki Tsereteli State University, Kutaisi, Georgia

email: giorgi.berdzulishvili@mail.ru

Developing creative thinking of students has a strong effect on such tasks, which are
not directly solved by famous algorithms. The process of solving such tasks requires
cognitive thinking, which enhances the joy of finding the way of solving the task, which is
an emotional factor and is a powerful tool for students’ behavior. Its proper management
has an utmost importance in all areas of human activity, in the process of forming a
student as a perfect person and in the teaching process.

By the analysis of math teaching, it’s enacted that the majority of students cannot
solve the olympic tasks and the main reason is that the teaching program is almost never
considered to teach students how to solve olympic tasks.

There is discussed some of the solution of olympic tasks related to division of num-
bers, which can be included in mathematics school courses, because they are selected
by didactic principles and taking into consideration the age peculiarities of students, it
serves to deepen and expand the study material, It is relevant to the level of intellectual
development of students and has a developmental function.

In the process of solving such tasks, theorems related to division of whole and natural
numbers are often used which should be delivered to students for introduction. Tasks
with practical content are discussed, which may be used by teachers when passing relevant
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topics at the lesson for which there is no need for additional training time. The teacher
can also use relatively difficult tasks in or out the classroom work also extra math lessons.

An experienced and innovative teacher can make up similar tasks and use them by
his/her opinion in classroom or extracurricular work, thus enriching the area of tasks
discussed in classroom.

Uniqueness Theorem of Exact Homology Theory
on the Category Morg
ANZOR BERIDZE
Department of Mathematics, Batumi Shota Rustaveli State University, Batumi, Georgia

email: a.beridze@bsu.edu.ge

In the paper [1] Hu gave the new axiomatic system on the category of CW complexes
and proved the uniqueness theorem for an exact homology theory. In this paper we
formulate the Hu type axioms on the category Morcy of morphisms of the category CW
and find the relation to the Hu’s axioms. Using the methods developed in [2] and [3]
we define an non-trivial extension of homology theory from the category Morcw to the
category Morec and prove the uniqueness theorem.
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Let the domain G be a rectangle, G = [0, 1] x [0,1], T' be the boundary of the domain
Go<m<a<- - <zp<l,y={(rr,y): 0<y<1}, k=1,....,m v={(1,y):
0<y<1}, fe€L,(G),p>20<q€ Ly(G). Inthe domain G we consider the following
Bitsadze-Samarski boundary value problem for Helmholtz Equation:

*u 0%
@—*—a_yQ_q(x?y)u_f(xay)a (x,y)EG,
U(ZE,y)ZO, (‘r7y)er\77 (1)
U(L?J)ZZUkU(m,y), 0<y<1, Zak<1, k=1,...,m.
k=1 k=1

For solving the problem (1), we consider the following iterative process

2yt 92yntt
g T g @y = f@y), (@y) G

"z, y) =0, (z,y) €T\,

d(Ly) =Y o (@), 0<y <1, (2)
k=1

don<l, k=1...,m n=012....
k=1

For each n € N, problem (2) is a Dirichlet problem. For the numerical solution of the
Dirichlet problem built-in functions was used Relax (a,b,c,d, e, f,u,rjac) on Mathcad.
In particular, for the Helmholtz equation coefficients are a,; = b;; = ¢;; = di; = 1,
€ij = —4 — i ;-

The iterative process in Mathcad was recorded by means of a software unit. The
results of numerical solutions are presented graphically.
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Solution to the Two-dimensional Dynamic
Problem of Thermodiffusion
YURI BEZHUASHVILI
Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: y.bezhuashvili@yandex.ru

The paper deals with the investigation of a plane dynamic problem of the conjugate
theory of thermodiffusion with mixed boundary conditions for multiple-connected do-
mains. By the potential method, singular integral equations and Laplace transform, the
theorems of existence and uniqueness of the solution are proved.
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Strongly Cofinitely @-Supplemented Lattices

CI1GDEM BICER, CELIL NEBIYEV

Department of Mathematics, Ondokuz Mayis University,
Kurupelit-Atakum /Samsun/Turkiye, Turkey
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In this work, strongly cofinitely @-supplemented lattices are defined and some prop-
erties of these lattices are investigated. All lattices are complete modular lattices in this
work. Let L be a cofinitely supplemented lattice. Then 1/r(L) is strongly cofinitely
@-supplemented.

Definition. Let L be a cofinitely supplemented lattice. If every supplement of any
cofinite element of L is a direct summand of L, then L is called a strongly cofinitely
@-supplemented lattice.

Proposition 1. Let L be a lattice with (D1) property. Then L is strongly cofinitely
B-supplemented.
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Proposition 2. Let L be a strongly cofinitely @®-supplemented lattice and a be a direct
summand of L. Then a/0 is also strongly cofinitely @&-supplemented.

Proposition 3. Let L be a strongly cofinitely ®-supplemented lattice, a € L and a =
(aAm) @ (a An) for every m,n € L with m ®n = 1. Then 1/a is strongly cofinitely
@-supplemented.

Key words: lattices, small elements, supplemented lattices, cofinitely supplemented
lattices.
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The Possibility of Devising a New Type
of Logic Based on Both of Fuzzy Logic
and Description Logic
ANRIETTE BISHARA
International Black Sea University, Thilisi, Georgia

email: anriettehazem@yahoo.com

In this talk, we show by the very simple way the possibility of devising a new type of
logic, based on Both of Fuzzy Logic and Description Logic.

In the previous, the scientists and researchers had found out the most suitable way
for dealing with uncertainty and fuzziness of any kind of concepts by combining the
Description Logic which is suitable, for managing structured knowledge and well-defined
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concepts, i.e. set of individuals with common properties. And the Fuzzy Logic which
based on “degrees of truth” rather than the usual “true or false”.

Description Logic is limited in dealing with certain kinds of concepts which they do not
have precisely defined criteria of membership, i.e. they are vague concepts like (height,
weight, illness, happiness, etc.) Fuzzy logic can deal with such kind of vague concepts or
even Uncertainty like (it will snow tomorrow, it will rain tomorrow, etc.)

The simple idea of the new logic is to generalize the dealing with all concepts by the
same measure and vision, by using “degrees of truth” rather than using the usual and
classical “true or false”, whatever the concepts are well-defined concepts, or they do not
have precisely defined criteria of membership, i.e. they are vague or uncertain concepts
and this new type of logic will allow the construction of the ontology, in a way that is
closer to human thinking with its different probability of right and wrong, and thus will
be a radical change in how to deal with computer applications that are used in different
directions of life.

One Nonlinear Characteristic Problem
for Nonlinear Oscillation
RUSUDAN BITSADZE

Department of Mathematics, Georgian Technical University
Thilisi, Georgia

email: bitsadze.r@gmail.com

In this work an attempt is made to state correctly one characteristic problem for a
quasilinear equation, which arises in studying nonlinear oscillations. The conditions of the
problem are set forth to various families. The problem makes it possible to simultaneously
define regular solutions and its extension domains.
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Representation Formulas of GGeneral Solutions
to the Static Equations of the Thermoelasticity
Theory of Microstrech Materials
with Microtemperature
SALOME BITSADZE

Department of Mathematics, Georgian Technical University, Thilisi, Georgia

We consider the Two-dimensional differential equations of statics of the theory of
thermoelasticity of microstrech materials with microtemperatures. The representation
formula of a general solution of the homogeneous system of differential equations in the
paper is expressed by means of three harmonic and four metaharmonic functions. These
formulas are very convenient and useful in many particular problems for domains with
concrete geometry. Here we demonstrate an application of these formulas to the Dirichlet
and Neumann type boundary value problem for a circle. Solutions of the considered
problems are obtained in the form of absolutely and uniformly convergent series.

Teaching Methods of Inverse Trigonometric
Functions in Secondary School
TENGIZ BOKELAVADZE

Department of Mathematics, Akaki Tsereteli State University
Kutaisi, Georgia

email: Tengiz.bokelavadze@atsu.edu.ge

Exercise of Inverse trigonometric functions in the secondary school’s current textbooks
is given in the volume that is necessary for the solution of the simplest trigonometric
equations and inequality. We believe that these issues require expansion in order to
better understand the essence of the Inverse trigonometric function and the use of them
to explore a more extensive circle of tasks. The report provides a methodical approach.
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Finite Element Method for Lame Equation
on Surface in Giinter’s Derivatives

TENGIZ BUCHUKURI!, ROLAND DUDUCHAVA!, GEORGE TEPHNADZE?

'A. Razmadze Mathematical Institute of Iv. Javakhishvili Thilisi State University
Thilisi, Georgia
email: t_buchukuri@gmail.com; roldud@gmail.com
3University of Georgia, Thilisi, Georgia
email: giorgitephnadze@gmail.com

We investigate a mixed boundary value problem for Lame equation in a thin layer
around a surface S with the boundary. We trace what happens in I'-limit when the
thickness of the layer tends to zero. The limit BVP for the Lame equation on the surface
is described explicitly.

We prove that this problem possesses a unique solution in appropriate Bessel poten-
tial space. For this we apply the variational formulation and the calculus of Gilinter’s
tangential differential operators on a middle surface and layers, which allow global rep-
resentation of basic differential operators and of corresponding boundary value problems
in terms of the standard Euclidean coordinates of the ambient space R™.

We describe the discrete counterpart of the problem based on Finite Element Method.
Employing Korn’s inequalities we prove the existence and uniqueness of approximated
solutions in suitable finite dimensional spaces and their convergence to the solution of
the corresponding boundary value problem For Lame Equation On middle surface. We
obtain this approximate solution in explicit form.

Teaching Perfect and Friendly Numbers
at the First Level
MAMULI BUTCHUKHISHVILI

Department of Teaching Methods, Akaki Tsereteli State University
Kutaisi, Georgia

email: mbuchukhishvili@yahoo.com

In the case of building the perfect number theory the first important steps were moved
by Euclid, who gave us a “perfect number” formula in its “Initials” (Book IX). Leonard
Euler conducted a serious study on friendly numbers in 1747-1750 And with its unique
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research discovered 60 new pairs of friendly numbers. At present, there are about 1100
pairs of friendly numbers.

Convexity of Certain Integral Operators
Defined By Mittag—Leffler Functions

MURAT CAGLAR, SAIP EMRE YILMAZ, ERHAN DENIZ

Department of Mathematics, Faculty of Science and Letters,
Kafkas University, Kars, Turkey

email: mcaglar25@gmail.com; mrylmz0636@Qgmail.com; edeniz36@gmail.com

In this paper, our aim is to study the convexity of certain integral operators defined
by normalized Mittag—Leffler functions in the open unit disk.
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Intensification of Internal Gravity Waves
in the Atmosphere — Ionosphere at Interaction
with Nonuniform Shear Winds
KHATUNA CHARGAZIAY?, OLEG KHARSHILADZE??

1. Vekua Institute of Applied Mathematics, TSU, Thilisi, Georgia
2M. Nodia Institute of Geophysics, TSU, Thilisi, Georgia

email: khatuna.chargazia@gmail.com

3Department of Physics, TSU, Thilisi, Georgia

email: o.kharshiladze@mail.ru

Intensification and further dynamics of internal gravity waves (IGW) in the ionosphere
with non-uniform zonal wind (shear flow) is studied. It is revealed that the transient
amplification of IGW disturbances due time does not flow exponentially, but in algebraic
- power law manner. The frequency and wave-number of the generated IGW modes
are functions of time. Thus in the ionosphere with the shear flow, a wide range of wave
disturbances are produced by the linear effects, when the nonlinear and turbulent ones are
absent. The effectiveness of the linear amplification mechanism of IGW at interaction with
non-uniform zonal wind is analyzed. It is shown that at initial linear stage of evolution
IGW effectively temporarily draws energy from the shear flow significantly increasing (by
order of magnitude) own amplitude and energy.

An Extension of the
Mixed Novikov—Kazamaki Condition

BESIK CHIKVINIDZE

Institute of Cybernetics of Georgian Technical University
Thilisi, Georgia

email: beso.chiqvinidze@gmail.com

Given a continuous local martingale M, the associated stochastic exponential (M) =
exp{M — 5 (M)} is a local martingale, but not necessarily a true martingale. To know
whether E(M) is a true martingale is important for many applications, e.g., if Girsanov’s
theorem is applied to perform a change of measure. We give a several generalizations
of Kazamaki’s results and finally construct a counterexample which does not satisfy the
mixed Novikov-Kazamaki condition, but satisfies our conditions.
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Mathematical Model of Economic Cooperation
Between the Two Opposing Sides
TEMUR CHILACHAVA

Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences,
Sokhumi State University, Thilisi, Georgia

email: temo_chilachava@yahoo.com

The paper considers a nonlinear mathematical model of economic cooperation between
two politically mutually opposing sides (possibly a country or a country and its subject)
that takes into account economic or other type of cooperation between parts of the pop-
ulation of the sides aimed at convergence and peaceful resolution of the conflict. The
model implies that the process of economic cooperation is free from political pressure,
i.e. the governments of the sides and the third external side does not interfere in this
process. A dynamic system has been obtained that describes the dynamics of parts of
the population of the sides, focused on cooperation. The model also assumes that both
sides have a zero demographic factor, i.e. during the process, the sum of supporters and
opponents of cooperation is unchanged. In the case of constancy of the coefficients of the
mathematical model, singular points of the nonlinear system of differential equations are
found. The problem of stability of solutions is studied.

In the case of some dependence between the constant coefficients of the model, the
first integral and the exact analytic solution are found. The exact solution obtained
allows, within the limits of the given mathematical model and the dependence between its
coefficients, to determine the conditions under which economic cooperation can peacefully
resolve a political conflict (most of the populations of the sides want conflict resolution).

Nonlinear Mathematical Model of Process
of Three-Level Assimilation

TEMUR CHILACHAVA, MAIA CHAKABERIA

Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences,
Sokhumi State University, Thilisi, Georgia

email: temo_chilachava@yahoo.com; chakaberiam@gmail.com

Earlier we have offered nonlinear mathematical models of processes of bilateral and
two-level assimilation [1]-[4].
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In this work the new nonlinear mathematical model of process of three-level assimila-
tion which is described by four-dimensional dynamic system is offered:

( dz_f) = ()u(t) + Bu(t)u(t)v(t) + Bo(t)u(t)w(t) + Bs(t)u(t)=(t),
| dd_gf) = as(t)o(t) = Ba(Du(t)o(t) + B (Bu(D)w(t) + Bo(t)v()=(1), o
dfl—f) = as()w(t) — Br(tyu(tyw(t) — Bs(Do()w(t) + Bo(tyw(t)=(1),
\ diz(? = au(t)2(t) — Bo()ut)=(t) = Bu(B)u(t)=(t) — Bua(tyw(t)=(2),

u(0) = up, v(0) =wy, w(0)=wp, 2(0)= zp, (2)
ai(t) <0, ay(t) >0, Bi(t) >0, i=1,12, u,v,w,z € C0,T], t<[0,T].

In case of constancy of coefficients of model special points of dynamic system (1), (2)
are found. Conditions on constants of coefficients of model at which special points are
located in that part of four-dimensional space for which points all four coordinates are
not negative are found.

At some ratios between constant coefficients of model the first integral (1),(2) which
represents a three-dimensional surface in four-dimensional space is found.
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Mathematical Model of
Competition Between Two Universities

TEMUR CHILACHAVA!, TSIRA GVINJILIA?

"Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences,
Sokhumi State University, Thilisi, Georgia

2Department of Exact and Natural Sciences, Batumi State Maritime Academy
Batumi, Georgia

email: temo_chilachava@yahoo.com; Gvinjilial959@mail.ru

The paper deals with a nonlinear mathematical model of competition between two
universities, which takes into account both competition for a limited contingent of en-
rollees and the attraction of students due to mobility (the transition of students from
one university to another). Dynamic system describing quantitative dynamics (flows) as
students of two universities and enrolles is received. In the case of constancy of the coef-
ficients of the mathematical model, singular points of the nonlinear system of differential
equations are found. Using the Routh—Hurwitz stability criterion, the question of the
asymptotic stability of solutions is studied.

Predicting the Results of Political Elections
with the Help of Mathematical and
Computer Modeling

TEMUR CHILACHAVA, LEILA SULAVA

Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences,
Sokhumi State University, Thilisi, Georgia

email: temo_chilachava@yahoo.com; leilasamadash@gmail.com

At the moment it is actual to create a mathematical model, which would give an
opportunity to define the dynamics of change in the number of supporters of different
political subjects during the election period and a possible forecast of the election results.

The nonlinear mathematical models of two and three party elections were proposed in
the works [1, 2], without transformation, i.e. without changing the number of competing
parties in the period from elections to elections.

In [3] a mathematical and computer model of political elections is considered with
subsequent forecasting of election results in case of an increase of the number of competing
political parties from two to three between the elections.
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This work considers the dynamics of the election process in the event of an increase
or decrease of the number of participants in the period between elections. Numerous
computer calculations were performed and the corresponding graphic illustrations were
made, in which, depending on the choice of variable coefficients and initial data, various
forecasts of election results were obtained.

The results of the numerical account can be used by both the ruling and opposition
parties by selecting parameters and choosing the future strategy for achieving the desired
goal.

The model makes it possible to create a database for different countries (with informa-
tion on previous political elections in these countries) and to do the subsequent forecasting
of the upcoming elections with a certain probability.
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Consistent Estimator of Tbilisi City
Lepl Public Schools Internal Resources
Financial Priorities of Addition Models of Regression

KETEVAN CHOKURI', NINO DURGLISHVILI', VANO KECHAKMADZE?,
ZURAB KVATADZE?

Faculty of Social and Political Sciences, Iv. Javakhishvili Thilisi State University
Thilisi, Georgia

2National Department of Statistics, Thilisi, Georgia
3Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: katechokury@yahoo.com; nino.durglishvili@tsu.ge; vanoke@yahoo.com;
zurakvatadze@yahoo.com

Is carried out the sociological survey of Thilisi city public schools (VIII-IX-X-XI
classes) and pedagogues. Are identified factors that are presented the priorities of financial
provision of internal resources. As a result of factorial analysis (IBM. SPSS, version 20)
are determined the coefficients of those factors are constructed their consistent estimators.
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Provide Multilevel Access to Information Systems
Using QR-Codes

ZAZA DAVITADZE, GREGORY KAKHIANI, ZURAB MESKHIDZE

Department of Computer Sciences, Faculty of Physics, Mathematics and Computer
Sciences, Batumi Shota Rustaveli State University, Batumi, Georgia

email: zazadavi@Qyahoo.com; gkakhiani@gmail.com; zurab.meskhidze@gmail.com

Any modern information system in its architecture implies the need to provide mul-
tilevel access to data. Existing mechanisms of customer interaction are oriented to users
working with desktop computers and it is quite inconvenient to distribute mobile devices.
The present work is presented by our protocol created by providing a security layer in the
standard QR code and creation of comfortable conditions for the user. Theoretical and
practical realization of this protocol is described on the basis of Application on Android
Operating System, which can be used in components of smart buildings or smart cities.
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Numerical Modelling of Dust Aerosols Activity
in Forming the Regional Climate of Georgia
TEIMURAZ DAVITASHVILI

Faculty of Exact and Natural Sciences of Iv. Javakhishvili Thilisi State University,
I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Thilisi State University
Thilisi, Georgia

email: tedavitashvili@gmail.com

In the present study with the view of finding out the details of the dust aerosols
influence on the Georgian climate change some numerical experiments were performed
by WRF and RegCM models. Toward this purpose we have executed as short term
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(WRF/Chem/dust) as well long term (RegCMv.4.7) calculations. Namely sets of 30 years
simulations (1985-—2014) with and without dust effects has been executed by RegCM 4.7
model with 16.7 km resolution (over the Caucasus domain) and with 50 km resolution
(encompassing most of the Sahara, the Middle East, the Great Caucasus with adjacent
regions). Results of calculations have shown that dust aerosol is an inter-active player
in the climate system of Georgia. Numerical calculations have shown that mineral dust
aerosol influenced on temperature and precipitations (magnitudes) spatial and temporally
inhomogeneous distribution on the territory of Georgia and obtained results generally
agreed with MODIS satellite data.

Acknowledgement. This research is supported by the Shota Rustaveli National
Science Foundation Grant FR2017/FR17-548.

Calculation of GGas Non-Stationary Flow in
Inclined and Branched Pipeline
TEIMURAZ DAVITASHVILI', MERI SHARIKADZE?

