bofuпnomgenmb

Georgian
Mathematical Union

Batumi Shota Rustaveli
State University

XI International Conference of the Georgian Mathematical Union

BOOK OF ABSTRACTS

งщл

Organizing Committee:

Alexander Meskhi (Chairman), Vladimer Baladze (Deputy Chairman), Temur Jangveladze (Deputy Chairman), Tinatin Davitashvili (Scientific Secretary), Mariam Beriashvili, Anzor Beridze, Mikheil Gagoshidze, Guram Gogishvili, George Imerlishvili, Nugzar Kereselidze, Dali Makharadze, Maia Mrevlishvili, Mikheil Rukhaia, Lela Turmanidze, Zurab Vashakidze, Shota Zazashvili.

 пмм

Scientific Committee:

David Natroshvili (Chairman), Malkhaz Bakuradze, Vladimer Baladze, Temur Chilachava, Otar Chkadua, Roland Duduchava, Besik Dundua, Guram Gogishvili, George Jaiani, Temur Jangveladze, Alexander Kharazishvili, George Khimshiashvili, Emzar Khmaladze, Aleks Kirtadze, Vakhtang Kokilashvili, Vakhtang Kvaratskhelia, Aleksander Kvinikhidze, Shalva Malidze, Hamlet Meladze, Sergey Mikhailov, Elizbar Nadaraia, Roland Omanadze, George Oniani, Konstantine Pkhakadze, Omar Purtukhia, Mikheil Rukhaia, Eugene Shargorodsky, Nugzar Shavlakadze, Vaja Tarieladze, Shakro Tetunashvili, George Tephnadze, Teimuraz Vepkhvadze.