Faculty of Exact and Natural Sciences, Iv. Javakhishvili Thilisi State University
Thilisi, Georgia
email: tedavitashviliQgmail.com

21. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Thilisi State University
Thilisi, Georgia

Natural gas distribution networks are complex systems with hundreds or thousands of
kilometers of pipes, compression stations and many other devices for the natural gas trans-
portation and distribution service. In the gas transmission pipelines to achieve the power
consumption points with the required conditions is the main and the most difficult issue.
For solving this problem properly determination of the gas pressure and flow rate distribu-
tion along the pipeline is necessary step. Searching of the gas flow pressure and flow rate
distribution along the inclined and branched pipeline network is the more difficult issue.
For this reason development of the mathematical models describing the non-stationary
processes in the branched, inclined pipeline systems are actual. The purpose of this study
is determination of gas pressure and flow rate special and temporally distribution along
the inclined and branched pipeline. A simplified mathematical model (based on the hy-
pothesis that the boundary conditions do not change quickly and the capacity of gas duct
is relatively large) derived from the nonlinear system of one-dimensional partial differen-
tial equations governing the dynamics of gas non-stationary flow in the inclined, branched
pipeline is obtained. In this case gas pressure special and temporally distribution along
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the branched pipeline is presented. Some results of numerical calculations of gas flow in
the inclined branched pipelines are presented.

Acknowledgement. This research is supported by the Shota Rustaveli National
Science Foundation Grant # FR2017/FR17-548.

Nonlocal Contact Problems for Some Non-Stationary
Linear Partial Differential Equations

with Variable Coefficients
(The Method of Separation of Variables)
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2Muskhelishvili Institute of Computational Mathematics of the
Georgian Technical University, Thilisi, Georgia

3 St. Andrew the First-Called Georgian University of Patriarchate of Georgia
Thilisi, Georgia

email: h_meladze@hotmail.com

Nonlocal boundary and initial-boundary problems represent very interesting general-
izations of classical problems. At the same time, they quite often arise during the creation
of mathematical models of real processes and the phenomena in physics, engineering, ecol-
ogy, etc.

In the present report, the initial-boundary problems with nonlocal contact condition
is investigated for non-stationary linear partial differential equations with variable coeffi-
cients. For the solution of these problems a method of separation of variables (also known
as the Fourier method) is considered. Existence and uniqueness of regular solution is
proved.
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The Prevention of Expected Mistakes
for the Evaluation of Pupils
MANANA DEISADZE, SHALVA KIRTADZE

Department of Teaching Methods, Akaki Tsereteli State University
Kutaisi, Georgia

email: manana.deisadze@atsu.edu.ge

Evaluation of pupils is an inseparable part of an educational process. Right evaluation
and purposefully designed exercises are important because a teacher plans every further
step considering the results of evaluation, what to focus on, what activities to deploy to
plan pupil-performance-oriented teaching.

Right evaluation of pupils should assist their development, the discovery of their abil-
ities and hence, the adequate response from the teacher.

Sometimes, the teacher assigns problems to pupils to evaluate their competence; some-
times they give them tests with proper content by which pupils are expected to “fulfill”
the goal of the teacher to evaluate him/her. Regretfully, as practice has shown, pupils can
solve these types of problems with so-called "correct answers” without clear idea about
the knowledge of the issue the teacher wanted from him/her to understand with the means
of these problems.

It is essential that huge attention and careful consideration should be practiced during
evaluation and the process of designing math problems. The problems should be designed
exactly in the way to serve the achievement of the goal.

This work contains some problems with their solutions, also, the prevention of expected
mistakes is included.
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The Radii of Parabolic Starlikeness and
Uniformly Convexity of Bessel Functions Derivatives

ERHAN DENIZ, MURAT CAGLAR, SERCAN TOPKAYA

Department of Mathematics,Faculty of Science and Letters, Kafkas University
Kars, Turkey

email: edeniz36@gmail.com

In this paper, we determine the radii of parabolic starlikeness and uniform convexity
for three kinds of normalized Bessel function derivatives of the first kind. The key tools in
the proof of our main results are the Mittag—Leffler expansion for nth derivative of Bessel
function and properties of real zeros of it. The main results of the paper are natural
extensions of some known results on classical Bessel functions of the first kind.
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The Existence of a Generalized Solution
of an m-Point Nonlocal Boundary Value Problem

for Quasi-linear Differential Equation
DAvID DEVADZE

Department of Computer Sciences, Batumi Shota Rustaveli State University
Batumi, Georgia

email: david.devadze@gmail.com

Let G be the bounded domain on the complex plane E with the boundary I' which is
a closed simple Liapunov curve. We take two simple points A, B on I' and assume that
at these points there exists the tangent to I'. It is obvious that that these points divide
the boundary I' into two curves. One of these parts denoted by 7 is an open Liapunov
curve with the parametric equation z = z (s), 0 < s <. Let us choose simple points
Ak, Bk, k= 1,...,m, on I'\y and assume that at these points the tangent to I" exists.
Besides, we draw in G the simple smooth curves v, k£ = 1,...,m, which connect Ay
and By. The curves 7, are assumed to have the tangents at A, and By which do not
coincide with the tangent to the contour I' at the same points. It is assumed that ; is
the image of v, diffeomorphic to z; = I (z) and with the parametric equation z, = z ($),
0<s<9d,k=1,...,m. Furthermore, it is assumed that v, Nv; =@, ¢ # j, 1, Ny = I,
1,7 = 1,...,m, and the distance between every two lines vy, 72, . . ., 7m is larger than some
positive number € = const > 0.

Let us consider in G the following m-point nonlocal boundary value problem for quasi-
linear differential equations of first order

0: = f(z,w,w), zé€aq,
Rew(2)]=¢(z), zel\y, Im[w(z")]=c¢ ze€l\y, c=const,

Re[w(z(s))] = > _oxRe[w(z(s)], =2(s) €7, 2 (s) €,
O;ak:const, k=1,---,m.

We prove a theorem on the existence and uniqueness of a generalized solution in the

space C(G).
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Gravity and Maritime Navigation
(experimental calculation of the gravitational
constant with participation of students)
MziA DIASAMIDZE

Department of Exact and Natural Sciences, Batumi State Maritime Academy
Batumi, Georgia

email: m.diasamidze@bsma.edu.ge

Physics is the science of the simplest and, at the same time, the most general laws
of nature, of matter, its structure and motion. The laws of physics are the basis of all
natural science. The purpose of this science is to explain how the world works, to show
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what laws our universe is operated by. Allowing finding the answer to absolutely any
question, physics does not cease to develop and improve.

According to the law of universal gravitation, all bodies are attracted to each other
with a force directly proportional to the product of the masses of bodies and inversely
proportional to the square of the distance between them F' = G % . Thanks to this law,
it is possible to answer many questions, including issues related to maritime navigation.

In this article, we draw attention to professional issues — the use of gravitational
force in marine navigation. And also demonstrate on practice on the devices that we
constructed with our own hands.

Keywords: Flow, star orientation, sea currents.

On the Optimal Stopping with Incomplete Data
in Kalman—Bucy Scheme
BESARION DOCHVIRI, ZAZA KHECHINASHVILI

Ivane Javakhishvili Thilisi State University, Georgia

email: besarion.dochviri@tsu.ge, khechinashvili@gmail.com

The Kalman—Bucy continuous model of partially observable stochastic processes is
considered. The problem of optimal stopping of a stochastic process with incomplete data
is reduced to the problem of optimal stopping with complete data. The convergence of
payofts is proved when €; — 0,9 — 0, where £, and €5 are small perturbation parameters
of the non observable processes respectively.

Laplace Equation in an Angular Domain
RoLAND DUDUCHAVA
The University of Georgia, Thilisi, Georgia;

A. Razmadze Mathematical Institute of Iv. Javakhishvili Thilisi State University
Thilisi, Georgia

email: RolDud@gmail.com

Results on one dimensional Mellin pseudodifferential equations (?DOs) in the Bessel
potential spaces will be presented. In contrast to the Fourier YDOs, BPOs and Mellin
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UDOs do not commute and we derive an explicit formula for Mellin WDOs with mero-
morphic symbols. These results are applied to the lifting of the Mellin ¥YDOs from the
Bessel potential spaces to the Lebesgue spaces.

Consider the angle 2, of opening 0 < a < 27 with the vertex at 0. Part of the
boundary I' = €2, coincides with the semi axes Ry := (0, 00), while another we denote
by R,. Consider the mixed Dirichlet—-Neumann boundary value problem for the Laplace
equation in €2,

Au(t) = f(t), t €y,
ut (1) = g(71), T € Ry, (1)
—(Ou)™ (1) = h(1), T€R,.

Here —0, coincides on R, with the normal derivative to the boundary.

Lax—Milgram Lemma applied to the BVP (1) gives that it has a unique solution in
the classical setting f € Ly(Q,), g € HY3(T), h € H-Y2(T).

But in some problems, for example in approximation methods, it is important to know
the solvability properties in the non-classical setting

~ 1
fFEMT(Q,), g e HYP(T), he H;'VP(T), 1<p<oo, s> -. (2)
D
Let those pairs of space parameters (1/p,s) € (0,1) x (1/p,00) for which the BVP
(1), (2) is Fredholm call regular pairs.
Based on the above mentioned results for the Mellin ¥DOs we prove the following.

Theorem. Let 1 < p < oo, s € R. The mized boundary value problem (1) in the setting
(2) is Fredholm if and only if the symbol is elliptic

etmi/p sin%r(% — 1€ — s) + cos? [(77 —a) (% — i€ — s)] #0 forall £ €R. (3)

If the symbol is elliptic, the strip (0,1) x (1/p,00) of pairs of space parameters pairs
(1/p,s) decomposes into an infinite union of non-intersecting connected parts of reqular
PaIrs.

Let Ry be the regular connected part which contains the pair (1/2,1) (i.e. p = 2,
s =1). Then the BVP (1), (2) is uniquely solvable for all pairs (s,p) € Ry.

Similar results hold for the pure Dirichlet and pure Neumann BVPs for the Laplacian,
although instead of condition (3) we have, respectively, the following

e4m'/psin27r(% —zf) — sin® [(77 —04)(%9 -1 —z'f) —77(5 - %)} # 0 for all £ € R,

e4m/psin27r(% —@§> — sin? [(W—@)(% —zf) —7r<s - %)} #0 forall £ €R.

The investigation was carried out in collaboration with V. Didenko (Brunei-Vietnam)
and M. Tsaava (Georgia).
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Solving Hedge Regular Language Equations

BesiK DUNDUAM?, MIRCEA MARIN?®

lia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Thilisi State
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Thilisi, Georgia
3Department of Computer Science, West University of Timisoara, Timisoara, Romania
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In recent years, regular hedge languages [1] became very popular in programming lan-
guages, due to their expressive power. Languages supporting programming with regular
hedge expressions are useful for Web-related applications. As examples, CDuce, PpLog,
XDuce and XHaskell can be mentioned. Regular hedge expressions have been extensively
used in search engines, rewriting, program verification, software engineering, lexical anal-
ysis, etc. Because of space limitation, we can not give an exhaustive overview of regular
hedge expressions applications.

The theory of hedge languages generalizes the theory of word languages. Therefore,
it is not surprising that regular hedge languages provide more expressive and powerful
platform for semistructured data manipulation than regular word languages.

Solving regular word language equations with various restrictions have been intensively
studied in the last decade. Solving regular word language equation systems without
restrictions is hard and the class of smallest solutions of such systems corresponds to
recursively-enumerable sets [2]. It should be noted that much less attention has been
devoted to solving regular hedge language equations.

In this talk we propose a solving algorithm for one side ground regular hedge language
equations. The solving algorithm is based on factorization of regular hedge languages,
which generalizes factorization of regular word languages given in [3]. We show that, the
algorithm computes maximal solutions and is sound and complete.

Acknowledgments: This research has been supported by the Shota Rustaveli Science
Foundation under the grant FR17_439.
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On a Double Limit Connected with the
Riemannian Method of Summation

OMAR DZAGNIDZE!, IRMA TSIVTSIVADZE?

'A. Razmadze Mathematical Institute of 1. Javakhishvili Thilisi State University
Thilisi, Georgia

2Akaki Tsereteli Kutaisi State University, Kutaisi, Georgia

email: omar.dzagnidze@tsu.ge; irmatsiv@gmail.com

Along with any series convergent or not convergent

we can consider a series

depending on the variable h, in the assumption of its convergence for sufficiently small
h#0and 229 = 1.
If under the above assumptions there exists a finite limit

i > o (A1) @)

then the series (1) is called the Riemannian summation method, or R-summable to o.
Obviously, equality (2) can be given the following form

i i -~ (sinkh>2 _
im lim | = = o,

i.e., the form of a repeated limit

lim lim A,(h) = o, (3)

h—0 n—o0

where it is assumed that

A (h) = iak(siz:hy‘

Consequently, the fulfilment of equality (3) is equivalent to the R-summability of the
series (1) to o.
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As for the existence of a finite double limit

lim A, (h) = s,
h—0
n—oo

the theorem below is proved.

Theorem. The convergence of the series (1) to s is the necessary and sufficient condition
for the fulfilment of equality (4).

Difference Equations in Mathematical Modeling
TS1ALA DZzIDZIGURI

Faculty of Mathematics and Computer Sciences, Sokhumi State University
Thilisi, Georgia

email: cialadzidziguri@Qrambler.ru

The general theory of difference equations is an important mathematical apparatus,
since it has a wide range of applications for modeling various natural systems.

In the master’s program of the Sukhumi University “Applied Mathematics” an impor-
tant course is the obligatory course: “Difference equations in mathematical modeling”,
since for the analysis of discrete models in different fields of science, mathematical analysis
of difference equations or systems of equations is required.

A course of lectures of this discipline has been created.

In this paper, sources of difference equations, types, their basic properties and basic
methods of solution are considered; matrix, scalar and vector methods for solving systems
of linear difference equations.

The study of the properties and methods of this mathematical apparatus is based on
the construction of specific discrete mathematical models and their qualitative research.

Multiplication Groups of Topological Loops
Acora FicuLa

Institute of Mathematics, University of Debrecen, Debrecen, Hungary

email: figula@science.unideb.hu

A set L with a binary operation (z,y) + x -y is called a loop if there exists an element
e € L such that © = e-x = x - e holds for all x € L and the equations a -y = b and
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x - a = b have precisely one solution, which we denote by y = a\b and x = b/a. A loop L
is proper if it is not a group.

The left and right translations A\, =y+—a-y: L —- Landp, :y+—y-a: L — L,
a € L, are permutations of L.

The permutation group Mult(L) = (A4, pa; @ € L) is called the multiplication group
of L. The stabilizer of the identity element e € L in Mult(L) is called the inner mapping
group Inn(L) of L.

If L is a connected topological loop having a Lie group as the group of its left trans-
lations, then in general the multiplication group Mult(L) of L is a differentiable trans-
formation group of infinite dimension. The condition that the group Mult(L) is a (finite
dimensional) Lie group gives a strong restriction for the group Mult(L) and also for
the loop L: For every proper 1-dimensional topological loop L the multiplication group
Mult(L) has infinite dimension (cf. [2]). In [1] we proved that only the elementary filiform
Lie groups F,,, n > 4, are the multiplication groups Mult(L) of 2-dimensional connected
simply connected topological loops L.

We determine the structure of the Lie groups which are the multiplication groups
of three-dimensional topological loops L. We use this result for the classification of Lie
groups which occur as the group Mult(L) of a three-dimensional loop L.
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On a Static Problem of Beam in the
(0,0) Approximation
MIRANDA GABELAIA
Mathematics Department, Ivane Javakhishvili Thilisi State University, Thilisi, Georgia

email: gabelaiamiranda@gmail.com

The static problem of beam is considered and investigated in the (0,0) approximation
of hierarchical models. There is considered beam whose length is L, width and thickness
are given by the expressions:

2hy = hY and 2hs = Kde 1,
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x1 €[0,L], hy=h3=const >0, k=const>0, L =const>D0.

We consider weighted boundary condition on the cusped end of the beam and Dirichlet
boundary condition on the non-cusped end. The solution of the posed boundary value
problem is given in an integral form.

Hilbert Functions of Morava K (2)*-Theory
Rings of Some 2-Groups
NaTIA GACHECHILADZE

Faculty of Exact and Natural Sciences, Iv. Javakhishvili Thilisi State University
Thilisi, Georgia

email: natia.gachechiladze@tsu.ge

This note presents some computer generated calculations of the Hilbert functions
related to Morava K (2)*-theory rings of classifying spaces BG, for some groups of order 32.
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The boundary problem for the Elliptic Equations
in Generalized Weighted Morrey Spaces
T. GADJIEV, SH. GALANDAROVA, S. ALIYEV
Institute Mathematics and Mechanics, Baku, Azerbaijan

email: tgadjiev@mail.az

For the a weak solution Dirichlet boundary problem uniformly elliptic equations of
higher order in generalized weighted Morrey spaces in a smooth bounded domain 2 C R"
a priori estimate is obtained. Weight function from in the Macenhoupt class A,.
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Numerical Model of Mesoscale Boundary Layer
of the Atmosphere Taking into Account
of Humidity Processes

GEORGE GELADZE, MANANA TEVDORADZE

Faculty of Exact and Natural Science of 1. Javakhishvili Thbilisi State University
Thilisi, Georgia;
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Thilisi State University
Thilisi, Georgia

email: givi-geladze@rfmbler.ru; mtevdoradze@ gmail.com

Using the non-stationary, 2-dimensional (in the vertical (x-z) plane) numerical model
of the mesoscale boundary layer of the atmosphere, such cluster-like moisture processes as
3 layered clouds and fog are simulated, which eventually transform into 4 layered clouds.

The model takes into account a wider range of phase transitions of water, in particular,
as the condensation of water vapor and freezing of water. We are also going to take into
account water anomalies, in particular, sharply different values of dielectric permittivity
of liquid water, water vapor and ice.

We continue to study foehn processes within the framework of this numerical model.

Schauffler Type Theorems
for New Second Order Formulas

ALBERT GEVORGYAN, YURI MOVSISYAN

Department of Mathematics and Mechanics, Yerevan State University
Yerevan, Armenia

email: movsisyan@ysu.am; albert.gevorgyan@ysumail.am

In this talk the Belousov theorem on linearity of invertible algebras with the Schauf-
fler V3 (V)-identity of associativity is extended over the other V3 (V)-identities. As a
consequence we obtain the equivalency of the considered V 3 (V)-identities and non-trivial
hyperidentities in systems of groups. For the considered second order formulas we prove
the Schauffler type theorems too.



120 Abstracts of Participants’ Talks Batumi—Tbilisi, September 3-8, 2018

References

[1] R. Schauffler, Die Assoziativitdt im Ganzen, besonders bei Quasigruppen. (German)

Math. Z. 67 (1957), 428-435.

[2] R. Schauffler, Eine Anwendung zyklischer Permutationen and ihre Theorie. Ph.D.
Thesis, Marburg University, 1948.

[3] R. Schauffler, Uber die Bildung von Codewortern. (German) Arch. Elek. Ubertr.
10 (1956), 303-314.

[4] Yu. M. Movsisyan, Hyperidentities and related concepts, I. Armen. J. Math. 9
(2017), no. 2, 146-222.

[5] Yu. M. Movsisyan, Hyperidentities and related concepts, II. Armen. J. Math. 10
(2018), no. 4, 1-85.

On Formation of Massless Bose Particles
Hions in the Quantum Vacuum.

Problem of Dark Energy-Quintessence
ASHOT GEVORKYAN

Institute for Informatics and Automation Problems of the National Academy of Sciences
of the Armenia, Yerevan, Armenia;

A. B. Nalbandyan Institute of Chemical Physics of the National Academy of Sciences of
the Armenia, Yerevan, Armenia

email: g_ashot@sci.am

We have studied the possibility of formation of massless structure particles with spin
1 vector boson. Based on a stochastic differential equation of the Weyl-Langevin type, it
is proved that as a result of multiscale random fluctuations of massless quantum vector
fields, in the first phase of relaxation forms quasiparticles (later these particles called
hion) in the form of randomly oscillating two-dimensional strings. It is shown that, in the
limit of statistical equilibrium, the string is quantized and localized on a two-dimensional
topological manifold. The wave state and geometric structure of the hion are studied in
the case when the quasiparticle is free and when it interacts with a random environment.
In the second phase of relaxation, the symmetry of the quantum state of the hion breaks
down, which leads to spontaneous transitions of quasiparticle to other massless and mass
states. The problem of entanglement of two hions with opposite projections of the spins
+1 and —1 and the formation of a scalar zero-spin boson are studied in detail. The
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properties of the scalar field (dark energy-quintessence) are analyzed and it is shown that
in fact it is a Bose—Einstein (BE) condensate. The problems of the decay of a scalar
boson, as well as a number of features characterizing the stability of BE condensate, are
investigated. The structure of the “empty” space-time is analyzed in the context of the
new properties of the quantum vacuum, which allows us to assume the existence of a
natural quantum computer with complex logic in the form of a dark energy-quintessence.
The possibilities of space-time engineering are discussed.
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Maximum Inequalities and Their Applications
to Orthogonal and Hadamard Matrices

GEORGE GIORGOBIANI, VAKHTANG KVARATSKHELIA

Muskhelishvili Institute of Computational Mathematics of the
Georgian Technical University, Thilisi, Georgia;

Sokhumi State University, Thilisi, Georgia
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Using Hoeffding—Chernoff bound maximum inequalities for the signed vector sum-
mands and corresponding probabilistic estimations are established. By use of “transfer-
ence technique” appropriate maximum inequalities are derived for the permutations. One
application for Orthogonal and Hadamard matrices is suggested.
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On Some Methods of Solving Textual Tasks
in Secondary School
TS1uURI GODUADZE
Lepl Tskaltubo Municipality Villige Patriketi Givi Shengelia Public School, Georgia

email: tsgoduadze@gmail.com

Part of students of secondary school are difficult to learn mathematics. Special difficul-
ties are encountered when solving textual tasks. The problem here is to understand cor-
rectly the condition of tasks. The report presents the methodological treatment of these
issues.

Some Aspects of Mathematical Education
of Computer Science Direction Students
GURAM GOGISHVILI

Faculty of Business, Computing and Social Sciences, St. Andrew the First Called
Georgian University, Thilisi, Georgia

email: guramgog@gmail.com

Modernity is characterized by the rapid development of computer sciences and tech-
nologies. The demand for corresponding specialists is increasing day by day. Demand for
their high knowledge level also increases. The fundamental and conceptual shifts in this
direction are importantly related to the mathematics’ various applied aspects.

That’s why, in the leading educational centers of the world, the role of mathematics in
the preparation of students is increasingly reflected in the appropriate training programs.
With the teaching of mathematical fundamental issues, it becomes more important to
present a wide range of applications.

In our talk we focus on the growing role of discrete mathematics and, in particular,
the theory of numbers in many different disciplines of computer science. First of all, we
need to name modular arithmetic and its applications, their decisive role in the creation of
new cryptographic systems. The creation of such public-key systems was based on Euler’s
theorem in the congruence theory and issues of linear congruencies. It is also important to
get familiar with the solution of linear congruence systems and high order congruencies,
properties of general multiplication functions and the continued fractions which allows us
to solve many practical problems in computer sciences.

It should be noted that often learning boils down to acquainting only the final impor-
tant theoretical results - the methods of receiving these results are ignored. The creative
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expert’s knowledge of these methods often leads to a solution of new results. Obviously,
some theoretical results can really be limited to the final results only, but such an approach
can not be the only form of teaching.

Along with the above mentioned issues we will discuss some other topical problems of
teaching and corresponding curricula.

Neural Network for Self-driving Car
PAATA GOGISHVILI

Faculty of Management, Computing and Social Sciences, St. Andrew the First-Called
Georgian University of the Patriarchate of Georgia, Thilisi, Georgia

email: paatagog@gmail.com

Neural Networks are effective tools for building driving management systems for self-
driving cars. Self-driving cars have many sensors. The information from sensors are
the input signals of the neural network. Neural Network makes decision about driving
direction.

Presented system uses camera that is attached to the car. Camera captures road
signes. Camera pictures are analized by the deep convolutional neural network. Neural
Network recognizes the signs and makes decisions.

We use transfer learning on pretrained network in order to speed-up the learning
process. We choose MobileNet [1] as our Neural Network. MobileNet was trained on
ImageNet [2]. We retrained MobileNet on pictures captured by the car camera. We use
Tensorflow [3] as the software library.

The recognition presizion is quite good. We think that our method, with combination
with other sensors will be effective for self-driving cars.
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Problems, Solvers and PageRank Method

JOSEPH GOGODZE
Georgian Technical University, Thilisi, Georgia

email: sosogogodze@yahoo.com

In recent years, intensive studies have been conducted to evaluate the effectiveness of
various solvers and various methods for this purpose have been proposed in the literature.
As well-known (see, e.g., [1]), most benchmarking tests utilize evaluation tables displaying
the performance of each solver for each problem under a specific evaluation metric (e.g.,
CPU time, number of function evaluations, number of iterations). Different methods
(based on suitable “statistical” quantities) are used to interpret data from these tables,
including the mean, median, and quartiles, ranking, cumulative distribution function,
etc. The advantages and disadvantages of each proposed method are often a source of
disagreement; however, this only stimulates further investigation in the field.

The method discussed in this paper was proposed to introduce a new benchmark
that directly accounts for the natural relationship between problems and solvers, which is
determined by their evaluation tables. Namely, we introduces the benchmarking context
concept as a triple (S, P, J), where S is a set of solvers, P is a set of problems, and J is an
assessment function (a performance or evaluation metric). This concept is quite general
and, furthermore, emphasizes that problem and solver benchmarking cannot be considered
separately. Based on the data presented by the benchmarking context (S, P, J), a special
procedure was defined allowing solvers and problems to be ranked. It should also be
noted that the proposed procedure is a specific version (most probably the simplest) of
the Google PageRank method (see, e.g., [2]). This study aimed to propose a PageRank
procedure as an effective tool for benchmarking computational problems and their solvers.

In this study, as an illustrative example we conduct benchmarking analysis of Dif-
ferential Evolution Algorithms (9 optimization algorithms) on a set of test problems (50
optimization problems for 25 well-known test functions) using the Random Sampling
Equivalent-Expected Run Time (ERTRSE) measure as a performance metric [3]. The
considered example demonstrate the viability and suitability of the proposed method for
applications
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Renormalization of Mass in QCD
VAKHTANG GOGOKHIAY?, GERGELY GABOR BARNAFOLDI!

Department of Theoretical Physics, WIGNER Research Centre for Physics
Budapest, Hungary

2Department of Theoretical Physics, A. Razmadze Mathematical Institute of
[. Javakhishvili Thilisi State University, Thilisi, Georgia

email: gogohia.vahtang@wigner.mta.hu; barnafoldi.gergely@wigner.mta.hu

We have shown in the most general way that the mass scale parameter may appear
in QCD without violation of its exact SU(3) color gauge invariance. For this purpose we
investigate the color gauge structure of the Schwinger-Dyson (SD) equation of motion for
the full gluon propagator [1]. The mass scale parameter, the mass gap, in what follows is
dynamically generated by the self-interaction of the multiple massless gluon modes. The
renormalization program for massive gluon fields is developed as well.
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Qausi-Conformal Estimates of Neumann—Laplace
Eigenvalues
VLADIMIR GOL'DSHTEIN
Ben Gurion University, Beer Sheva, Israel
email: vladimir@bgu.ac.il
We discuss quasi-conformal lower estimates of the first nontrivial Neumann Laplace

eigenvalues for non convex domains including domains with fractal boundaries. Results
are based on the geometric theory of composition operators.
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About One Mathematical Model of
Currency Arbitrage

ANANO GORGOSHADZE, NINO DEVADZE

Batumi Shota Rustaveli State university, Batumi, Georgia

email: anano.gorgoshadzel@yahoo.com; nino.devadze@gmail.com

In today’s Global Economy, multinational companies should make transactions in the
currencies of the countries, where they operate. The majority of the firms on Georgian
market have to convert different currencies while investing. Currency arbitrage, or simul-
taneous purchase and sale of the money on different markets, offer us better transaction
from one currency to another. In this work, we have demonstrated how to formulate and
solve arbitrage problem in case of Region’s priority currency transactions. There is given
simulation of real process of the transactions, we have demonstrated the mathematical
model of currency arbitrage, relevant strategy of getting maximal revenue with the help
of currency arbitrage is realized programmatically.
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Contractive Mapping Theorems in Generalized
Soft Metric Spaces

CI1GDEM GUNDUZ ARAS!, SADI BAYRAMOV?, VEFA CAFERLI?

Department of Mathematics, Kocaeli University, Kocaeli, 41380, Turkey

email: carasgunduz@gmail.com

?Department of Algebra and Geometry, Baku State University, Baku, Azerbaijan

email: baysadi@Qgmail.com; ceferli_vefa@mail.ru

The purpose of this paper is to contribute for investigating on generalized soft metric
space which is based on soft point of soft sets and give some of its properties. We define
the concepts of sequential compact and totally bounded in generalized soft metric space
and prove some important theorems on this space. Finally, we introduce contractive
mappings on generalized soft metric spaces and prove a common fixed point theorem for
a self-mapping on complete generalized soft metric spaces.

Keywords: Generalized soft metric space, soft contractive mapping, fixed point the-
orem.
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Neutrosophic Soft Seperation Axioms
in Neutrosophic Soft Topological Spaces

CicDEM GUNDUZ ARAS' TAHA YASIN OZTURK?, SADI BAYRAMOV?
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The neutrosophic soft topology based on operations of the neutrosophic soft union
and intersection which are differently defined from the other studies. In this paper the
neutrosophic soft null and absolute set will be re-defined differently from the study [1].
we also introduce some basic notions of neutrosophic soft topological spaces by using
neutrosophic soft point concept. Later we give Ti- neutrosophic soft spaces and the
relationships between them. Finally, we investigate some of its important properties.

Keywords: Neutrosophic soft set, neutrosophic soft separation axioms
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Hankel and Berezin Type Operators on Weighted
Besov Spaces of Holomorphic Functions
on Polydiscs
ANAHIT V. HARUTYUNYAN
Fresenius University of Cologne, Koeln, Germany

email: anahit@Qysu.am

Assuming that S is the space of functions of regular variation(see [2]) and w =

(wWi,...,wn), wj € S, by By(w) we denote the class of all holomorphic functions defined
on the polydisk U™ such that
1= )
191, /\Df H ) <,

where dma,(z) is the 2n-dimensional Lebesgue measure on U™ and D stands for a special
fractional derivative of f defined here. As in the one-dimensional case, B,(w) is a Banach
space with respect to the norm | - ||p,(). For properties of holomorphic Besov spaces
see [1].

In this paper we consider also the generalized Berezin type operators on B,(w) (and on
L,(w)) and prove some theorems about the boundedness of these operators. Let us define
the little Hankel operators as follows: denote by Ep(w) the space of conjugate holomorphic
functions on B,(w). For the integrable function f on U”" we define the generalized little
Hankel operator with symbol h € L>®(U™) by

() = Pald)) = [ %ﬂog@dm%@,
a=(o1,...,0p), aj >—1 1<j<n,

For n = 1, @ = 0 this includes the definition of the classical little Hankel operator, see [3].
we consider the boundedness of little Hankel operator on B,(w). For the case 0 < p <1
and for the case p = 1 we have the following results.

Theorem 1. Let 0 < p < 1, f € B,(w) (or f € B'(w)), g € L¥(U™). Then h(f) €
B,(w) if and only if a; > ay,/p—2,1 < j < n.

Theorem 2. Let f € By(w), g € L>(U"). Then hi(f) € Bi(w) if and only if o; > v, —2,
1<j7<n.

The case p > 1 is different from the cases of 0 > p < 1 and from the case of p = 1.
Here we have the following
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Theorem 3. Let 1 < p < +oo, [ € By(w) (or f € By(w)), g € L>(U"). Then if
a; >y, 1 <j <n, then hy(f) € By(w).

For the integrable function f on U™ and for g € L>(U™) we define the Berezin-type
operator in the following way

B (e) = L ey / Qa0 man ),

T ZC‘4+20¢

In the case a = 0, g = 1 the operator By will be called the Berezin transform. We have
the following results:

1. for the case of 0 < p < 1 we have
Theorem 4. Let 0 < p < 1, f € By(w) (or f € B,(w)), g € L=®(U") and let o; >
/P —2, 1 < j<n. Then Bf(f) € LP(w).

2. the case 1 < p < +o0 gives the next theorem
Theorem 5. Let 1 < p < +oo, f € By(w) (or f € B,y(w)), g € L=(U") and let
a; > (o, /p—2, 1 < j<n. Then BS(f) € Ly(w).

3. we consider now the case of p = 1.

Theorem 6.Let f € Bi(w) (or f € B1(w)), g € L®(U"). Then By (f) € Li(w) if and
only if oy > ay,,, 1 < j <.
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Issues of Building a Microclimate Management
Model in the Building

Nugzar lashvili
Georgian Technical University, Thilisi, Georgia

email: n.iashviliQgtu.ge

The microclimate is a climate artificially constructed in a residential and workplace,
the purpose of which is to protect the human body from adverse environmental impacts.
Because the microclimate is artificially created in living and working areas, it is possible
to control and manage it.

The modern level of automation and tool building makes it easier to solve the problem
of creating a micro-climate in public and residential buildings.

In some private cases, the model of a micro-clock management system can be brought
down before the equilibrium equals the mathematical description of the air exchange
process taking into consideration various external climatic impacts.

The Algorithm for Functioning the Digital
Meter Device
Nugzar lashvili
Georgian Technical University, Thilisi, Georgia

email: n.iashviliQgtu.ge

Different measuring control devices and devices are significantly different from func-
tions and components and components, but they can still be represented as their structural
block schemes.

This is due to the fact that any control-control device can be identified by its main
determinant blocks and nodes. This in turn allows us to describe a formalized (mathe-
matical) measuring-control device, its model construction and its functional algorithm.
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Hybrid Encryption Model of Symmetric and
Asymmetric Cryptography with
AES and ElGamal Encryption Algorithms

MAKSIM IavicH!, ELZA JINTCHARADZE?

'Head of Cyber Security Department, School of Technology, Caucasus University,
Thilisi, Georgia
2Faculty of Informatics and Control Systems, Georgian Technical University, Thilisi,
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Computer networks and internet application are growing fast, so data security is the
challenging issue of today that touches many areas. To prevent unauthorized access to
the user data or database, any transmitting process should be securely encrypted. Dif-
ferent cryptography techniques and algorithms are used to provide the needed security
to the applications. Cryptography methods provides authentication, integrity, availabil-
ity, confidentiality, identification, security and privacy of user data. Data security and
authenticity are used in our daily life such as in banking, smart card, business discussion
and insurance. There are two types of cryptography algorithms such as symmetric key
cryptography and asymmetric key cryptography.

This paper provides a comparison between two symmetric, asymmetric algorithms
and new hybrid cryptography algorithm model. The factors are achieving an effectiveness
and security. Currently many encryption algorithms are available to secure the data but
some algorithms consume lot of computing resources such as memory and CPU time.
Comparative analysis was done on encryption algorithms such as AES and ElGamal. Is
designed new hybrid model using combination of two cryptography algorithms AES and
ElGamal.

The objective of this research is to evaluate the performance of AES, ElGamal cryptog-
raphy algorithms and AES&EIGamal hybrid cryptography algorithm. The performance
of the implemented encryption algorithms is evaluated by means of encryption and de-
cryption time and memory usage. To make comparison experiments, for those algorithms
is created program. The programming language Java is used in implementing the encryp-
tion algorithms. As the result shows, provided hybrid algorithm model is comparatively
better than ElGamal in terms of encryption / decryption time and better than AES in
terms of its security.
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On the Mannheim Rational Bezier Curve Pairs
in 3-Space
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In literature it is well known that curve pairs {«, §} are called Mannheim curve pairs
if the unit principal normal vector of the curve « is the same as the unit binormal vector
of the curve .

In this paper we study Mannheim rational Bezier curve pairs. Let two rational Bezier
curves of degree n with control points {b;};—01,. ., and the weights {w;};—01. n, and
{¢i}izo1,..n and the weights {m;}i—01,.. be given in the space of E3. We investigated
the conditions of being Mannheim curve pairs of these rational Bezier curves. So we stated
these conditions as control points {b;}i—o1..» and {¢;}izo1,..» and weights {w;}i—o1,. .
{m;}i—01,.n of given rational Bezier curves.

Keywords: Mannheim curve, Bezier curve, control points.
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On the Mannheim Bezier Curve Pairs in 3-Space

MuHSIN INCESU', OSMAN GURSOY?

'Department of Mathematics Education, Mus Alparslan University, Turkey

email: m.incesu@alparslan.edu.tr

2Department of Mathematics Education, Maltepe University, Turkey

email: osmangursoy@maltepe.edu.tr

In literature it is well known that curve pairs {«a, §} are called Mannheim curve pairs
if the unit principal normal vector of the curve « is the same as the unit binormal vector
of the curve f.

In this paper we study Mannheim Bezier curve pairs. Let two Bezier curves of degree
n with control points {b;}i—01, » and {ci}i—o1.., be given in the space of E3. We
investigated the conditions of being Mannheim curve pairs of these Bezier curves. So
we stated these conditions as control points {b;}i—o1. » and {¢;}i—o1,. ., of given Bezier
curves.

Keywords: Mannheim curve, Bezier curve, control points.
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Asymptotic Behaviour of Solutions of
One Fourth Order Hyperbolic Equation
with Memory Operator
SEVDA ISAYEVA
Department of Higher Mathematics, Baku State University, Baku, Azerbaijan

email: isayevasevda@rambler.ru

Let Q C RY (N > 1) be a bounded, connected set with a smooth boundary I'. We
consider the following problem:

w0

o gy et P + At fuPu=h in Q=Qx(0,7), (1)
w=0, Au=0, (z,t) €T x[0,T], 2)

ou .
[t P g =u® 4w, G| =u i, 3)

where p > 0 and F is a memory operator (at any instant t, F(u) may depend not only
on u(t), but also on the previous evolution of u), which acts from M(Q; C°([0,T])) to
M(Q; CO([0,T7])). Here M(£2; C°([0,T])) is a space of strongly measurable functions 2 —
C°([0,T]). We assume that the operator F is applied at each point 2 € £ independently:
the output [F(u(x, -))](t) depends on u(x, - )|j0,4, but not on u(y, -)|py for any y #
(see [1]).

The similar problem for second order hyperbolic equation with memory operator was
studied in [2] and asymptotic results for solutions of the corresponding problem were
obtained.

In this work we prove the existence and uniqueness of solutions, the existence of an
absorbing set, the asymptotic compactness of a semigroup, generated by problem (1)—(3)
in E = HZ(Q) x L*(Q) x L*(Q2) and then the basic theorem about existence of a minimal
global attractor for this problem under conditions, set in [2].

We prove this theorem by time discretization method.
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Simultaneous Approximation in the Variable
Exponent Smirnov Classes
DANIYAL ISRAFILOV!, FATIH CELIK?

Department of Mathematics, Balikesir University, Balikesir, Turkey
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In this talk we discuss the simultaneous approximation problems for the polynomials
having maximal convergence property on the continuums of the complex plane.

Let K be a bounded continuum with simple connected complement G := C\ K, in
the complex plane C. We denote by ¢ the conformal mapping of G onto domain D~ :=
{w : |w| > 1} and by I'r, R > 1, the Rth level line of K defined by I'g := {2 : |¢(2)| = R}
and let G := intg.

The class of Lebesgue measurable functions p(-) : I'r — [0, 00), satisfying the condi-
tions

1 <p_ :=essinfp(-) < esssupp(-) == p" < 0
ZGF zell

Ip(21) — p(22)| < c(p)Inl/|z1 — 22|, V21,29 € g, |21 — 22| < diamI'g

we denote by P (I'r).
For a given p(-) € P (I'r) we define the variable exponent Lebesgue spaces L) (I'g)
of functions f with the norm

1l = mf{A 50 / £ (2) AP (2] < 1} .
I'r

Let E*(GR) be the classical Smirnov class of analytic functions in Gp. We define the
variable exponent Smirnov class as EPV(Gg) := {f € E*(Gg) : f € L) (I'p)}.

It is well known that if f € E*(GR), then for every n € N the following Faber series
representation f(™(z) = Y ak(f)F,in)(z), z € K, holds, where Fj, k=0,1,2,..., are the

Faber polynomials of degr_ee k for continuum K.

We estimate the error sup|f™(z) — 3 ak(f)F,gn)(z)‘ with dependence of the best
zeK k=0
polynomial approximation number E,(f, Ggr)p) := inf{||f — pnll : pn € II,} and R where

IT, is the class of the algebraic polynomials of degree not exceeding n.
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Approximation in the Variable Exponent
Lebesgue Spaces

DANIYAL ISRAFILOV, AHMET TESTICI

Department of Mathematics, Balikesir University, Balikesir, Turkey

email: mdaniyal@balikesir.edu.tr; testiciahmet@hotmail.com

In this talk we discuss the approximation problems in the variable exponent Lebesgue
spaces defined on the interval [0, 27] and also in the variable exponent Smirnov classes of
analytic functions defined on the simple connected domains of the complex plane. Under
some restrictive conditions on the variable exponent the direct and inverse theorems of
approximation theory and also theirs improvements are proved. Here the speed of approx-
imation in term of the modulus of smoothness, constructed via Steklov mean operator of
given function is estimated. In particular case, the constructive approximation problems
in the generalized Lipschitz subclasses are considered and the appropriate theorems are
formulated.