Editors: Guram Gogishvili, Maia Japoshvili

Contents

Abstracts of Plenary Talks 11
Mikheil Amaglobeli, Alexei Miasnikov, Tarski Problems, Algebraic Geometry Over Groups, and Fraisse Limits 13
Andrea Carbonaro, Oliver Dragičević, Vjekoslav Kovač, Kristina Škreb, Tri- linear Embedding Theorem for Elliptic Partial Differential Operators in Divergence Form with Complex Coefficients 14
Massimo Lanza de Cristoforis, Alexey Karapetyants, Nonlinear Composition Ope- rators in Generalized Morrey Spaces 15
Vladimir Gol'dshtein, Valery Pchelintsev, Alexander Ukhlov, Composition Ope- rators on Sobolev Spaces (with Applications to Spectral Theory and Nonlinear Elas- ticity) 16
Loukas Grafakos, Classical Multiplier Theorems and Recent Improvements 17
Yevgeniy Guseynov, Integration over Brownian Motion Sample Paths; the Green For- mula 18
Stas Krymski, Michael Levitin, Leonid Parnovski, Iosif Polterovich, David Sher, Floating Mats and Sloping Beaches: Spectral Asymptotics of the Steklov Problem on Polygons 19
Mieczysław Mastyło, Stability of the Inverses and Fredholm Properties of Interpolated Operators 20
Akira Masuoka, Alexandr Zubkov, Harish-Chandra Pairs and Group Superschemes 21
Sergey E. Mikhailov, Existence, Uniqueness and Regularity of Space-Periodic Solutions to Stokes and Navier-Stokes Equations 22
Dorina Mitrea, Behavior at Infinity for Null-Solutions of Higher-Order Elliptic Systems 23
Marius Mitrea, On the Solvability of the Neumann Problem for the Laplacian 24
Vladimir Mityushev, Effective Properties of Random Composites 25
Vladimir Rabinovich, Dirac Operators on \mathbb{R}^{n} with Singular Potentials 26
Humberto Rafeiro, Old and New Results on the Boundedness of the Riesz Potential Operator in the Borderline Case 27
Eugene Shargorodsky, Teo Sharia, Sharp Estimates for Conditionally Centred Mo- ments and for Compact Operators on L^{p} Spaces 28
Valentin Skvortsov, Variational Measures and Descriptive Characterization of Genera- lized Integrals 29
Ilya M. Spitkovsky, Kippenhahn Curves and Numerical Ranges of Some Structured Matrices 30
Olaf Steinbach, Space-Time Methods for Partial Differential Equations 31
Sergey Tikhonov, New Estimates for the Maximal Functions and Applications 32
Ketevan Tsertsvadze, Changes in the National Curriculum in the Field of Mathematics 33
Xiaoming Wang, Coupling and Decoupling of Free Flow and Flow in Porous Media and Related Interfacial Conditions 34
Ricardo Weder, Dispersive Estimates for the Schrödinger Equation 35
Qingying Xue, Limiting Weak-type Behaviors for Singular Integral Operators and Ma- ximal Function 36
Abstracts of Sectional Talks 37
Sarsengali Abdymanapov, Serik Altynbek, Alibek Barlybayev, Madi Murat- bekov, Design Model for Creation of Intelligent Learning Systems Based on Bayesian Networks 39
Agatha Abokwara, E. Madubueze Chinwendu, Controlling the Transmission dy- namics of Schistosomiasis: Mathematical Model Approach 40
Akbota Abylayeva, Ryskul Oinarov, Bolat Seilbekov, Weighted Estimates and Compactness of a Class of Integral Operators with Logarithmic Singularity 41
Ibraheem Abu-Falahah, Tareq Hamadneh, Mohammad Obaidat, Convergent Affine Bounding Functions for Polynomials: Bernstein Least Squares 42
Daviti Adamadze, Tengiz Kopaliani, On Singular Extensions of Continuous Functi- onals From $C([0,1])$ to Variable Lebesgue Spaces 43
Vladimer Adeishvili, Ivane Gokadze, Ramsey Numbers 44
George Akhalaia, George Makatsaria, Nino Manjavidze, BVP for the First Order Elliptic Systems in the Plane 45
Lela Aleksidze, Laura Eliauri, Zurab Zerakidze, The Consistent Estimators of Beta (" B ") Statistical Structure 46
Teimuraz Aliashvili, On the Uniformization of Some Function Couples of Three Vari- ables 47
Teimuraz Aliashvili, Ivane Murusidze, Giorgi Rakviashvili, Lorenz-Like System as a Set of Coupled Driven and Damped Nonlinear Oscillators 48
Yagub Aliyev, Apollonius Problem on the Number of Normals Passing Through a Point of a Conic 49
Maram Alossaimi, Poisson Brackets and Poisson Prime Ideals in Polynomial Algebras 50
Phridon Alshibaia, On Temporal Heyting Algebras 51
Nino Amiridze, Anna Chutkerashvili, Besik Dundua, Temur Kutsia, Towards a Georgian Controlled Language 52
Nino Amiridze, Temur Kutsia, Anti-Unification: Recent Advances and Applications in Natural Language Processing 53
Natela Archvadze, Merab Phkhovelishvili, Model of Coronavirus Spread in the Light of Vaccination 54
Natiga Aslanova, Numerical Methods in the Question on Lattice Points in Shifted Balls 55
Mehsin Jabel Atteya, Derivations Period 2 of Semiprime Rings 56
Najmeddine Attia, Meriem Bel Hadj Khalifa, Note on the Multifractal Formalism of Covering Number on the Galton-Watson Tree 57
Petre Babilua, Elizbar Nadaraya, Mzevinar Patsatsia, On the One Nonparametric Estimator of the Bernoulli Regression Function 58