The Basic Transmission Problem
of the Thermoelastostatics
for Anisotropic Composite Structures

DI1ANA IVANIDZE, MAREKH IVANIDZE

Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: dianaivanize@gmail.com; marexi.ivanidze@gmail.com

In the paper we consider the basic transmission problem for piecewise homogeneous
three-dimensional space consisting of two adgasent anisotropic elastic components with
differential material constants, when one of them is a bounded region and the second one
is its complement to the whole space. The basic rigid transmission conditions are given
on the interface.
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Recurrence Relations for the Moments
of the Order Statistics from the Generalized
Beta Distributions

HoOSSEIN JABBARI KHAMNEI, ROGHAYE MAKOUYI

Department of Statistics, Faculty of Mathematical Sciences, University of Tabriz

Tabriz, Iran

email: h_jabbari@tabrizu.ac.ir; R.Makuyi@yahoo.com

The use of recurrence relations for the moments of order statistics is quite well-known
in statistical literature (see, for example, Arnold et al., 1992 and Malik et al., 1988).
Balakrishnan et al. (1988) have reviewed many recurrence relations and identities for the
moments of order statistics arising from several specific continuous distributions such as
normal, Cauchy, logistic, gamma and exponential. For improved forms of some of these
results, see Jabbari Khamnei and Makouyi (2018), Thomas and Samuel (2008), Samuel
and Thomas (2000) and Thomas and Samuel (1996). In this paper, the main focus is to
study the recurrence relations for the single and product moments of the order statistics
of a random sample of size n arising from the generalized beta distributions.
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WRF Model’s Installation, Parameterization and
Some Results of Numerical Calculations
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We have elaborated and configured Whether Research Forecast — Advanced Researcher
Weather (WRF-ARW) model for Caucasus region considering geographical-landscape
character, topography height, land use, soil type and temperature in deep layers, veg-
etation monthly distribution, albedo and others. Porting of WRF-ARW application to
the grid was a good opportunity for running model on larger number of CPUs and stor-
ing large amount of data on the grid storage elements on the platform Linux-x86. The
real time outputs of global model — GFS (Global Forecast System), as lateral boundary
and initial conditions for regional domain and recalculating its results adjusted for local
physical-geographical parameters and some meso and micro atmosphere, biological and
chemical processes was used. In searching of optimal execution time for time saving differ-
ent model directory structures and storage schema was used. Simulations were performed
using a set of 2 domains with horizontal grid-point resolutions of 18 and 6 km. The
coarser domain is a grid of 94 x 102 points which covers the South Caucasus region, while
the nested inner domain has a grid size of 70 x 70 points mainly territory of Georgia.
Both use the default 31 vertical levels.

Due to the importance of precipitation forecast in South Caucasus area, the main
attention was paid to assess the model sensitivity to several configurations of convective
and microphysical parameterizations. The options defined as tested schemes include cu-
mulus and microphysics parameterizations, which have been combined in 3 combinations
of different physical schemes for the coarser domain and 2 configurations for the inner
one.
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Two case studies which are generally characterize model simulation behavior for west-
ern and eastern type synoptic processes are presented.

About New Properties of the Well-Known Integrals
VAGNER SH. JIKIA
[. Javakhishvili Thilisi State University, Thilisi, Georgia

email: v_jikia@Qyahoo.com

We have studied the properties of the following functional:

1

J[£.(m ! - t)} () = /dt 107" f(In L - t). (1)

0

The parameter z is a complex number and v = 1, 2.
If z = e+ i1, one can show that:

1—t

JHEOI () =L[f1(O](r), &= 1HT>

where L [f; (§)] (7) denotes a Laplace transform and f; (§) = 6 (&) f (§) . The function f (&)
satisfies the condition f (§) : R € C (see [1]), and 6 (§) is the Heaviside Unit function.
For z = 47, one obtains:

1t—t (2)

In the previous expression F'[f; (€)] (7) denotes the Fourier transform and fs (§) = f ().
In addition, when z = i7, one gets the following relation:

SO (1) = F[f)](r), &=

T (ol nw)] () = M [fo(~u)) (r), w= 3)

We have denoted the Mellin transform as follows: M [fo(—1Inwu)] (1), where fo(—Inu) =
f(=Inu), v 'f(—Inu): ReC, and f () is bounded for arbitrary real £ (see [2, 3]).
Let note, that from the equalities (2) and (3) one obtains the relation:

FIfO] () = M[f(=Inu)] (),

Thus, the Laplace, Fourier and Mellin transforms one can derive from the expres-
sion (1).

Acknowledgement. This work was supported by Georgian Shota Rustaveli National
Science Foundation (Grant # FR/ 417/6-100/14).
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The New Representations of the Fourier Transform
VAGNER SH. JIKIA
Iv. Javakhishvili Thilisi State University, Thilisi, Georgia

email: v_jikia@Qyahoo.com

In our previous studies, we have shown that (see, e, g., [1] and [2, p. 139])

1

FL@)|(r) = / A1 (1 — )1 = 2(r),

0

where F[1(z)](7) denotes the Fourier transform of the function f(t) = 1.

Some of the similar results that we got for the generalized functions will be suggested
below.

For instance, one can show that the relations hold (see, e, g., [2, p. 141]):

o

Fl0(x)|(1) = /dt TN = D)7 = 2w, (1), (1)

1
oo

Flo(—x)](r) = /dt Tt - 1) =206 (7), (2)
1
where F[0(z)](T) and F[0(—=z)](T) are the Fourier transforms of the Heaviside functions

0(x) and 0(—z) accordingly. The singular generalized Heisenberg functions 27 (7) and
270_ (1) are defined by the Sokhotsky formulas as follows (see, e, g., [2, p. 161]):

;, 219 (1) = — !
7+ 10

21, (1) =

T —140"
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By virtue of the inverse transform of the formula (1), one can calculate the singular
integral of the following kind:

+oo 1
dr , +m, 5 <1
2 / t’LT(l _ t)—ZT — 2 1
—00 T -, 0 S 5

The new representations of the Fourier transform that we found are very useful to
calculate singular integrals of the new type.

Acknowledgement. This work was supported by Georgian Shota Rustaveli National
Science Foundation (Grant # FR/ 417/6-100/14).
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Chipot’s Method of Solution
of Elliptic Kirchhoff Type Equation
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Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: n.kachakhidze@gtu.ge; zviad_tsiklauri@yahoo.com

Kirchhoff type equation is called the following boundary value problem
—90(/ |Vw|? da:) Aw = f(z), z€Q, (1)
Q

w(z) =0, = e o, (2)

where 2 is an open subset of R”, n > 1, and 012 is its boundary. The function f(z) is
twice continuously differentiable function on €2 and function ¢(z), 0 < z < oo, satisfies

the condition
w(z) > a>0. (3)
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In [3] the problem (1), (2) is studied when n = 1. For the solution is used Chipot’s
approach (see [1], [2]) and accuracy of the method is discussed. Here also are given
numerical examples. In [4] the problem (1), (2) is studied when n = 2. For the solution
is used Chipot’s approach and accuracy of the method is discussed.

In this paper, we also use Chipot’s approach to solve the problem (1), (2). In order to
estimate the error of the method we consider the numerical example for n = 3. For this
purpose we use Matlab.
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Time-cost Trade-off Method in Project Management
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In many countries around the globe various construction, research or other kinds of
projects are being conducted. The main factors in such pieces of work are time and cost,
which are necessary components for accomplishing them. The aim of the manager is
to complete project in due date, with minimal costs possible. It’s possible to represent
construction, research and some other kinds of projects with networks flows. Therefore,
network theory provides us with opportunity of modeling project and finding the efficient
solution - minimization of costs and time. Following article discusses the opportunity of
using network flows in project management. One of the ways to do so is using time-cost
trade-off method. This method leads us to reducing the time needed to complete different
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actions in project (and time for the whole project, consequently) by consuming minimum
amount of money. This ability is discussed in an example. On this example is built the
model, respective network flow and it’s solution.
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Boundary Value Two-dimensional Problems
of Stationary Oscillation of the Thermoelasticity
of Microstrech Materials with
Microtemperature
TINATIN KAPANADZE

Department of Mathematics, Georgian Technical University, Thilisi, Georgia

In the paper we consider the stationary oscillation case of the theory of linear ther-
moelasticity with microstrech materials with microtemperatures and microdilations. The
representation formula of a general solution of the homogeneous system of differential
equations in the paper is expressed by means of seven metaharmonic functions. These
formulas are very convenient and useful in many particular problems for domains with
concrete geometry. Here we demonstrate an application of these formulas to the Dirich-
let and Neumann type boundary value problem for a circle. We construct an explicit
solutions in the form of absolutely and uniformly convergent series.
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Certain Properties of Matrices in the Schemes of
Finite Differences with Variable Accuracy
L1ANA KARALASHVILI
University of Georgia, Thilisi, Georgia

e-mail: liana.qaralashvili@yahoo.com

Finite difference schemes with constant coefficients are constructed for the Dirichlet
problem with the Poisson equation, which order of approximation and convergence is de-
pend on the number of knots (lines). There are considered properties of matrices included
into these schemes. In the case of discretization of one variable with the corresponding
transformations they are reduced to the equivalent canonical form, in which each equation
contains just one unknown function. The solution of the received system is given in ex-
plicit form. In the case of discretization of two variables a linear system of mn equations
with so many variables (n is a number of inner knots according to = variable and m is a
number of inner knots according to y variable) is received. It is not difficult to solve such
system of equations.

The Radii of Parabolic Starlike of
Some Special Functions

SERCAN KAZIMOGLU, ERHAN DENIZ, HUMEYRA LATIFE LACIN

Department of Mathematics, Faculty of Science and Letters, Kafkas University
Campus, Kars-Turkey
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In this paper, we determine the radii of S-parabolic starlike of order « for six kinds
of normalized Lommel and Struve functions of the first kind. In the cases considered the
normalized Lommel and Struve functions are -parabolic starlike functions of order o on
the determined disks.
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On the Cotorsion Hull of Corner’s Group
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Akaki Tsereteli State University, Kutaisi, Georgia
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A. L. S. Corner considered an abelian separable primary group which endomorphisms
rings additive group is presented as a direct sum of an additive group of separable closed
ring and additive group of a ring small endomorphisms. It is shown that the cotorsion
hull of Corner’s group is not fully transitive and it is constructed the meet-semilattice the
lattice of dual ideals of which is isomorphic to the lattice of fully invariant subgroups of
a cotorsion hull Corner’s group.
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Discrete Models of Information Warfare
NuGzZAR KERESELIDZE

Faculty of Mathematics and Computer Science, Sokhumi State University
Thilisi, Georgia
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The discrete analogue of the continuous mathematical model of attraction of adepts of
Samarskiy-Mikhaylov is provided. The computer experiment of this mathematical model
is made. The also discrete mathematical model of information warfare with limitations
on technological capabilities [1].
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Hydrodynamic Model of Formation of Karst Voids
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The physical representation of the dynamic picture of the karst development pursues
various objectives, among which, in particular, is to assess the characteristic time scale
of their formation. Obviously, this problem is quite complicated because of the many-
sidedness of the process of karsting, proceeding with both: general characteristics and
local features. In particular, karst voids can have a variety of forms, some of which have
some regularity due to similarity with a certain geometric figure. For example, for karst, a
funnel-shaped form with a base on the earth’s surface is quite common. The effectiveness
of the leaching factor is directly dependent on the geological quality of the medium and
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the duration of the action of the water. It seems that to confirm the uniformity of the
mechanism, the action of which leads to the elution of the solid rock, one can turn to
the approximation of the hydrodynamic boundary layer arising when flowing over a solid
surface. The rate of washing out of solid rock from the karstic cavity depends on the flow
of water, which can vary depending on the flow regime. However, we can talk about some
average characteristic, if we assume, for example, that the water movement is laminar. it
should be noted that the value of the rate of karst leaching used for numerical evaluation
is very approximate. it nevertheless seems that with the help of the model we have used,
it is possible to obtain more accurate quantitative estimates.
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A Focal Line in the Improper Hyperplane
RAZHDEN KHABURDZANIA
Akaki Tsereteli State University, Kutaisi, Georgia

email: razhdenkhaburdzania@gmail.com

A two-dimensional surface is considered in the four-dimensional extended affine space.
A moving frame is attached to the surface mentioned above, according to a certain rule.
When we choose a conjugated net on the normal of Voss for the net under the certain
condition. So the line described by one of the points represents a focal line that may be
either an oval line or a real pair of straight lines.

On the Non-Smooth Solitonic Solutions of the
Non-linear Schrodinger Equation

NINO KHATIASHVILI

Iv. Javakhishvili Thilisi State University, Thilisi, Georgia

email: ninakhatia@gmail.com

The nonlinear Scrodinger equation describes wide range of physical phenomena [1-5].
In the Euclidian space R* we consider the cubic nonlinear Scrodinger equation (¢NLS)

Ar 4+ A7 — Agr = 0, (1)

where r is unknown function, Ay and Ay are some parameters, Ag > 0. r is the modulus
of the wave function ¥
. iAgt+iA
U

where t is a time, 2 = —1 and A; is a definite number.

By using previous results of the author [5] we have obtained the approximate non-
smooth solitonic solutions of the equation (1)

r = Rsin {exp[—alz| = Bly| =71z = DI} + ) Ryexpl-axlz| = Bily| — wlz| = Dil, (2)
k=1

where «, 5, v, ag, Bk, Vi, Rk, Dy, R, D, k= 1,2,...,m, are some parameters satisfying
the conditions

o+ B2+ =i+ Br+ i = Ao «, B, Y, ar, Br, W > 0,



150 Abstracts of Participants’ Talks Batumi—Tbilisi, September 3-8, 2018

MoR>=44A¢/3; R, Ag>0; Dy >3D; D >0,

m is an arbitrary natural number and the constant D is chosen for the desired accuracy
in such a way, that e=®” is negligible.

The function given by the formula (2) vanishes at infinity exponentially and is the
approximate solution of the equation (1) with the accuracy Agexp (—5D)/2.

The graph of (2) is constructed for the different parameters.
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Composing a Syllabus on
Finance Mathematics for Different Faculties
ABEN KHVOLES
Department of Economics, Bar Ilan University, Ramat Gan, Israel

email: abenkh@gmail.com

In the talk I shall give some possibilities of composing the syllabuses on finance math-
ematics for different faculties
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On Cofinitely e-Supplemented Modules

BERNA KOSAR, CELIL NEBIYEV

Department of Mathematics, Ondokuz Mayis University,
Kurupelit-Atakum/Samsun/Turkiye, Turkey

email: bernak@omu.edu.tr; cnebiyev@omu.edu.tr

In this work, some properties of cofinitely e-supplemented modules are investigated.
All rings are associative with identity and all modules are unital left modules in this work.

Proposition 1. Let M be a finitely generated R-module. Then M is e-supplemented if
and only if M is cofinitely e-supplemented.

Lemma. Let M be an R-module, U be a cofinite essential submodule of M and M; < M.
If My s cofinitely e-supplemented and U + My has a supplement in M, then U has a
supplement in M.

Corollary. Let U be a cofinite essential submodule of M and M; < M fori=1,2,...,n.
If M; is cofinitely e-supplemented fori=1,2,....n and U + My + My + ---+ M, has a
supplement in M, then U has a supplement in M.

Proposition 2. Let M be a cofinitely e-supplemented module. Then every M -generated
R-module is cofinitely e-supplemented.

Keywords: cofinite submodules, essential submodules, small submodules, supple-
mented modules.
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The Constructed by Chain Depend Observations

of Kernel Comparative Precision of the Density
by L; Metrics
ZURAB KVATADZE
Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: zurakvatadze@yahoo.com

Due the selection of chain depend elements is constructed the Rosenblatt—Parzen type
kernel density estimation. In the certain conditions are determined the precision of esti-
mation with L; metrics. Is considered the example for specific kernel function case.

References

1]

I. V. Bokuchava, Z. A. Kvatadze, T. L. Shervashidze, On limit theorems for random
vectors controlled by a Markov chain. Probability theory and mathematical statistics,
Vol. I (Vilnius, 1985), 231-250, VNU Sci. Press, Utrecht, 1987.

N. N. Chentsov, An estimate of the unknown distribution density from observations.
(Russian) Dokl. Akad. Nauk SSSR 147 (1962), 643-648.

L. Devroi, L. Diorfi, Nonparametric Density Estimation of the Ly Approach. (Rus-
sian) Moscow, 1988.

D. J. Kemini, J. L. Snell, Finite Markov Chains. (Russian) Translated from the En-
glish by S. A. Molchanov, N. B. Levina and Ja. A. Kogan. Edited by A. A. Jushke-
vich. Izdat. “Nauka”, Moscow, 1970.

G. M. Mania, Statistical Estimation of Probability Distributions. (Russian) Tbilisi
University Press, 1974.

R. M. Mnatsakanov, E. M. Khmaladze, L;-convergence of statistical kernel esti-
mates of densities of distributions. (Russian) Dokl. Akad. Nauk SSSR 258 (1981),
no. 5, 1052-1055.

E. A. Nadaraya, Nonparametric Estimation of Probability Density and Regression
Curve. (Russian) Thilis. Gos. Univ., Thilisi, 1983.



154 Abstracts of Participants’ Talks Batumi—Tbilisi, September 3-8, 2018

[8] E. Parzen, On estimation of a probability density function and mode. Ann. Math.
Statist. 33 (1962), 1065-1076.

[9] M. Rosenblatt, Remarks on some nonparametric estimates of a density function.
Ann. Math. Statist. 27 (1956), 832-837.

[10] G. S. Watson, M. R. Leadbetter, On the estimation of the probability density. I.
Ann. Math. Statist. 34 (1963), 480-491.

Charge Distribution and Currents in Nuclei
ALEXANDER KVINIKHIDZE

A. Razmadze Mathematical Institute of Iv. Javakhishvili Thilisi State University
Thilisi, Georgia

emalil: sasha-kvinikhidze@hotmail.com

RGE:s for currents describing interaction of a two nucleon system with external probes
are derived. The nonrelativistic pionless EFT is studied on the basis of these equations.
To this end a non-trivial fixed point solution for the interaction current is identified. The
linear equation for the perturbations near this fixed point current is derived and solved.

The Radii of Starlikeness of Some Integral Operators

HUMEYRA LATIFE LAGQIN, ERHAN DENIZ, SERCAN KAZIMOGLU

Department of Mathematics, Faculty of Science and Letters, Kafkas University
Campus, Kars-Turkey

email: latife.lacin3@gmail.com; edeniz36@gmail.com; sercan36@kafkas.edu.tr

The object of the present paper is to study of radius of starlikeness two certain integral
operators as follows

P = [T a

where v; € C, f; (1 <i <n) belong to the certain subclass of analytic functions.
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Exponential Snooding Techniques in
Exchange Rate Forecasting
G1vi LEMONJAVA
University of Georgia, Thilisi, Georgia
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This paper aims to investigate the behavior of daily exchange rate of the US Dol-
lar/Georgian Lari and US Dollar/ERO. We make use of daily data to evaluate the pa-
rameters of each model and produce volatility estimates. Exchange rates forecasting
challenging task in finance and for this task we will use statistical smoothing techniques
and the forecasting ability of these methods are subsequently assessed using the symmet-
ric loss functions which are the Mean Absolute Error(MAE) and Root Mean Square Error
(RMSE).
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Matrix Wiener—Hopf Problems Related
to Propagation of Cracks in Elastic Structures

PAvLos LivAsov, GENNADY MISHURIS

Department of Mathematics, Institute of Mathematics, Physics and Computer Science,
Aberystwyth University, Aberystwyth, UK

email: pall9@aber.ac.uk

In many problems of mechanics, especially fracture mechanics, the presence of mixed
boundary conditions allows to apply integral transforms which lead to Wiener-Hopf prob-
lem [1]. This applies to both static problems within a continuous model [2] and dynamic
problems, especially when it comes to steady-state regime. In addition, this technique is
also effective in the case of discrete problems [3,4], which concern both lattice structures
composed of masses and connecting springs [5] and structures made of masses and beams
[6]. Wiener-Hopf technique allows us to determine the basic properties of the solution and
to identify important physical applications relating to the nature of crack propagation or
phase transitions [7]. On the other hand, in the case when there is a significant process
zone in the vicinity of the crack tip, the application of this method is much more compli-
cated. Sometimes it can be done by reducing to a matrix Wiener-Hopf problem [8]. In
the present paper some of these problems are considered. Some numerical examples are
presented and discussed.
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On Some Controlled Multi-channel Queueing Models
HANNA LIVINSKA

Applied Statistics Department, Faculty of Computer Sciences and Cybernetics,
Taras Shevchenko National University of Kyiv, Ukraine

email: Hanna.livinska@univ.kiev.ua

Recent years, queueing theory has acquired new practical importance as a primary
tool for studying, designing and optimizing real-world systems with interacting compo-
nents for which queueing models (systems and networks) provide a simple but extremely
useful representation. The role of the networks is constantly increasing in epidemiology,
genetics, economics, in the study of cellular communication networks, computer viruses,
computer support. Queueing models are successfully used at all levels of organization of
such network structures.

The main model we consider is a queueing network consisting of r service nodes. Each
node is a queueing system and it consists of an infinite number of servers. Therefore, if
a customer arrives at such a system, then it begins processing immediately. Input flow
arriving at the network is controlled by a Markov process. We define a service process
in the network as an r-dimensional stochastic process Q(t) = (Q1(t),...,Q.(t)), t > 0,
where Q;(t), i = 1,2, ..., is the number of customers at the i-th node at instant ¢.

We study such a network in two cases. Firstly, we consider one-dimensional case, where
the network has the only service node. It is assumed that the instants of customers’ arrivals
to the system are the same as jump instants of a homogeneous continuous-time Markov
chain with a finite set of states. A customer arrived to the system immediately begins to
be served anywhere on a free server. The service time is distributed exponentially. In this
case generating function of the stationary distribution for the process Q(t) is obtained.
The form of the generating function is a matrix version of the Takacs formula.

Further, the network with » > 1 service nodes is studied. A common input flow
of customers arrives at servicing nodes. This flow is controlled by a Markov chain 7(t)
according to the following algorithm. As before, the instants of customers arrivals are the
same as jump instants t,,, n = 1,2, ..., of the chain n(¢). If the chain n(¢) jumps into state
1 at the instant t,,, the customer numbered n arrives for service into the ith node. Note,



158 Abstracts of Participants’ Talks Batumi—Tbilisi, September 3-8, 2018

that the number of states for controlling Markov chain 7(¢) coincides with the number of

network nodes. At the node the customer occupies a free server for the time distributed

exponentially with parameter p;. After service in the ith node the customer is transferred

to the jth node with probability p;;, 7 = 1,2,...,r, or leaves the network with probability
T

Pir+1 = 1 — > pi;. For a multivariate service process the condition of a stationary regime
=1

existence arid a correlation matrix are found.

Finally, the stochastic network with controlled input flow is considered in heavy traffic.

It is proved, that under certain heavy traffic conditions on the network parameters, the

service process converges in the uniform topology to a Gaussian process. Correlation

characteristics of the limit process are written via the network parameters.

Methodology of Teaching (Geometric Construction
Tasks in Secondary School
GIORGI LOMINASHVILI

Department of Mathematics, Akaki Tsereteli State University
Kutaisi, Georgia

email: Lominashvilil971@yahoo.com

It should be noted that geometric construction tasks are very narrow in secondary
school. The process of solving geometric construction tasks is accompanied by a logical
reasoning that is necessary for mathematical education. Therefore, it must take a proper
place in mathematics. The report presents the methodological treatment of these issues.

On the Absolute Continuity for Random Measures
under Nonlinear Transformations

G. LOMINASHVIL, A. TKESHELASHVILI

Department of Mathematics, Akaki Tsereteli State University
Kutaisi, Georgia

email: lominashvilil971@Qyahoo.com; aleko611@mail.ru

Random measures and their nonlinear transformations are considered. The conditions
of absolute continuity for this measures are obtained in case of nonlinear and random
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transformation of a space. There is given explicit formula for Radon—Nikodym derivative.
The notion of measurable functional is used and the logarithmic derivative technique of
measures is developed.

Analysis of the Consumer’s Choice under
Risk Condition Using Utility Function
DALl MAGRAKVELIDZE

Department of Computational Mathematics, Georgian Technical University
Thilisi, Georgia

email: dali.magraqvelidze@gmail.com

Utility function, In case of choice under risk conditions, can be represented as a func-
tion of not only consumption level, but of probabilities as well. Denote ¢1, ¢3, and ¢3 to be
consumption for different conditions, and 71, 79, and 73 to be probability of appearing of
these three different conditions. If those probabilities independence condition is satisfied
the utility function should obtain the following form:

Ulcy, ca, c3) = mu(cr) + mou(ez) + mau(cs).

This is the function that we call expected utility function. The substitutions marginal
norm of the first and the second goods has the following form:

AU(c1,c9,¢3)/Act  mAu(cr)/Ac
AU(Cl, Co, Cg)/ACQ N WzAU(Cg)/ACQ '

MRSH -

MRS depends only on the first and second goods amount that we have and is independent
of the third goods amount.

The Consumer’s optimal choice of insurance will be determined under condition, that
MRS of consumption of two expected values is equal to the ratio of the prices of corre-
sponding consumptions:

mAu(cy)/Acy Y

MRS = _(1 —m)Au(cr)/Ac T 1 v (1)

The expected value of insurance is exactly equal to the insurance price when insurance
company does not get profit or loss the. Thus, P = yK — 7K = 0. This means that

v =T.
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If we plug this value in Equation (1) and divide by 7 we will obtain condition that
should satisfy optimal amount of insurance:

Au(ey) _ Au(es) .

2
Acl ACQ ( )

Optimal amount of investment is defined with the condition that derivative with x of
expected utility should be equal to zero. This will be global maximum because the second
derivation of utility is automatically negative due to it’s curvature.
If equation EU'(x) = wu/(w + zry)ry + (1 — m)u/(w + xrp)1p is equal to zero we will
obtain:
EU'(z) = mu/(w + zry)ry + (1 — m)u'(w + ary)r, = 0.

This equation defines the optimal choice of x for a given consumer.
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Necessary and Sufficient Conditions for
Weighted Boundedness of Integral Transforms
Defined on Product Spaces in Generalized Grand
Lebesgue Spaces
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Our talk deals with one-weighted boundedness criteria for the integral transforms
generated by the strong maximal functions, multiple conjugate functions and Hilbert
transforms in grand Lebesgue spaces with respect to measurable functions. We character-
ize both the weak and strong type weighted inequalities. Both cases of weighted spaces
differing by position of the weight function in the norms are explored.
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The Expansion Formula for
Sturm—Liouville Equations with Spectral Parameter
Nonlinearly Contained in the Boundary Condition

KHANLAR R. MAMEDOV, HAMZA MENKEN, VOLKAN ALA

Mathematics Department, Science and Letter Faculty, Mersin University, Mersin, Turkey

email: hanlar@mersin.edu.tr; hmenken@mersin.edu.tr; volkanala@mersin.edu.tr

Differential equations with nonlinear dependence on the spectral parameter arise in
various problems of mathematics as well as in applications [1, 6]. Some aspects for bound-
ary value problems in various formulations have been considered in [3, 4].

In this work, operator theoretic formulation is given for the boundary value problem,
resolvent operator is constructed and expansion formula was obtained by using Titch-
marsh’s [5] method.

The singular Sturm—Liouville problem with spectral parameter in the boundary con-
dition arise from applied problems such as the study of heat equation by [1, 2]. Spectral
analysis involving linear dendence on the eigenvalue in the boundary condition was studied
in [2].
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On Linear Stochastic Differential Equations
in a Banach Space
BADRI MAMPORIA

Muskhelishvili Institute of Computational Mathematics of the
Georgian Technical University, Thilisi, Georgia

email: badrimamporia@yahoo.com

Linear stochastic differential equation in an arbitrary separable Banach space is con-
sidered.The corresponding linear stochastic differential equation for generalized random
processes is constructed and is produced its solution as a generalized process Ito.It is found
the conditions under which the received generalized random process is the Ito process in a
Banach space; in such a way it is received the solution of the considered linear stochastic
differential equation.
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On Kunneth’s Correlation and it’s Applications
LEONARD MDZINARISHVILI
Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: l.mdzinarishviliQgtu.ge

Let K be an abelian category and has enough injective objects, T': K — A be an any
left exact covariant additive functor to an abelian category A and T be right derived
functors, i > 1. If T® =0 for i > 1 and TWC,, = 0 for all n € Z, then there is an exact

sequence
0—TWH, (C,) = H,(TC,) = TH,(C,) =0,

where C, is a chain complex in the category K, H,(C,) is the homology of the chain
complex C,, T'C, is a chain complex in the category A, H,(TC,) is the homology of the
chain complex T'C,. This exact sequence is the well-known Kunneth’s correlation.

In the present work the conditions are found under which the infinite exact sequence

T e 5 TYH, ,—» TWH,  — H,(TC,) —
— TH,(C,) - TPH, 1 - TWH, g — - = T®H, ; — ...

holds.

The formula makes it possible to generalize Milnor’s formula for the cohomologies of an
arbitrary complex, to relate the Kolmogorov and Sklyrenko homology to the Alexandrov—
Cech homology, to generalize result of W. Massy for a locally compact Housdorff space
and the direct system {U} of an open subsets U of X such that U is a compact subset
of X.
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Teaching Mathematics with Generalization
IA MEBONIA
Department of Exact Sciences, Newton’s Free School, Thilisi, Georgia

email: iamebonia@gmail.com

Methodology of teaching, in particular, the teaching of mathematics is a teacher’s
purposeful action to develop fitting competence in pupils and is only effective when it
meets students’ abilities and experiences, triggering their interest. Educational literature
divides teaching methodologies in two groups: methodologies that promote learning of a
specific material and methodologies that develop general/transferable skills. However, the
division is nominal, since most of the methodologies help pupils develop material specific
as well as general competencies. In order to use the teaching methods effectively, the
student must have the appropriate learning strategies. Among the learning strategies one
of the central partsis held by cognitive strategies that enable the learner to gain knowledge,
process, analyze, critically evaluate, store and use it on demand in different situations.
Cognitive strategies are studied by generalization, which is particularly effective during
mathematics. The author discusses the positive sides of the generalization strategy with
the generalization of trigonometric functions. In particular, the functions introduced using
the axiomatic method are reminiscent of trigonometric sin and cos functions, but differ
from them, for example, by determining the range and period values.By determining the
features of the new functions and comparing them with those of the known functions,
students gain abilities of researching, analyzing the retrieved information and critical
evaluation.
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Investigation of Loss Stability of the Ring under
the Action of Nonuniform External Pressure

MAGOMED MEKHTIYEV, LAURA FATULLAYEVA, NINA FOMINA

Baku State University, Baku, Azerbaijan

email: mehtiev_magomed@mail.ru; laura_fat@rambler.ru; fominal109@mail.ru

The purpose of this paper is a numerical analysis of the critical time for the loss of
stability of a multilayer linear viscoelastic ring composed of various materials and under
the action of an unevenly distributed external pressure of a given intensity. The search for
reserves and the saving of material with a simultaneous increase in the bearing capacity
of the structure is an actual and important problem of mechanics. When solving such a
class of problems, it is necessary to take into account the geometric nonlinearity.

The material object of the study is a ring of radius R and thickness 2h , and the study
is carried out in the polar coordinate system (z,¢) . We denote by v and w, respectively,
the displacement in the tangential direction and the deflection. The basis of the theory
of compressed multilayer rings proposed here is as follows:

a) in the process of deformation, the nonlinearity is taken into account both for the
deflection and for the tangential displacement (total nonlinearity);

b) neglecting the tangential displacement, we restrict ourselves to nonlinearity only of
the deflection (partial nonlinearity);

¢) when v & 0 is satisfied the inequality w/R < 1(simple non-linearity).

The considered ring is compressed by an unevenly distributed radial load, which varies
in magnitude and direction according to law

qg=qo(l+ szin2 ©),

here the parameter p > 0 u characterizes the non-hydrostatic nature of the compressible
pressure, and qq is the control parameter of the loading.

Obtaining effective analytical solutions to the task is very difficult, and sometimes
impossible. This is due to the need to integrate nonlinear boundary value problems with
discontinuous coefficients. Therefore, to overcome the mathematical difficulties that arise,
the solution of the problem is carried out by means of a variational method of mixed type
in combination with the Rayleigh-Ritz method. The influence of the number of layers in
the packet and the parameter of the unevenness of the external pressure on the critical
buckling time are numerically revealed. Comparison of numerical results is performed in
cases of total nonlinearity, partial nonlinearity and simple nonlinearity.

References

[1] M. F. Mekhtiyev, Vibrations of Hollow FElastic Bodies. Monoqrafiya. Springer, 2018,
212 pp.



05017790 — mdoobio, 3-8 lgd@gdogmo, 2018 dmbofomgms Imbligbgogools mgdaligoo 167

2] R. Yu. Amenzade, G. Yu. Mekhtiyeva, L. F. Fatullaeva, Variational method of
nonlinear hereditary mechanics of solids. Bulletin of the Chuvash State Pedagogical
University. A series “Mechanics of the limiting state”, 2010, No. 2 (8), 42-53.

3] R. Yu. Amenzadeh, G. Yu. Mehtiyeva, L. F. Fatullayeva, Limiting state of a
multilayered nonlinearly elastic long cylindrical shell under the action of nonuniform
external pressure. Mechanics of Composite Materials 46 (2010), no. 6, 649-658.

Lim Colim Versus Colim Lim
SERGEY A. MELIKHOV
Steklov Mathematical Institute, Moscow, Russia

email: melikhov@Qmi.ras.ru

The use of lim! (and in extreme cases also lim?, lim?, . ..) provides a reasonable
description of any limiting behaviour in homology and cohomology for infinite polyhedra
and, on the other hand, for compact spaces. In contrast, homology and cohomology
(even ordinary) of non-triangulable non-compact spaces have been poorly understood
until recently, due to the lack of any clues on how direct limits (colim) interact with
inverse limits (lim). I will talk about a few first steps in this direction (some of them).

Story A. Here is a model situation in which lim and colim do not commute, but their
“commutator” can be computed in terms of lim' and a new functor lim}g. There are
two well-known approximations of the Steenrod—Sitnikov homology of a Polish space
X: “Cech homology” ¢H,(x) and “Cech homology with compact supports” pH,,(X).
The homomorphism pH,(X) — ¢H,(X), which is a special case of the natural map
colim lim — lim colim, need not be either injective (P. S. Alexandrov, 1947) or sur-
jective (E. F. Mishchenko, 1953), but it is still unknown whether it is surjective for
locally compact X. It turns out that for locally compact X, the dual map in cohomology
pH"(X) — qH"(X) is surjective and we are able to compute its kernel. The original map
pH,(X) — qH,(X) is surjective and its kernel is computed if X is a “compactohedron”,
i.e. contains a compactum whose complement is a polyhedron.

Story B. What happens if we permute colim with lim (or rather homotopy limit) in the
definitions of Steenrod-Sitnikov homology and Cech cohomology? This very natural ques-
tion has a well-known but very unnatural answer: the resulting “strong homology” and
“strong cohomology” cannot be computed in ZFC already for simplest non-compact non-
triangulable spaces (Mardesi¢-Prasolov, 1988). The reason being, already lim' cannot
be computed in ZFC for certain very simple inverse systems with uncountable indexing
sets. We explain how to “correct” the functors lim” for uncountable indexing sets so
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that the whole issue disappears. Namely, for a Polish space X the “corrected” strong
(co)homology, as expressed in terms of lim” of gth (co)homology of open neighborhoods
of X in the Hilbert cube (resp. of compact subsets of X') via a Bousfield-Kan type spectral
sequence, turns out to be nothing but the usual Steenrod-Sitnikov homology (resp. Cech
cohomology). The correction of lim?” takes into account the topology of the indexing sets.

Story C. “Fine shape” of Polish spaces is a common correction of strong shape and
compactly generated strong shape (which differ from each other essentially by permuting
a lim with a colim), obtained by taking into account the topology on the indexing
sets. For compacta, fine shape coincides with strong shape, and in general, its definition
can be said to reconcile Borsuk’s and Fox’s approaches to shape. Both Steenrod-Sitnikov
homology and Cech cohomology are proved to be invariant under fine shape, which cannot
be said of any of the previously known shape theories of non-compact spaces. In fact,
for a (co)homology theory, fine shape invariance is a strong form of homotopy invariance
which implies the map excision axiom.

A Categorical Approach to Tilting Theory
BACHUKI MESABLISHVILI

Department of Mathematics, I. Javakhishvii Thbilisi State University
Thilisi, Georgia

email: bachuki.mesablishvili@tsu.ge

Tilting modules play a prominent role in representation theory of finite dimensional
algebras. Tilting theory is mainly described as torsion theory in module categories. We
show that it can also be accessed through the (co)monad associated to the tilting module
and that some constructions related with “tilting” can be described at this level of gen-
erality. As an application we define and characterize tilting objects in the non additive
case
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The Gibbs Phenomenon
for Some Orthonormal Systems

VAZGEN MIKAYELYAN

Department of Mathematics and Mechanics, Yerevan State University
Yerevan, Armenia

email: mik.vazgen@gmail.com

The Gibbs Phenomenon discovered by Henry Wilbraham in 1848 and rediscovered
by Josiah Willard Gibbs in 1899, is the peculiar manner in which the Fourier series of
some function behaves at a jump discontinuity. The n-th partial sum of the Fourier series
has large oscillations near the jump, which might increase the maximum of the partial
sum above that of the function itself. The overshoot does not die out as n increases, but
approaches a finite limit. We studied the Gibbs phenomenon for general Franklin systems
and for Stromberg systems.

The general Franklin system corresponding to a given dense sequence of points T =
(tn,m > 0) in [0,1] is a sequence of orthonormal piecewise linear functions with knots
from T', that is, the n-th function from the system has knots %, ..., t,.

Stromberg system is m-order spline system on R, particularly, it is a modified classical
Franklin system in the case m = 0. It was defined by Jan-Olov Stromberg in 1983 (see
[1]). Stromberg system is obtained using Stromberg’s wavelet.

The Gibbs Phenomenon has been studied for Fourier series with respect to several
famous systems (see [2]-[7]). We proved that the Gibbs phenomenon for both of general
Franklin systems and Stromberg systems occurs almost everywhere. In particular, for
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Stromberg systems in the case of m = 0 the Gibbs phenomenon occurs everywhere in R
and the Gibbs function is constant almost everywhere.
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The Existence of Unchangeable Sets for Non-linear

Dynamic Systems (Neural Network Approach)
MIRANDA MNATSAKANIANI
Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia

email: Miranda.mnatsakaniani@atsu.edu.ge

While modeling public systems, it is comfortable to use a neural network approach.
That is why the issues appearing in such systems are important in neural network theory

too.

Occasional processes in public systems are often described by differential equations,
and their evolution takes place in discrete time. The components in them are connected
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to each other in non-linear form and there may be a whole group of random sets that take
the values from the set given in advance. This creates mindful behavior of the system.

The paper shows the existence of unchangeable set for such systems, in which the
discrete dynamic system trajectory after some point of time, regardless of whether the
initial value of the movement belonged to it or not, enters and stays in it.

Reference
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calculations. Collection of scientific works. V. M. Glushkov Institute of Cybernetics
of National Academy of Sciences of Ukraine, Kyiv, 2001, vol. 2, 273-282.

Necessary Conditions for Optimal Control
of the Stationary Process in Conditions
of Heat Exchange

TEMURI MODEBADZE, NINO GOGOLADZE

Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia

email: Temuri.modebadze@atsu.edu.ge; nino.gogoladzelatsu.edu.ge

Let u € U limited and poor closed sen in U. Let rewrite the heat exchange boundary
problem in operator form

A(w,g)=f, fe X', where A(u,7) = A@) - F(u,7+v(u).

Objective functions, which minimizes with help of the operator u optimal control has the
form

J(u) = / B(x.y) +8(z,y) — O (z,y) > dr dy.

Objective functions which minimizes with help of the operator v optimal control has
the form

L(u,§(w)) = / B(x.y) +8(z,y) — O (z,y)* de dy.

We assume that the problem is regular (otherwise it will be regulated) and the optimum
conditions of vibration are ascertained. To do so, the operator L must meet certain
conditions of smoothness, namely:
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1) Reflection A : U x X — X*, V in some areas has partial derivatives.

2) Functional (function) A : U x X — R, V in some areas has partial derivatives
with Gateaux.

1) conditions is not fulfilled A(u,7) = A(Yy) — F(u,y) + v(u) because of operator F.
So we build F,, operator build a family that meets the condition

lim F,(u,y) = F(u,y) Vg€ X, uecU.

n—o0
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The Optimal Conditions for Optimal Control
in the Conditions of Heat Exchange
for Dynamic Process

TEMURI MODEBADZE, TEA KORDZADZE

Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia

email: Temuri.modebadze@atsu.edu.ge; tea.kordzadze@atsu.edu.ge

Consider the problem
L(u,y(u)) = J(u) — inf, (1)

uel
where
J(u) = / |O(t, x,y) + @(t,x, y) — O0*(z,y)|* dz dy
Q
for heat exchange boundary problem whose operator form is

yl +Z(u7y) = fu f € X*a y(O,x,y) = y()(l’,y), yO(*T?y) € L2<Q)7
where A(u,y) = A(Y) — F(u,7) + v(u).