Giorgi Baghaturia, Marina Menteshashvili, Inverse Problems and Their Discrete Analogs for the Second Order Quasi-Linear Equations of Mixed Type 59
Malkhaz Bakuradze, Polynomial Generators of $M S U_{*}[1 / 2]$ Related to Classifying Maps of Certain Formal Group Laws 60
Mzevinar Bakuridze, Sergei Chobanyan, Vaja Tarieladze, On Menshov-Radema- cher Inequality 61
Vladimer Baladze, Anzor Beridze, Leonard Mdzinarishvili, On Axiomatic Cha- racterization of Alexander-Spanier Normal Homology Theory of General Topological Spaces 62
Hajar Benkhaldoun, Rajae Ben Taher, Solving the Linear Difference Equation with Periodic Coefficient via the Analytic Formula of Generalized Fibonacci Sequences 63
Mariam Beriashvili, On Some Models of Set Theory 64
Shalva Beriashvili, Some Class of Polyhedrons in \mathbf{R}^{3} which are Not Primitive 65
Valeri Berikashvili, George Giorgobiani, Vakhtang Kvaratskhelia, The Law of Large Numbers for Weakly Correlated Random Elements in The Spaces $l_{p}, 1 \leq p<\infty$ 66
Aigul Beszhanova, Ainur Temirkhanova, Boundedness and Compactness Criteria of a Certain Class of Matrix Operators with Variable Limits of Summation 67
Merihan Hazem Anwar Labib Bishara, Striving to Transcend the Fuzzy Ontology 68
Merium Hazem Anwar Labib Bishara, About the Issues of Ambulatory Monitoring Devices 69
Anriette Michel Fouad Bishara, Mikheil Rukhaia, About Unranked Fuzzy Unifi- cation 70
Tengiz Bokelavadze, The Tensor Completions in Varieties Hall's W-Power Groups 71
George Bolotashvili, Program for Enrollment of Entrants in Higher Education on the National Exams, Problems and Ways to Solve Them 72
George Bolotashvili, Solving the Linear Ordering Problem Using the Faceted Cuts $(N P=P)$ 73
Nurzhan Bokayev, Compactness of Commutators for the Calderon-Zygmund Type Singular Operator on Global Morrey-Type Spaces 74
Tristan Buadze, Vazha Giorgadze, In Regard to Multidimensional Density Distribu- tion of Projection Type of Nonparametric Statistical Assessment 75
Tengiz Buchukuri, Otar Chkadua, David Natroshvili, Asymptotic Analysis and Regularity Results of Dynamical Boundary-Transmission Problems of the Generali- zed Thermo-Electro-Magneto-Elasticity for Composed Structures 76
Tengiz Buchukuri, Roland Duduchava, Shell Equations in Terms of Günter's Deriva- tives, Derived by the Γ-Convergence 77
Natela Chachava, Ilia Lomidze, Generalization of Schwartz's Theorem 78
Georgi Chelidze, Mikheil Nikoleishvili, Vaja Tarieladze, On an Algorithm for Integer Optimization 79
George Chichua, Merab Chikvinidze, Konstantine Demurchev, David Kur- tskhalia, Shalva Malidze, Beso Mikaberidze, Konstantine Pkhakadze, In the European Union with the Georgian and Abkhazian Languages, i.e. Short Over- view of the Results Achieved for Aims of Defense Georgian and Abkhazian Languages from Dangers of Digital Extinction 81
Temur Chilachava, Nato Kakulia, Asymptotical Solution of the Mixed Problem for a System of Equations in Partial Derivatives Describing the Process of Propagation of Explosive Shock Waves in Nonhomogeneous Gravitational Gas Bodies 82
Temur Chilachava, Linda Khukhua, Nonlinear Mathematical Models Describing the Initial Stage of Infection Spread 83
Raúl E. Curto, The Spectral Picture and Joint Spectral Radius of the Generalized Spherical Aluthge Transform 84
Tinatin Davitashvili, Hamlet Meladze, The Factorized Difference Schemes for the Numerical Solution of a Quasi-linear System of Hyperbolic Type Equations 85
Mariam Dedabrishvili, Smartphone Sensor-Based Fall Detection Using Machine Lear- ning Algorithms 86
Manana Deisadze, The Role of Complex Assignments in the Development of Students Critical Thinking in Mathematics 87
Konstantine Demurchev, Final Result of the Doctoral Thesis "Methods and Tools for Intellectual Classification of Georgian Texts" 88
Ana Diakvnishvili, Extremal Problems for Bicentric Polygons 89
Antonio Di Nola, Revaz Grigolia, Ramaz Liparteliani, On the Free S_{1}^{ω}-Algebras 90
Antonio Di Nola, Revaz Grigolia, Gaetano Vitale, Involutive Symmetric Goedel Spaces, their Algebraic Duals and Logic 91
Piotr Drygaś, Random Elastic Composites with Circular Inclusions 92
Roland Duduchava, Convolution Equations on the Abelian Group $\mathcal{A}(-1,1)$ and Their Applications 93
Fridon Dumbadze, On Alexander-Spanier Normal Cohomology Groups of Locally Fi- nitely Valued Cochains 95
Maya Dzadzamia, Mariana Takidze, Lela Turmanidze, Development of the Math Skills and Competences in the Engineering-Technological Curriculums 96
XI Internatio
Uinar Dzagnıaze, Irma 'Isivtsivadze, Schwarz Gradients and Differentiability for Functions of Two Variables 97
Eka Elerdashvili, Levan Jikidze, Varden Tsutskiridze, Two-Dimensional Unsteady Flow of a Viscous Incompressible Fluid in a Porous Channel 98