Theorem 1. A : U x X — X* operator, which corresponds to the nonlinear boundary
problem, where U is the limited poor closed subsystem on U = Ly(T'y x S) and represents
nonlinear, limited, coercive operator with equally semi-limited variation and satisfy to the
property (M).
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Theorem 2. Problem (1) with the restrictiony € K(u,y), where K is convex and closed

set on X = [Ls(S5; I/CI)/%(Q) N L,(S; L,(2)))], p > 3, has a solution if and only if when it is
reqular.
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Techniques of Debugging and Adjusting the LAN
ZURAB MODEBADZE

Iv. Javakhishvili Thilisi State University, Thilisi, Georgia

email: zurab@tsu.ge

The brief description of programming capability for debugging the LAN software is
given. Operating in the menu mode, the user can set up a connection with the nodes
hooked up to the computer, load the programs prepared for the further debugging, look
through, copy and modify the files with the net software. The program could be easily
transferred to any computer of CP/M operation system. Operating in the menu mode,
the user can specify a node architecture, the number of ports to be serviced, and give
parameters for the initial adjusting of the ports for specific equipment. Using screen menu

mode of operation, the user can copy, rename, restore, find and change phrases, to print
files.
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Parabolic Fractional Integral Operators with
Rough Kernels in Parabolic Local Generalized
Morrey Spaces
SHEMSIYYE A. MURADOVA

Baku State University, Baku, Azerbaijan
ANAS Institute of Mathematics and Mechanics, Baku, Azerbaijan

email: mshams01@yahoo.com

Let P be a real n x n matrix, whose all the eighenvalues have positive real part,
Ay =t t >0,y = trP is the homogeneous dimension on R" and () is an A,-homogeneous
of degree zero function, integrable to a power s > 1 on the unit sphere generated by
the corresponding parabolic metric. We study the parabolic fractional integral operator
ISI;’ os 0 < a < 7, with rough kernels in the parabolic local generalized Morrey space

LM (R"). We find conditions on the pair (¢1,¢) for the boundedness 1§, from the

P, P
space LM;T;I}’P(R”) to another one LM10{7202}7P(R”), l<p<qg<oo, % - é = ¢, and from
the space LM;ZUE:P(R") to the weak space WLM;,ZUQ]:P(R”), 1<g<oo,1-— % =2,
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Effect of Electrokinetic Processes on the Propagation
of Non-Linear Waves in Gas Saturated Liquid
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It is known that there are many applications of a liquid with gas bubbles in nature,
industry and medicine. Non-linear wave processes in a gas-liquid mixture were studied
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for the first time in works [1-3]. The Burgers, the Korteweg-de Vries and the Burgers
-Korteweg-de-Vries equations were obtained in [1-5] for the description of long weakly non-
linear waves. Non-linear waves in a liquid with gas bubbles in the three-dimensional case
were considered in [6]. Linear waves in a gas-liquid mixture under the van Wijngaarden’s
theory were studied in [7, 8]. In [9] propagation of linear waves in a liquid containing
gas bubbles at finite volume fraction was considered. We investigate non-linear waves
in a gas saturated liquid taking into consideration influence of internal electrokinetic
process. To the best of our knowledge the influence of potential difference parameter on
non-linear waves propagation simultaneously was not considered previously. The aim of
our work is to study non-linear waves in a liquid with gas bubbles taking into account
electric potential differences for non-linear waves. The nonlinear waves described by the
KdV-Burgers nonlinear equation as follows:

ou ou 0*U PU

- - - = 1
8t+U82 n822+6823 0, (1)
where A )
n— (7 +50ER)) Ry 5o RyC.
6oy ’ Gayay

We have investigated numerically the nonlinear wave process described by equation (1) as
well. We defined that the more potential difference increase, the less radius of bubbles de-
crease [10]. Accordingly this result, we have demonstrated that when potential difference
increases, the amplitude of waves attenuate gradually.
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Acoustic Scattering by Inhomogeneous Anisotropic
Obstacle with Lipschitz Boundary
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We consider the time-harmonic acoustic wave scattering by a bounded anisotropic in-
homogeneity embedded in an unbounded anisotropic homogeneous medium assuming that
the boundary of the obstacle and the interface are Lipschitz surfaces. The material param-
eters may have discontinuities across the interface between the inhomogeneous interior
and homogeneous exterior regions. The corresponding mathematical model is formulated
as a boundary-transmission problem for a second order elliptic partial differential equa-
tion of Helmholtz type with peace wise Lipschitz-continuous variable coefficients. The
problem is studied by the so-called nonlocal approach which reduces the problem to a
variational equation containing sesquilinear forms over a bounded region occupied by the
inhomogeneous obstacle and over the interfacial surfaces. This is done with the help
of the theory of layer potentials on Lipschitz surfaces. The coercivity properties of the
corresponding sesquilinear forms are analyzed and unique solvability of the variational
equation is established, which in turn implies unique solvability of the acoustic scattering
problem in appropriate Sobolev—Slobodetskii and Bessel potential spaces.
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G E-Supplemented Modules
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Let M be an R-module. If every essential submodule of M has a g-supplement in
M, then M is called a G E-supplemented module. In this work, some properties of these
modules are investigated.

Lemma 1. Let M be an R-module, U be an essential submodule of M and My, < M. If
My is GE-supplemented and U + My has a g-supplement in M, then U has a g-supplement
m M.

Lemma 2. Let M = M, + My. If My and My are GE-supplemented, then M is also
G E-supplemented.

Corollary 1. The finite sum of GE-supplemented modules is G E-supplemented.
Lemma 3. Every factor module a GE-supplemented module is GE-supplemented.

Corollary 2. Fvery homomorphic image of a GE-supplemented module is G E-supple-
mented.

Key words: essential submodules, small submodules, supplemented modules, G-supple-
mented modules.

2010 Mathematics Subject Classification: 16D10, 16D80.
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Cofinitely & — G-Supplemented Modules
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Let M be an R-module. If every cofinite submodule of M has a g-supplement that is
a direct summand of M, then M is called a cofinitely & — G-supplemented module. In
this work, some properties of these modules are investigated.

Proposition 1. Any direct sum of cofinitely & — G-supplemented modules is cofinitely
@ — G-supplemented.

Proposition 2. Let M be a cofinitely & — G-supplemented module. If every g-supplement
of any cofinite submodule in M is a direct summand of M, then every direct summand of
M is cofinitely & — G-supplemented.

Lemma 1. Let M be a distributive and cofinitely & — G-supplemented R-module. Then
every factor module of M is cofinitely & — G-supplemented.

Corollary. Let M be a distributive and cofinitely & — G-supplemented R-module. Then
every homomorphic image of M is cofinitely & — G-supplemented.

Key words: essential submodules, small submodules, cofinite submodules, G-supplemented
modules.
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On a Problem of Minimization
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We plan to discuss a solution of a general problem of minimization, which implies in
particular that the following inequality is true: let n > 2 be a natural number and z; > 1,
k =1,...,n be real numbers; then

H:vkzz:xk—(n—l).
k=1 k=1
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Mathematical Modeling of Dynamics
of the Disk-Shaped Flying Device

TamMAz OBGADZE, OTAR KEMULARIA

Department of Control Systems, Georgian Technical University, Thilisi, Georgia
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The disk-shaped flying devices were developed in many countries and they bring in
mind the UFO forms. Chance Vought designed the first such device in the USA in the
1911. In 1939, in Nazi Germany Henrich Focke got a patent for the plane of a disk-shaped
form with turbine powered vertical take-off capability. Development of such machines are
still under work, although the information on such activities is classified. In his work,
which is based on the theory of hypercomplex numbers (quaternions), the mathematical
model of kinematics and dynamics of the disk-shaped flying device are developed based
on Dr. G. Kvaratskhelia projects. This device flies and maneuvers. Dr. G. Kvaratskhelia
also developed a new design of a disk-shaped military shell, flight mechanics of which is
again, described by quaternions.
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Mathematical Modeling of Mud Flow

TAaMAZ OBGADZE, NAIDA KULOSHVILI
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For mud flows it is characteristic, macroscopic composite structure and obviously
expressed not stationarity. The mud flow on the one hand consists of the stone and
detrital weight and soil, on the other hand of water. Its education is, as a rule, caused by
erosive processes in slopes of the bed of the mountain rivers that is in return caused by
destruction of a green cover. Well-known destroying results of Mud Fow’s. Practically,
for all mountainous areas emergence of mud flow is characteristic though, on the basis of
ant torrential actions perhaps considerably to reduce a loss for engineering constructions
and agricultural grounds. In this regard, mathematical modeling of a mud flow and
identification of the defining parameters is obviously important; definition of the expected
loads of engineering constructions and optimally ant torrential actions to what this work
is devoted. In work, the mud stream is represented as mix of two liquids, on the one
hand it is a mud-stone soil component which we represent as the baroviscosy circle of
Geniyev-Gogoladze and on the other hand is an incompressible liquid of Naiver-Stokes.
Two-component mix is averaged by T. G. Voynich-Syanozhentsky’s method and becomes
isolated the equation of nonlinear diffusion for a water component and the law of a fractal
filtration of water through soil under D. Dzhanelidze’s law.
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Solution of Cauchy Problem of Non-Linear
Mathematical Model of Rheymatoid Arthritis
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Our model of rheumatoid arthritis is a system of non-linear ordinary differential equa-
tions [1] and describes immunopathogenic dynamics in patients with rheumatoid arthritis.
We improved this model by providing the treatment components that allows evaluating
the effect of the drug and choosing a treatment scheme. It is considered the solution of
Cauchy problem determined by the system.
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On One Problem of Plane Theory of Elasticity
with Partially Unknown Boundary for Plate
Weakened with a Hole
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The problem of plane theory of elasticity for plate with partially unknown boundaries
weakened with hole is investigated. The uniformly distributed normal strees is applied to
the hole boundary.The tangential stresses and the normal displacements are zero along
the entire boundary of the body. The shape of the contour of the required hole and
the stressed state of the given body are determined, provided that the tangential normal
stress arising at contour of required hole would take the constant value. Equistable hole
is found by means of complex analysis. The considered problem with partially unknown
boundaries is reduced to the known boundary value problems of the theory of analytic
functions by means of the developed method. The solutions are presented in quadratures.
Equistable contour is constructed.

The Stability Problem of Differential Equations
in the Sense of Ulam
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In this study we consider the stability problem of a general class of differential equa-
tions in the sense of Hyers—Ulam and Hyers—Ulam—Rassias with the aid of a fixed point
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technique. We extend and improve the literature by dropping some assumptions of some
well known and commonly cited results in this topic. Some illustrative examples are also
given to visualize the improvement.

A Study of the Fundamentals of Neutrosophic
Soft Sets Theory
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Some operations on neutrosophic soft sets defined in the studies [1, 2]. In the present
paper, we re-defined this operations differently from other studies. We have constructed
the neutrosophic soft topological spaces differently from the study [1] in the direction of
these re-defined operations. Finally, some basic notions and theorems on neutrosophic
soft topological spaces are investigated and interesting examples are given.

Keywords: Neutrosophic soft set, neutrosophic soft interior, neutrosophic soft clo-
sure.
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Construction and Numerical Realization of
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In the first part of the work the problems for both dynamic beams are studied. The
complex nonlinear problem of Timoshenko type for dynamic beam, which was solved
using by us algorithm [1]. The algorithm we constructed gives an approximation for both
spatial and temporal variables. An algorithm for the resulting system of discrete equations
is constructed, considering the nonlinear, namely, cubic structure of the model. In order
to simplify the iterative process in this part of the algorithm, we used Cardano’s formulas,
which allowed us to optimize the algorithm in certain sense, and positively affected the
number of iterations.

In the second part of the thesis the problem of approximate solution of the nonlinear
integro-differential equation for a static beam of Kirchhoff type is studied [2]. We used
an approach, which reduces the problem to a nonlinear integral equation, using Green’s
functions, and for its solution we use the Picard’s iterative method. The condition of
convergence of considered method is established and the accuracy is estimated. The
theoretical results related to the convergence of approximate solutions are confirmed by
the numerical experiments.

The author express hearing thanks to Prof. J. Peradze for his active help in problem
statement and solving.
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The Splitting of a System of Timoshenko
Equations for a Plate
JEMAL PERADZE
I. Javakhishvili Thilisi State University, Thilisi, Georgia

email: j_peradze@yahoo.com

We consider a boundary value problem for the following system of Timoshenko static
equations [1]
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dx? * 2 8%2. 2 0x10x, a_:zizf)xf 2 Oz 0x107,
2

1—p8_w82w+1—u
2 Ow; 0x3 Eh
21— p O O\ | x O fOw[Ou | Ou; | 1/0w\?
K 2 (Aw—i_axl—i_axg)—i_zﬁxi ox; 5’xi+'u5’xj+2<3xi)

i=1

pi:07 iaj:1727 j;él,

1—p 0w Ou;  Ou;  Ow 0w> 1— p? , o
=0 =1,2
2 Oz <8xj+8$i+8w1 xo g 1T TS J 7
Py 1—pd*  1+p 0%y 1—p /0w
! ! — 6]€2 ( z) - O, ., ) = ]-a 27 ' .’
8x2+ 2 (‘h? 2 021079 h? 8xi+¢ b i
a; <z <b, 1=12 0<pu<l, E hk>DO0.

)

By analogy with [2], this system yields a nonlinear integro-differential equation of
Kirchhoff type for the function w(xy,z3), while for each pair of functions w;(zq,x2),
ug (1, x2) and ¢y (xq,x2), Ya(x1,22) we write a system of linear differential equations.

The first of these systems is the Lame system of plane elasticity.
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Some New Results Concerning Strong Convergence
of Partial Sums and Fejer Means with Respect
to Vilenkin Systems
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This lecture is devoted to review some new strong convergence theorems for partial
sums and Fejer means with respect to the Vilenkin systems.
In particular, we show that there exists an absolute constant ¢, such that

i‘ép nlogn Z Hsk‘fHHl < C”fHHl for all f e Hy, (1)
and
?J;pmog ZH ouf iy, < elfl, forall f€ Hup. (2)

Sharpness of inequalities ( ) and (2) will be also obtained.
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The Density Nonparametric Estimates of a
Dependent Observations Some for Class
BEQNU PHARJIANI
Department of Mathematics, Georgian Technical University, Thilisi, Georgia

email: beqnufarjiani@yahoo.com

On the probabilistic space (€2, F, P) a two-component stationary (in the narrow sense)
sequence {&;, X;}i>1 is given, where {{;}i>1 (& : © — E) is a controlling sequence, and
the members of the sequence {X;}i>1, (X; : € — R) are observations on some ran-
dom variable. The cases of conditional independence and chainwise dependence of these
observations are considered.Using observations {X; };>1 kernel observations of Rosenblatt—
Parzen type of an unknown density of the variable X are constructed. The upper bounds
of the mathematical expectations are established for the integral of the standard deviation
of the obtained estimates from f(x).

References

1]

[. V. Bokuchava, Z. A. Kvatadze, T. L. Shervashidze, On limit theorems for random
vectors controlled by a Markov chain. Probability theory and mathematical statistics,
Vol. I (Vilnius, 1985), 231-250, VNU Sci. Press, Utrecht, 1987.

N. N. Chentsov, An estimate of the unknown distribution density from observations.
(Russian) Dokl. Akad. Nauk SSSR 147 (1962), 643-648.

L. Devroi, L. Diorfi, Nonparametric Density Estimation of the L1 Approach. (Rus-
sian) Moscow, 1988.

D. J. Kemini, J. L. Snell, Finite Markov Chains. (Russian) Translated from the En-
glish by S. A. Molchanov, N. B. Levina and Ja. A. Kogan. Edited by A. A. Jushke-
vich. Izdat. “Nauka”, Moscow, 1970.

G. M. Mania, Statistical Estimation of Probability Distributions. (Russian) Tbilisi
University Press, 1974.

R. M. Mnatsakanov, E. M. Khmaladze, L-convergence of statistical kernel esti-
mates of densities of distributions. (Russian) Dokl. Akad. Nauk SSSR 258 (1981),
no. 5, 1052-1055.



05017790 — mdoobio, 3-8 lgd@gdogmo, 2018 dmbofomgms Imbligbgogools mgdaligdo 189

[7] E. A. Nadaraya, Nonparametric Estimation of Probability Density and Regression
Curve. (Russian) Thilis. Gos. Univ., Tbilisi, 1983.

[8] E. Parzen, On estimation of a probability density function and mode. Ann. Math.
Statist. 33 (1962), 1065-1076.

[9] M. Rosenblatt, Remarks on some nonparametric estimates of a density function.
Ann. Math. Statist. 27 (1956), 832-837.

[10] G. S. Watson, M. R. Leadbetter, On the estimation of the probability density. I.
Ann. Math. Statist. 34 (1963), 480-491.

On the Statistical Estimation of the Probability
Distribution Density

G1vi Pipia, TRISTAN BUADZE, VAZHA GIORGADZE

Department of Mathematics of Georgian Technical University, Thilisi, Georgia
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An asymptotic behavior of the integral mean square deviation for projective estima-
tion of the probability distribution density with the use of the integrals according to a
Feinmann measure examined for the certain class of the functionals is considered in the
work.
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Improved Understanding of Aqueous Solubility
Modeling through Topological Data Analysis
MARIAM PIRASHVILI

Department of Mathematics, University of Southampton
Southampton, United Kingdom

email: mp2m15@soton.ac.uk

Topological data analysis is a family of recent mathematical techniques seeking to
understand the ‘shape’ of data, and has been used to understand the structure of the
descriptor space produced from a standard chemical informatics software from the point
of view of solubility. We have used the mapper algorithm, a TDA method that creates
low-dimensional representations of data, to create a network visualization of the solubility
space. While descriptors with clear chemical implications are prominent features in this
space, reflecting their importance to the chemical properties, an unexpected and inter-
esting correlation between chlorine content and rings and their implication for solubility
prediction is revealed.

A parallel representation of the chemical space was generated using persistent homol-
ogy applied to molecular graphs. Links between this chemical space and the descriptor
space were shown to be in agreement with chemical heuristics.

The use of persistent homology on molecular graphs, extended by the use of norms on
the associated persistence landscapes allow the conversion of discrete shape descriptors
to continuous ones, and a perspective of the application of these descriptors to QSPR
problems is presented.
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A Sequent-Type Calculus for
Three-Valued Circumscription

SoPO PKHAKADZE, HANS TOMPITS

Institute for Logic and Computation 192-03,
Technische Universitdt Wien, Vienna, Austria

email: pkhakadze.s@Qgmail.com; tompits@kr.tuwien.ac.at

Circumscription is an important formalism for nonmonotonic reasoning introduced by
John McCarthy [3, 4] based on the idea of minimal-model reasoning. Roughly speaking,
for checking whether a formula is a logical consequence of a given theory, T, instead of
considering all models of T', only models satisfying a certain minimality condition are taken
into account. In this work, we consider three-valued circumscription [5], a generalisation of
the basic circumscription approach based on three-valued logic, and introduce a sequent-
type calculus for it. Our calculus generalises a similar one for standard circumscription as
introduced by Bonatti and Olivetti [2], who relied their system on a sequent-type calculus
for valid formulas and a so-called complementary sequent-type calculus for invalid formulas.
In our approach, in order to accommodate the underlying three-valued logic, L, we use an
approach based on many-sided sequents [1]. Intuitively, a many-sided sequent is a triple of
formI'y | Iy | I's, where each I'; (i = 1,2, 3) is a finite set of formulas, corresponding to one
of the three truth values of L. Overall, our calculus, then, comprises a many-sided sequent
calculus for formulas valid in L, a complementary calculus for formulas invalid in L, and
specific nonmonotonic inference rules similar to the one for standard circumscription by
Bonatti and Olivetti [2].

Acknowledgements. The first author was partially supported by the Shota Rustaveli
National Science Foundation under grant GNSF/FR/508/4-120/14.
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Mathematical Modeling of the Operation
of the Consumer Gas Consumer Safety System

ARCHIL PRANGISHVILI, NUGZAR TASHVILI, ITURI KHUTASHVILI

Georgian Technical University, Thilisi, Georgia

email: nugzar.iashvili@rambler.ru

The report describes issues of building mathematical model of the security of gas
consumption.

There is presented the gas leak monitoring system in the high-rise buildings. The
results of calculations have shown that Device and monitoring system with its main tech-
nical parameters are in compliance with the existing foreign analogs.

Giorgi Nikoladze’s Merits in the Development
of Computer Technologies

ARCHIL PRANGISHVILI, LEVAN IMNAISHVILI, NUGZAR [ASHVILI

Georgian Technical University, Thilisi, Georgia

email: nugzar.iashvili@rambler.ru

George Nikoladze was a prominent Georgian scientist, primarily a mathematician, a
specialist in the field of geometry, an engineer-metallurgist, the author of many works
on mathematics, Doctor of Sorbonne University. He was one of the initiators of Geor-
gian mountaineering. He was among the founders of Georgian scientific and technical
terminology.

The paper deals with one of the interesting aspects of G. Nikoladze’s activity.

Brilliant knowledge of mathematics and eternal aspiration for technical novelties led
him to the idea of designing a computing machine based on electric devices. The model
was made. G. Nikoladze obtained a patent for his device, but failed to realize the idea
because of lack of finances



198 Abstracts of Participants’ Talks Batumi—Tbilisi, September 3-8, 2018

The Martingale Approach in the Problem of the
Stochastic Integral Representation of Functionals
OMAR PURTUKHIA

A. Razmadze Mathematical Institute of Iv. Javakhishvili Thilisi State University
Thilisi, Georgia

Department of Mathematics, Faculty of Exact and Natural Sciences,
Iv. Javakhishvili Thilisi State University, Thilisi, Georgia
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It is known that any functional of Brownian motion with finite second moment can
be expressed as the sum of a constant and an Ito stochastic integral. A corollary of this
result is that any martingale (on a closed interval) that is measurable with respect to the
increasing family of o-fields generated by a Brownian motion is equal to a constant plus
a stochastic integral. The general result only asserts the existence of the representation
and does not help to find it explicitly. Sufficiently well-behaved Frechet-differentiable
functionals have an explicit representation as a stochastic integral in which the integrand
has the form of conditional expectations of the differential.

The first proof of the martingale representation theorem was implicitly provided by
Ito (1951) himself. Many years later, Dellacherie (1974) gave a simple new proof of Ito’s
theorem using Hilbert space techniques. One of the pioneer work on explicit descriptions
of the integrand is certainly the one by Clark. In general, the finding of explicit expression
for integrand ¢(t,w) of stochastic integral is very difficult problem. According to Ocone
(1984) ¢(t,w) = E[DBF|3B] (so called Clark—Ocone formula), where DP is the so called
Malliavin stochastic derivative. A different method for finding the process ¢(t,w) was
proposed by Shiryaev, Yor and Graversen (2003, 2006), which was based on the Ito
(generalized) formula and the Levy theorem for the Levy martingale M; = E[F|SP]
connected with the considered functional F. Later on, using the Clark—Ocone formula,
Renaud and Remillard (2006) have established explicit martingale representations for
path-dependent Brownian functionals.

We study the problem of stochastic integral representation of stochastically nonsmooth
functional. In [2], we also considered the stochastically nonsmooth path-dependent Brow-
nian functional. It turned out that the requirement of smoothness of the functional can be
weakened (see [1]). In particular, we generalized the Clark-Ocone formula in case, when
functional is not stochastically smooth, but its conditional mathematical expectation is
stochastically differentiable and established the method for finding of the integrand.

Here, by conditional averaging of the stochastic functional, we pass to the deterministic
function of two variables, study the properties of its smoothness, and on the basis of the
martingale approach we derive the stochastic integral representation formula with an
explicit form of the integrand.
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Inverse Trigonometric Functions
LAMARA QURCHISHVILI, DAVIT TSAMALASHVILI
Iv. Javakhishvili Thilisi State University, Secondary School #21, Georgia
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Function and its inverse is one of the most important topics in the high school math
curriculum. Some of the important applications of the topic are following: to determine
the range of a rational function, we find the domain of its inverse; to learn exponential and
logarithmic functions; to investigate equivalency of irrational equations and inequalities,
we use the properties of the inverse of a power function.

Graphical representation of inverse functions is tightly connected with line symmetry.
Indeed, to build the graph of the inverse, one needs to reflect the graph of the given
function over the angle-bisector of the I and III quadrants (line y = x). Therefore,
understanding line symmetry is a crucial pre-requisite to learning inverse functions.

When it comes to inverse trigonometric functions, their role in the curriculum is limited
to writing down the solutions of trigonometric equations using specific values of inverses.
We believe, that function and its inverse should be taught simultaneously to ensure that
students have a deep understanding of the topic. This, of course, includes trigonometric
functions as well. It turns out, that “Geogebra” is an extremely effective tool to teach
and learn trigonometric functions and their inverses.
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On the Products of Algebraic K-Functors
of a Crossed Hopf Algebras
GIORGI RAKVIASHVILI
Department of Mathematics, Ilia State University, Thilisi, Georgia

email: giorgi.rakviashviliQiliauni.edu.ge

Let k£ be a commutative ring with identity, H be a Hopf algebra over k and let A
be a commutative H-module algebra. If o € Reg?(H,A) is a 2-cocycle of Sweedler’s
cohomology [1] of H with coefficients in A then a crossed product A#,H (see [1]) of the
Hopf algebra H and the commutative H-module algebra A is defined as an A-module
A ®;, H with multiplication

(a#og)(b#ah) = > algmb)o(ge @ ha)H#agis)he).
(9).(h)

We construct some product for algebraic K-functors of the crossed product of the com-
mutative ring and the cocommutative Hopf algebra and investigate its some properties.
This product generalises corresponding results for (crossed) group rings and for restricted
(crossed) enveloping algebras of (super) Lie p-algebras.
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Usage of TSR Logic Methods in Natural Event
Problems
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Regional climate formation above the territory of complex terrains is conditioned dom-
inance due to of joint action of large-scale synoptic and local atmospheric processes which
is basically stipulated by complex topographic structure of the terrain. The territory of



05017790 — mdoobio, 3-8 lgd@gdogmo, 2018 dmbosfomgms Imbligbgogools mgdaligoo 201

Georgia is a good example for that. Indeed, about 85% of the total land area of Georgia
is mountain ranges with compound topographic sections which play an important role for
spatial-temporal distribution of meteorological fields. As known, the global weather pre-
diction models can well characterize the large scale atmospheric systems, but not enough
the mesoscale processes which are associated with regional complex terrain and land cover.
With the purpose of modelling these smaller scale atmospheric phenomena and its char-
acterizing features, it is necessary to take into consideration the main features of the local
complex terrain, its heterogeneous land surfaces and at the same time influence of large
scale atmosphere processes on the local scale processes.

The Weather Research and Forecasting (WRF') model is a mesoscale numerical weather
prediction system, designed for forecasting needs. WRF consists of several solvers and
it is quite flexible to be extended for different needs. One of such example is the Polar
WREF. One of our goals is to combine WRF model with the solver developed by us, to
get better prediction of temperature, wind velocity, showers and hails for different set of
physical options in the regions characterized with the complex topography.

Rule-Based Techniques in Access Control
MIKHEIL RUKHAIA

I. Vekua Institute of Applied Mathematics, 1. Javakhishvili Thilisi State University
Thilisi, Georgia

email: mrukhaia@logic.at

Access control is a security technique that specifies which users can access particular
resources in a computing environment. Formal description of access control is extremely
important, since it should be defined, unambiguously, how rules regulate what action can
be performed by an entity on the resource, how to guarantee that each request gets an
authorization decision, how to ensure consistency, etc. It is also important that such a
formal description is at the same time declaratively clear and executable, to avoid an
additional layer between specification and implementation.

Over the years, numerous access control models have been developed to address various
aspects of computer security. In this talk, we describe traditional models: discretionary
access control (DAC), mandatory access control (MAC) and role-based access control
(RBAC). Despite successful practical applications of these traditional models, they have
certain disadvantages, which was the reason why new approaches emerged. We will focus
on one modern approach, attribute-based access control, which has been proposed in order
to overcome limitations of traditional models.

Acknowledgement. This work was supported by the Georgian Shota Rustaveli
National Science Foundation project FR17 439.
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Numerical Computation of Rayleigh-Benard
Problem for Dilatant Fluids
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In this study, we consider flow properties of Dilatant fluids motion generated by ther-
mal gradients in an enclosed cavity region. As far as Rayleigh-Benard convection is
concerned, share rate equals to the vorticity function. As a result, since the share rate
is zero on the boundary, vorticity function must be zero as well. Pseudo time derivative
is used to solve the continuity, momentum and energy equations with these conditions.
Therefore, the governing equations of fluid of vorticity-stream function and temperature
formulations are solved numerically using finite difference method. The stream function,
vorticity and temperature results are obtained for the steady, two-dimensional, incom-
pressible Diatant flow. These results are presented both in tables and figures. The stream
function, vorticity and energy equations are solved separately with the numerical solution
method used in this study. Each equation with pseudo time parameter on very fine grid
mesh is solved step by step with a pair of tridiagonal system. The advantage of this
process is that it gives the solution of the flow problems effectively and accurately.
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Initial-Boundary Value Problems Related to
Integrable Nonlinear Equations
ALEXANDER SAKHNOVICH
Faculty of Mathematics, University of Vienna, Vienna, Austria

email: oleksandr.sakhnovych@univie.ac.at

We consider several important initial-boundary value problems related to integrable
nonlinear equations. We start with the well-known compatibility condition (zero curvature
equation). Then we solve second harmonic generation equation using the evolution of the
Weyl function. Finally, since initial-boundary value problems for integrable nonlinear
equations are mostly overdetermined, we discuss some cases where initial condition is
determined by the boundary condition. There is also a simple connection between Weyl
functions and reflection coefficients. Thus, one can discuss reflection coefficients instead
of Weyl functions. The talk is based on the papers [1-4].
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Sun’s Direct Radiation Impact on Glaciers Melting
Index for Some Glaciers of Georgia
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The glaciers of Georgia have undergone significant changes against the background of
global warming. Most of them have disappeared, and some have suffered degradation.
The glacier area has decreased during the retreat, but at the same time the total number
of glaciers has increased. Generally the glaciers play a major role in formation the water
balance of the region and their reduction or disappearance poses significant damage to
the natural ecosystems. The paper deals with major meteorological factors operating on
glaciers and the melting of direct solar radiation on the basis of the melting energy model
of the Enguri basin glacier.

On Regularity Results for Localization Operators
AYSE SANDIKCI

Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University,
Samsun, Turkey

email: ayses@omu.edu.tr

In this work we introduce localization operators by means of time frequency analysis.
Regularity results for localization operators with symbols and windows living in vari-
ous function spaces (such as Lebesgue spaces, modulation spaces or mixed Lorentz type
modulation spaces) are discussed.

Some key references are given below.
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One Method of Teaching
the Bellman’s Optimality Principle
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When teaching mathematic modeling to students of economics and not only them, the
greatest importance is attributed to the solutions of the examples from the practice by
using mathematic methods and mathematic modeling elements. Among those practical
problems, which are solved by using mathematic modeling, the problems that are solved
by dynamic programming method are exceptionally interesting. Our goal is to discuss the
teaching of solving a specific problem with dynamic programming method. It’s important
to show students the principle and action mechanism of dynamic programming while
solving the problem.
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Improved Algorithm of Customers Segmentation
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Finding, developing and retaining a customer is becoming a priority for companies. If
a company has more than a thousand customers, it is too difficult to take into account
the needs of each of them. It is advisable to analyze the needs of several client groups,
rather than each of them. It is advisable to analyze the needs of several client groups
rather than each of them, to effectively solve the problem of segmentation the customer’s
market based on the clients consumer needs and preferences in order to further target
marketing tasks [1].

According to the formally defined client market segmentation problem [2], the dis-
tances between customers are represented as points of the m-dimensional space R™, and
for the analysis Fuzzy C-Means and Gustavson—Kessel algorithms [3, 4], the Euclidean
distance, as the geometric distance in m-dimensional space, as well as the Mahalanobis
distance [3, 5| for its correction are used. It makes possible to form clusters of a spher-
ical shape with an arbitrary orientation of the axes.The algorithms of Fuzzy C-Means
and Gustavson—Kessel are based on using a fuzzy neural network. Both algorithms train
the network in order to minimize the target function J(M, U, C) according to the self-
organization algorithm, which assumes the clustering of the customer market.

The output of the algorithm is a list of clients and the probability of their belonging
to a particular market segment.

The proposed mathematical model and an improved algorithm of client market seg-
mentation will allow to divide the customer’s market into groups, taking into account the
algorithm type (fast or accurate) selected by user, client attributes for the segmentation,
fuzzyness parameter w, stopping criterion § and a given number of segments g on which
it is necessary to divide the market of customers. In the situations where the value of
the client attribute vector is on the boundary between clusters, the proposed information
technology gives a more accurate result of customer segmentation. It was proved based
on the conducted tests, which used the solution of the client market segmentation, by
using the developed information technology, which is based on the improved algorithm
and Deductor Academic [6].
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Various data mining technologies can be used to extract useful information that will be
used during software development (SWD), and help to discover patterns between software
applications.

The purpose of this study is to justify the feasibility of using the technology to search
for associative rules (AR) in the software development process.

Associative rules can be used to accomplish these goals during software development:

1. To detect defects in the software, by searching for AR among all extracted versions
of the program code. This approach will identify vulnerabilities in the architecture of the
software in the early stages and reduce the material costs of their correction in the future
[1].

2. To determine the necessary resources for the software development process and
effectively manage them. It is proposed to do this, by using the theory of fuzzy sets and
search for AR. This will effectively plan the actions of each participant during the software
development process [2].

3. To identify the developer, who will be assigned to correct the defect. For this
purpose, it is proposed to use the search technologies of AR and such characteristics of
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the defect as: importance, priority, short description and developer. This approach will
automate the process of assigning a developer to fix a certain defect [3].

Therefore, the use of technology of searching for associative rules is feasible in the
software development. Therefore, it is proposed to use a modified Frequent Pattern
Growth method of searching AR to determine the time required to perform a particular
task by a particular developer. The modification is that the data before the search for
associative rules is classified, which will allow to obtain more informative associative rules.
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On the Number Of Representations of Integers
by the Quadratic Forms of Eight Variables
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We form the spherical polynomials of second order with respect to some quadratic form
Q(X), we form also the basis of the space of corresponding generalized theta-series and
obtained the formulae for the number of representations of positive integers by quadratic
form of eight variables.

Let

Q(X) = 2% + 223 + 223 + 4a] + 1129 + T174 + Tox3 + ToTy + 27374
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be a quadratic form of type (—2,13,1) (see [3]) and

F = Q(w1, 19,13, 14) + Q(x5, T6, 77, T3)
be the quadratic form of eight variables. For this quadratic form we have proved the
following

Theorem. The number of representations of positive integers n by quadratic form F is
given by

247 4 26
S (X mme ) - (X mm).
Q(z)=n Q(z)=n
where
‘(n) = os(n), if (13,n) =1,
78\ = gy(n) + 1690, (%) it 13|n.
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On the Eigenvalue Problem of Functionally
Graded Cylindrical Shells with Mixed Boundary
Conditions in an Elastic Medium

ABDULLAH SOFIYEV!, BILENDER PASAOGLU?

Engineering Faculty, Suleyman Demirel University, Department of Civil Engineering
Isparta, Turkey

email: abdullahavey@sdu.edu.tr

2Faculty of Arts and Sciences, Suleyman Demirel University,
Department of Mathematics, Isparta, Turkey

email: bilenderpasaoglu@sdu.edu.tr

The cylindrical shells are widely used as structural elements in many engineering ap-
plications, aerospace, nuclear reactors, petrochemicals, marine industry, civil engineering
and mechanical engineering. The vibration analyses of cylindrical shells have been inves-
tigated for a long time. Recently, a new class of composite materials known as functional
graded materials (FGMs) has become attractive due to the increased requirements for
structural characteristics in the industry, especially at extremely high temperatures and
high speeds. FGMs are designed to achieve functional characteristics with variable char-
acteristics in one or more directions. The concept of FGMs was first expressed in 1984
by a group of Japanese scientists [1]. FGM cylindrical shells interact with the elastic
medium in some special applications. Most floors can be represented by a mathematical
model based on Pasternak, and sandy soils and liquids can be represented by the Win-
kler model. Vibration analysis of the FGM shells on the elastic foundations is done by
some scientists [2, 3]. There are limited studies on the vibration of unconstrained FCM
shells under mixed boundary conditions [4]. The purpose of this work is to examine the
free vibration of FGM cylindrical shells under mixed boundary conditions resting on the
Winkler elastic foundation. Donnell shell theory is taken into account in the derivation of
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the governing equations for FGM cylindrical shells. The closed form solution for circular
frequency on the Winkler elastic foundation is obtained. Using the obtained formula,
numerical analyzes are performed and the influences of various profiles of FGM and Win-
kler elastic foundation on the circular frequency of FGM cylindrical shells with mixed
boundary conditions are analyzed.
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On Some Paradoxes in the Theory of
Elastic Contact with Sliding

IvAN A. SOLDATENKOV

Laboratory of Tribology, A. Ishlinsky Institute for Problems in Mechanics of the Russian
Academy of Sciences, Moscow, Russia

email: iasoldat@hotmail.com

Two problems on sliding contact of a punch with elastic foundation are considered,
notably: case of punch with corners (fixed contact region) without friction and case of
smooth punch with friction.

The formal statement of the 1-st problem leads to paradox of “perpetuum mobile”
(figure). To solve the paradox a concept of corner tangential forces 11 is introduced.
Such kind of forces are defined by limiting passage from the smooth punch to the corner
one using known equations of contact problem for elastic half-plane [1]:
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Friction sliding of the smooth punch (2-nd case) is taking place under action of the
following tangential forces: external drag force T', Coulomb friction force F' and deforma-
tion friction force ¢. The powers of these forces are related by energy conservation law
Mp = Mp + My. The last equality means that work of the external force 7" is only par-
tially expended on covering Coulomb friction losses. In connection with it a paradoxical
issue arises: what the remainder M, of the power My is expended on, whereas there is
no dissipation of energy in the elastic foundation?

For elimination of the contradiction it is proposed to take into account variation of the
sliding velocity over contact region: V(x) = V(1 + /()) [2] in calculation of Coulomb
friction losses.

The work was supported by the Russian Foundation for Basic Research (17-01-00352).
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On the Regularity of
Positive Ternary Quadratic Forms
LEVAN SULAKVELIDZE

University of Georgia, School of IT, Engineering and Mathematics
Thilisi, Georgia

email: levan.sulakvelidze@Qgmail.com

Let F' be a positive ternary quadratic form, which belongs to some genus G of quadratic
forms.

B. W. Jones in [1] has proved that a form F' of genus G is regular if and only if it
represents all the integers represented by the every form of G.

Therefore, whenever F' is the only reduced form of a genus, it is regular. Conversely, if
the form F' is regular, it may not belong to one class genera. There are just small amount
of such forms and it is difficult to find them.

Based on the theory of a modular forms, general approach for representation of num-
bers by positive quadratic forms was developed by G. A. Lomadze and then by his disci-
ples.

Using J. S. Hsia’s [2] consideration and based on the properties of modular forms simple
formulas for the representation of integers by two ternary quadratic forms belonging two
class generas are obtained and all arithmetical progressions, whose members and only they
are not represented by these quadratic forms are founded. Therefore, these two quadratic
forms are regular.
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Two-Parametric Analysis of an elastic Half-Space
Coated by a Soft/Stiff Thin Layer

LEYLA SULTANOVA, DANILA PRIKAZCHIKOV, JULIUS KAPLUNOV

School of Computing and Mathematics, Keele University, Staffordshire, UK

email: l.sultanova@keele.ac.uk

Static equilibrium of an elastic half-space with a thin soft/stiff coating, subject to a
vertical load, is considered. The two small parameters arise from relative small thickness
of the coating, as well as from the contrast in stiffnesses of the layer and the substrate.
A version of the method of direct asymptotic integration, see e.g. [1], is then developed.
First, a solution of a toy plane-strain problem for a harmonic load is obtained, in order to
establish the asymptotic scaling for general setup for both limits of soft and stiff coating
layer. For a sufficiently soft coating the Winkler-Fuss hypothesis is justified at leading
order, and higher-order corrections to the formulation, such as the Pasternak model,
are also studied [2]. In case of a rather stiff coating the traditional thin plate model is
validated. Alternative approximations for less pronounced contrast are also addressed.
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The Direct and Reverse Relationships of
Generalized Zener Body, when the Constitutive
Relationship Contains Conformable
Fractional Derivatives
TEIMURAZ SURGULADZE

Department of Mathematics, Akaki Tsereteli State University
Kutaisi, Georgia

email: teimurazsurguladze@yahoo.com

Be Considered generalized Zener body, when the constitutive relationship contains
conformable fractional Derivatives. The constitutive relationship for generalized Zener
body has been written down by means of the kinematic and dynamic relations. The
direct and reverse relationships have been obtained for generalized Zener body as well
as the expressions of the creep and relaxation functions. The case is considered when in
model the spring is replaced with an element of fractional calculus.

On the Decomposition into a Direct Sum of
Locally Linear Compact Topological Abelian Group
ONISE SURMANIDZE

Department of Mathematics, Batumi Shota Rustaveli State University
Batumi, Georgia

email: onise.surmanidze@bsu.edu.ge

Locally linear compact abelian group G is a weakly compact group, which has such a
linear compact open subgroup H, that corresponding quotient group G/H is a discrete.
For such group G with a subgroup H of the given property, a decomposition into a direct
product with groups of rank 1 is studied:

Theorem. For the decomposition into a direct product with groups of rank 1 of a locally
linear compact abelian group G it is necessary and sufficient:
1. A decomposition into a direct product with groups of rank 1 of subgroup H ;

2. A decomposition into a direct product with groups of rank 1 of quotient groups
G|p™H with a subgroup f(H) of the given property.
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On the Solution of Some Non-Classical Problems of
Statics of the Theory of Elastic Mixture in

Infinite Plane with a Circular Hole
KoSTA SVANADZE
Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia

email: kostasvanadze@yahoo.com

In the work for homogeneous equation of statics of the linear theory of elastic mixture
in an infinite domain with a circular hole are considered two boundary value problems. In
the case of problem I on the boundary of domain there are prescribed projections of the
partial displacements vectors on the normal and rotation, and in the case of problem II
on the boundary of domain there are prescribed projections of the partial displacements
vectors on the tangent and divergence. The problems are uniquely solvable and the
solutions are represented in quadratures.

The Task of Chemical Synthesis with the Modelling
of Differential Equations
MziA TALAKHADZE
Sokhumi State University, Thilisi, Georgia

email: mziatalakh@mail.ru

Differential equations take an important place in math appendixes of different fields
of science. They are quite effective and common way to solve the tasks by using natural
science and technique. Many real processes are described easily and completely with
differential tasks. Therefore the interest toward creating differential equations is quite
natural.

Our aim is to show different tasks of natural science and technique and support the
modern methods to study the creation of differential equations. These tasks are derived in
the process of scientific research or production. Chemical kinetics equation for example:
molecular reaction, stationary diffusion and many others are brought on the solution of
differential equation or differential equation system.

We decided to study the chemical synthesis in its theoretical model of differential
equation. Therefore, we deal with the task of chemical synthesis with the modelling of
differential equations.
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Convergence and Summability of the
One- and Two-Dimensional Vilenkin—Fourier Series
in the Martingale Hardy Spaces
GEORGE TEPHNADZE

School of Informatics, Engineering and Mathematics, The University of Georgia
Thilisi, Georgia

email: g.tephnadze@Qug.edu.ge

The classical theory of Fourier series deals with decomposition of a function into
sinusoidal waves. Unlike these continuous waves the Vilenkin (Walsh) functions are rect-
angular waves. Such waves have already been used frequently in the theory of signal
transmission, multiplexing, filtering, image enhancement, codic theory, digital signal pro-
cessing and pattern recognition. The development of the theory of Vilenkin—Fourier series
has been strongly influenced by the classical theory of trigonometric series. Because of
this it is inevitable to compare results of Vilenkin series to those on trigonometric se-
ries. There are many similarities between these theories, but there exist differences also.
Much of these can be explained by modern abstract harmonic analysis, which studies
orthonormal systems from the point of view of the structure of a topological group.

This lecture is devoted to review theory of martingale Hardy spaces. We present
central theorem about atomic decomposition of these spaces and show how this result
can be used to derive necessary and sufficient conditions for the modulus of continuity
such that partial sums with respect to one- and two-dimensional Vilenkin—Fourier series
converge in norm. Moreover, we also present some strong convergence theorems of partial
sums of the one- and two-dimensional Vilenkin systems.
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Boundary Value Properties of
Canonical Blaschke Product in a Unit Circle
GIORGI TETVADZE, LAMARA TSIBADZE, LILI TETVADZE

Department of Teaching Methods, Akaki Tsereteli State University
Kutaisi, Georgia

email: giorgi.tetvadze@Qyahoo.com

The necessary and sufficient conditions for the canonical Blaschke product to have
angular limits are obtained.
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Robust Stochastic Control of the Exchange Rate
REVAZ TEVZADZE
Georgian Technical University, Thilisi, Georgia

email: rtevzadze@gmail.com

We consider the problem of a Central Bank that wants the exchange rate to be as
close as possible to a given target, and in order to do that uses the interest rate level and
interventions in the unspecified foreign exchange market model. We represent this as a
robust stochastic control problem, and provide for the first time a solution to that kind of
problem. We give examples of solutions that allow us to perform an interesting economic
analysis of the optimal strategy of the Central Bank. For the fully specified model such
type problems were solved in [1], [2].
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About Convergence of Stochastic Integral
LukA TIKANADZE

Department of athematics, Ivane Javakhishvili Thilisi State University
Thilisi, Georgia

email: tikanadzeluka@gmail.com

Let us consider a sequence of continuous processes with bounded variation X;*, which
t

converges to a continuous semimartingale X. Let [ f(s,X?)dX" be a sequence of

0

Lebesgue—Stieltjes integrals where f = f(t,x) (t € [0,T],z € R) is a function of two
variables. It is interesting, when this sequence of integrals has a limit, can this limit be
presented as a stochastic integral and in which sense we should consider this integral.

This question was answered first by Wong and Zakai in 1965, for the case when X = W
is Brownian motion. It turned out, that given limit approaches not to the Ito’s Stochastic
integral, but to the integral in Stratanovich sense. Further it has been also proved for
continuous semimartingales.

We generalize this result for nonatisipating functionals using the generalized Ito’s
formula derived by R. Chitashvili (1982).
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Convolutions and Fourier Analysis Generated by
Riesz Bases
NivyAzZ TOKMAGAMBETOV
al-Farabi Kazakh National University, Almaty, Kazakhstan

email: tokmagambetov@math.kz

In this talk we will discuss notions of convolutions generated by biorthogonal systems
of elements of a Hilbert space. We develop the associated biorthogonal Fourier analysis
and the theory of distributions, discuss properties of convolutions and give a number of
examples.

The talk is based on the joint work with Professor Michael Ruzhansky.

Boundary Value Problem for
the Bi-Laplace—Beltrami Equation
MEDEA TSAAVA
I. Javakhishvili Thilisi State University, Thilisi, Georgia

email: m.caava@yahoo.com

The purpose of the present paper is to investigate the boundary value problems for the
bi-Laplace-Beltrami equation A% = f on a smooth hypersurface C with the boundary
I' = 0C. The unique solvability of the BVP is proved, based upon the Green formulae
and Lax—Milgram Lemma.

We also prove the invertibility of the perturbed operator in the Bessel potential spaces
AZ+MI - H3P?(S) — Hi*(S) for a smooth closed hypersurface S without boundary for
arbitrary 1 < p < oo and —oo < s < 00, provided H is smooth function, has non-negative
real part Re H(t) > 0 for all ¢ € S and non-trivial support messupp Re H # 0.
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On Relative Topological Finiteness
IVANE TSERETELI

School of Business, Computing and Social Sciences, St. Andrew the First-Called
Georgian University of Patriarchate of Georgia, Thilisi, Georgia

email: ivanetsereteli@hotmail.com

In [1] the notion of topologically finite space was given: a topological space is called
topologically finite provided it is homeomorphic to none of its proper subspaces (otherwise
the space is called topologically infinite). Later, in [2], the concept of relative topological
finiteness was introduced: a topological space is called topologically finite relative to
some subclass of its proper subspaces if the given space is homeomorphic to none of its
subspaces belonging to the mentioned subclass (otherwise the space is called topologically
infinite relative to the given subclass). In [2] a Hausdorff compact topologically finite
space is constructed which is topologically infinite relative to the class of all its proper Gy
subspaces. In the present work we give an example of a topologically finite (Hausdorff)
hereditarily normal (not perfectly normal) space which is topologically infinite relative to
the class of all its proper F, subspaces.
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On Fiber Strong Shape Equivalences
RUSLAN TSINARIDZE
Department of Mathematics, Batumi Shota Rustaveli State University, Batumi, Georgia

email: r.tsinaridze@bsu.edu.ge

Using the notion of fiber double mapping cylinder are given the characterizations of
fiber strong shape morphisms. Here are found necessary and sufficient conditions under
which a map over fixed space By is a fiber strong shape equivalence.
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Some Issues of Conducting Fluid Unsteady Flows in
Constant Cross Section Pipes in
Transverse Magnetic Field
Varden Tsutskiridze!, Levan Jikidze?, Eka Elerdashvili

'Department of mathematics, Georgian Technical University, Thilisi, Georgia

email: author@email.addr

2Department of Engineering Mechanics and Technical Expertise in Construction,
Georgian Technical University, Thilisi, Georgia

email: btsutskirid@yahoo.com; levanjikidze@yahoo.com; Elerdashvili@yahoo.com

In this article is considered the unsteady flow of viscous incompressible electrically
conducting fluid in an infinitely long pipe placed in an external uniform magnetic field
perpendicular to the pipe axis. It is considered that the motion is created by applied
at the initial time in constant longitudinal pressure fall. The exact general solution of
problem is obtained.

In this section is given a formulation of problem and are stated the general consider-
ations, related with its solution for an arbitrary profile of transverse cross-section pipe.
The next three sections of work (§§ 2-4) are devoted to the detailed study of flow in
rectangular pipes. Finally in the last §5 is considered special case of motion in a circular

pipe.
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On the Summability of Fourier Series of Abstract
Almost Periodic Functions
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Let W be a set of almost periodic (resp., weak almost periodic) functions, defined on a
locally compact Abelian group G, with values in a Banach space X. There are considered
some summability methods of Fourier series for functions f € W with respect to the norm
(resp., weak norm) of the space X. These methods are obtained by varying the coefficients
of Fourier series ), a,, (f)xx(g), where x;, are characters of the group G, a,,(f) are the
Fourier coefficients of f, belonging to X and defined by the formula a,, = M,{f(g9)xx(9)}
M, : G — X is the average (resp., weak average) value on G of the function in brackets.
There are studied the cases which are connected with the consideration of accumulation
points of the set {xx(g)}. The varying of the Fourier coefficients is realized with the help
of some multiplier function ¢z which is defined on the dual group CA?, is equal to 1 in some
symmetric with respect to the unity compact set 7' C G and the Fourier transform o7 of
which is integrable on GG. In the case when X is the space of complex numbers, similar
problems were considered in [1].
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On Grand Lebesgue Spaces on Sets
of Infinite Measure
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The theory of grand spaces is intensively developed during last two decades. Such
spaces LP)(€), 1 < p < oo, on bounded sets  C R” were introduced by T. Iwaniec and
C. Sbordone [1] in connection with application to differential equations.

Last years, operators of harmonic analysis were widely studied in such spaces. Some
of these results are presented in the book [2]. In all the above mentioned studies only sets
Q) of finite measure were allowed, based on the embedding LP C LP~¢.

In the papers [3] and [4] there was suggested an approach to define grand spaces Ly (Q)
on sets 2 C R™ of not necessarily finite measure. In the general form given in [4], this
approach is based on introducing the small power a® of a weight a into the norm of grand
space. We call this function a, which determines the grand space Lg)(Q), the grandizer of
this space.

The significance of the approach based on the use of the, is first of all in the fact that it
allows to consider variants operators of harmonic analysis on R™. For the Riesz potential
operator I® this approach was realized in [5], where in particular it was shown that the
known inversion of I* by hypersingular operators is possible also in grand spaces under
an appropriate conditions for the grandizer.
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Neutrosophic Soft Modules

KEMALE VELIYEVA, SADI BAYRAMOV
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In this paper we study the concept of neutrosophic set. We have introduced this
concept in soft sets and defined neutrosophic soft set. Some definitions and operations
have been introduced on neutrosophic soft set. The main purpose of this paper is to
introduce a basic version of neutrosophic soft module theory, which extends the notion of
module by including some algebraic structures in soft sets. Finally, we investigate some
of neutrosophic soft module basic properties.

The Number of Representations Function for
Binary Forms Belonging to Multi-class Genera
TEIMURAZ VEPKHVADZE
Department of Mathematics, Ivane Javakhishvili Thilisi State University
Thilisi, Georgia

email: t-vepkhvadze@hotmail.com

We show how the representations number of some positive integers by binary forms
belonging to multi-class genera can be computed by linking those forms to other forms
whose genus consists of a single class. The formulas for the number of representations
of a positive integer by a binary form which belongs to one-class genus are known. The
relationship between forms belonging to multi-class genera with forms of a single class is
obtained by elementary means.
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Approximation of Certain Linear
Growth Functionals
THOMAS WUNDERLI
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We consider certain functionals | g(z, Du) defined for v € BV () where the integrand
Q

g(z,p) : 2 x RY — R is measurable in z for each p, convex in p for a.e. z, is of the
form g(z,p) = g(z,|p|), and satisfies a linear growth condition. If [ g(z, Du) is lower
Q

semicontinuous in L'(2), we construct a family of functionals [ ¢(x, Du) that I-converge
Q
to [ g(x, Du) in L* (£2), whose minimizers converge to minimizers of [ g(z, Du), and are
Q Q

of the form

1%

Q/go(x, Du) = Sup{ - Q/udivgb + " (z, 6(2)) d:z:}.

Importantly, continuity in the x variable is not assumed.

Compactness in Soft
Bigeneralized Topological Spaces
ADEM YoLCU, TAHA YASIN OZTURK
Department of Mathematics, Kafkas University, Kars, 36100-Turkey

email: yolcu.adem@hotmail.com; taha36100Q@Qgmail.com

The soft bigeneralized topological spaces have been firstly introduced in [1] by Ozturk
et. al. and some basic notions and theorems have been presented. In this paper we will
present some researches and investigations by defining the concept of compactness in soft
bigeneralized topological spaces.

Keywords: Soft bigeneralized topological spaces, soft bigeneralized continuity, soft
bigeneralized compactness
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About Subject and Learning of
Logical-Analytical Thinking
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Teaching of analytical thinking and conclusions is crucial for pupils and students. It
has given stimulus to the documentation created and translated for the logical, analytical
and critical thinking of the Ministry of Education [1]-[3]. By D. Zarnadze was created
the “General Skills Logic” Guide [4]. With the participation of D. Zarnadze, D. Ugulava,
M. Kublashvili was created the Standard of subject of “Logical-Analytical Thinking” in
the X, XTI, XII Classes, Study/Teaching Methodology and Syllabus for teaching in the
general education system that was financed by the Patriarch International Foundation.
According this standards was written textbook “logical-analytical thinking grounds” [5]
in which it represents as an inter-disciplinary subject. Is being studied not only the right
thinking rules but also their Understanding-Learning Practical Exercises and Learning
Analytical Thinking.

The unanimous thought of these issues showed the shortcomings and errors that were
actually legalized in the guiding texts on which we were mentioned in the works [6]-[7].
These mistakes have been map into legal laws and national exam tests.

Based on the beginning research of classical logic operations for three statements were
made their grammatical, set interpretations [8] and the construction of the appropriate
circuits in the digital electronics [9]-[10]. These studies have led to the study of similar
issues in English, German and other languages.
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Linear Consistent Criteria for Testing Hypotheses

ZURAB ZERAKIDZE!, LAURA ELIAURI', LELA ALEKSIDZE?

1Gori State University, Gori, Georgia

email: zura.zerakidze@Qmail.ru; lauraeliauri@gmail.com

2D. Aghmashenebeli National Defence Academy of Georgia, Gori, Georgia

email: lelaaleksidze@gmail.com

Let (X, B) is separable Hilbert space with o-algebra of Borel sets in X and {uy, h €

HY} is the family of measures on B. Let aj average value: (ap, 2) = [(z,2)p(dz), z € X
X
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and By, correlation operator

(Bpz,u) = /zx (u, ) pp(dx), Vz,u € X,
b

where (z,u) denotes scalar product in X. Let us suppose B, = B is independent of h. We
assume that the hypothesis parameters are the average values:

(h,z) = /(z,x),uh(da:), HCX.

In linear theory is assumed that H is a linear manifold.

Definition. We will say that the statistical structure {X, B, up, h € H} admits a weakly
(strongly) sequential consistent linear criteria if there exists the sequence of continuous
mappings g, : X — X such that

lim | (2, g.(2) — h)?un(de) = 0 (respectively, lim /Hgn(:c) — h|)?un(dz) = 0).
n—aoo

n—700
X

Theorem 1. Let X,, C X, 11 be some increasing sequence of finite dimensional subspaces
of Hilbert space X, ), is projector on X,, and operator Q/n satisfies the relation Q;L(u) = u,
ifue X, —Q,X; Q’Vn Yu, € X,; QB = BQ, on X. If X is a complete separable space,
then the condition

lim (BQ,QnZ, Q,QuZ) = (Bz,2)

is necessary and sufficient for existence unbiased consistent criteria coordinated with se-
quence of subspaces X,,.

Theorem 2. Let X,, C X, 11 be some increasing sequence of finite dimensional subspaces
of Hilbert space X and

lim inf[(Ba,a) + sup (a — Q,z,h)?] =0,

n—oo X, Ihl<1

then there exists unbiased consistent criteria.
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Linear Consistent Criteria
for Gaussian Statistical Structure
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Let (X, B) is separable Hilbert space with o-algebra of Borel sets in X and {up, h €
H?} is the family of Gaussian probability measures with correlation operator B and means
he HCX.

Definition 1. We will say that the statistical structure {X,B, us, h € H} admits a
weakly sequential consistent linear criteria for testing hypotheses if there exist a sequence
of continuous linear mappings g, : X — X such that

lim [ (z,9.(%) — h)*un (dz) =0 V2 € X, he€ H.

n—00
X

Definition 2. We will say that the statistical structure {X,B, uy, h € H} admits a
strongly sequential consistent linear criteria for testing hypotheses if there exist a sequence
of continuous linear mappings ¢, : X — X such that

lim / | gn(x) — R||*un (dz) =0 Yh € H.
n—oo
X

Definition 3. Weakly measurable linear mapping g : X — X admits a weakly consistent
linear criteria for statistical structure {X, B, usn, h € H} if yp{z: g(z) =h} =1Vh € H.

Definition 4. Strongly measurable linear mapping ¢ : X — X admits a strongly con-
sistent linear criteria for statistical structure {X, B, up, h € H} if pp{x: g(x) =h} =1
VheH.

Theorem. The Gaussian statistical structure {X,B, u,, h € H} admits a consistent
linear criteria if and only if there exists the sequence of positive symmetric operators A,
such that the following relations are fulfilled

(1) lim (A,h,h) =0Vh € H;
n—oo

(2) lim po{z: [(Apz,x) — (x,2)| >} =0Ve > 0;
n—oo

(3) Y2(BY2A,B'?¢;, ;) uniform converges with respect n and for all complete or-
s
thonormal system {e} of operator B.
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Strain Control of Infinite Elastic Body with
Circular Opening and Radial Cracks by Means of
Boundary Condition Variation
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A two-dimensional boundary value problem of elastic equilibrium of a plane-deformed
infinite body with a circular opening is studied. A part of the opening is fixed and
from some points of the unfixed part of the cylindrical boundary there come radial finite
cracks. The problem is to find conditions for the fixed parts of the opening so that the
damage caused by the crack, i.e. stresses on its surface, should be minimal. We should
note that the crack ends inside the body are curved. The curve radii vary similar to
boundary conditions. The solution of the given problem can be immediately applied to
the construction of different kinds of structures, in particular, to underground structures.
The problem is solved by the boundary element method [1-3].
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Definition of Deflected Mode of Cylindrical Body
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As it is known, determination of tensed-deformated condition of log of cylindrical
shape belongs to the group of spatial objectives of mechanics of deformative bodies. The
spatial objectives like this, on the basis of the classical elasticity, as a rule is accompanied
to solve the flat objectives with the help of several hypothetic assumptions (among them
the principle of Saint-Venant), with what, it is evident, their exact solving is not reached.
In the work the task of deflected isotropic cylindrical circular-section body, mounted
on either end motionlessly is studied under the influence of temperature, volumetric and
surface forces. Without the usage of hypothetical assumptions (among them Saint-Venant
principle) the exact solution of the task is given. The coordinate system without dimension
is used in cylindrical coordinates. With the help of corresponding transformation of set
objectives, basic equations of theory of elasticity are portrayed. The internal strain and
the relocate components are found, which satisfy the corresponding initial and boundary
conditions of the task, also the equilibrium equations and physical equations.

Some Issues about the Graphical Expression
of the Direct Proportional Attitudes

MANANA ZI1VZIVADZE-NIKOLEISHVILI

Department of Teaching Methods, Akaki Tsereteli State University
Kutaisi, Georgia

email: manana.deisadze@atsu.edu.ge

Study of the proportionate attitude between the values is very important in the math-
ematical school course. The student should be able to describe the quality and quantity of
the given dependence on the effect of the change in the size of one degree. You should be
able to draw examples from everyday life associated with constant and unmatched quan-
tities. The practice proved to be that the students can well articulate the relationship
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between the values, but unfortunately they are not able to graphically represent them, or
vice versa, with a graphic representation of the proportional attitude between the size.
In the paper we will pay attention to the graphical depiction of the direct proportional
attachment between the values.
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