Khatuna Elbakidze, Modeling of Wave Structures in the Upper Ionospheric Plasma in Spherical Coordinates 99
Mikheil Gagoshidze, Asymptotic Behavior and Numerical Solution of Initial-Boundary Value Problem for One Nonlinear System 100
Nino Gegenava, From Plato's Linguophilosophical Views to Challenges of the Digital Age 101
Giorgi Geladze, Manana Tevdoradze, Further Improvement of the Numerical Model of the Mesoscale Boundary Layer of the Atmosphere 102
Levan Giorgashvili, Shota Zazashvili, Boundary Value Problems of Thermoelastic Diffuzion Theory with Microtemperatures and Micriconcentrations 103
Guram Gogishvili, On Some Aspects of the Current Education Reform of Secondary School 104
David Gulua, On the One Mnemonic Scheme for Studying a Two-Dimensional Random Process 105
David Gulua, Jemal Rogava, On the Convergence of the Perturbation Algorithm for the Semidiscrete Scheme for the Evolution Equation with Variable Operator in the Banach Space 106
Davit Gurgenidze, Gela Kipiani, Tamaz Obgadze, Mathematical Modeling of Dy- namics of Suspension 107
Alfaisal Abdelhameed Mohamed Hasan, The Electrogravitational Instability of an Oscillating Streaming Fluid Cylinder 108
Sabina Ibrahimova, Ilgar Jabbarov, On an Integral Equation of Fredholm Type for the Class of Bounded Functions on Real Axes 109
Giorgi Imerlishvili, Alexander Meskhi, Trace Inequalities for Fractional Integrals in Central Morrey Spaces 110
Muhammad Imran, Shahid ur Rehman, Imran Javaid, On Automorphisms and Fixing Number of co-Normal Product of Graphs 111
Phridoni Janashia, Using the Function of Two Variables to Solve Elementary Mathe- matical Problems 112
Temur Jangveladze, On Investigation and Approximate Solution of Nonlinear Model Describing Electromagnetic Field Diffusion Process 113
Elza Jintcharadze, Tsitsino Sarajishvili, Entropy Research of Enhanced Hybrid Model Based on Classical Cryptosystem 114
Kartlos Kachiashvili, Testing Hypotheses Concerning Equal Parameters of Normal Distribution 115
Aigerim Kalybay, Ryskul Oinarob, Weighted Differential Inequality and Oscillatory and Spectral Properties of a Class of Fourth Order Differential Operators 116
Tamar Kasrashvili, Some Remarks on Equidecomposability of Sets 117
Tariel Kemoklidze, On Endomorphisms of a Separable p-Group 118
Nugzar Kereselidze, Models of Spreading False Information and SARS-CoV-2 Virus 119
Marika Khachidze, Various Definitions of Almost Invariant Sets and their Applications 120
Meriem Ben Hadj Khalifa, Yuliya Mishura, Mounir Zili, The Parameter Estima- tion in Stochastic Volatility Models 121
Nino Khatiashvili, On the Approximate Solutions of the Schrödinger Equation 122
Giorgi Khimshiashvili, Torricelli Point as a Maximizer 123
Emzar Khmaladze, More on Relations Between Crossed Modules of Different Algebras 124
Tamaz Khunjua, Konstantin Klimenko, Roman Zhokhov, Influence of Chiral Asymmetry on Phase Structure of the Two-Color Quark Matter 125
Jemal Kiria, Tengiz Kiria, Zurab Zerakidze, The Consistent Criteria of Hypotheses Testing for Gamma (" G ") Statistical Structure 127
Aleks Kirtadze, The Method of Almost Surjective Homomorphisms and the Relative Measurability of Functions 128
Shalva Kirtadze, The Use of the Differentiation Elements in a Primary-Level Mathe- matics Lesson 129
Nana Koblishvili, Murman Kublashvili, Zaza Tabagari, Mamuli Zakradze, On Numerical Solving of the Dirichlet Generalized Harmonic Problem for Regular n-Si- ded Pyramidal Domains by the Probabilistic Method 130
Vakhtang Kokilashvili, Generalized Multilinear Sobolev Inequality in Grand Product Lebesgue Spaces Defined on Non-Homogeneous Spaces 131
Bakur Kotchlamazashvili, Giorgi Rakviashvili, On the Low Dimensional Cohomolo- gies of Biparabolic Subalgebras 132
Victor A. Kovtunenko, Shape Differentiability of Semilinear Equilibrium-Constrained Optimization 133
Zurab Kvatadze, Tsiala Kvatadze, Beqnu Parjiani, On Convergence of Variation of Normed Sum of Chain Dependent Sequence 134
Anton A. Lunyov, Mark Malamud, Stability of Spectral Characteristics of Boundary Value Problems for 2×2 Dirac Type Systems 135
Ioseb D. Machavariani, On Angular Limits of Cauchy Type Integral 136
Dali Magrakvelidze, Evaluation of Profit from Illegal Copies of Intellectual Property 138
Dali Makharadze, On the Extension of Calderón-Zygmund Inequality 139
Badri Mamporia, Vaja Tarieladze, Nodari Vakhania, On Gaussian Random Vari- ables in Stochastic Scheduling Problems 140
Alexander Meskhi, Weighted Extrapolation and Boundedness in Generalized Grand Morrey Spaces, and Applications to Partial Differential Equations 141
Rusudan Meskhia, On Teaching the Composition of Functions 142
XI Interna nal Conferenco of the Meorgion Mandrat Union, Batu
Tinesis rormatism and Applications of Georgian Language Processing by Machine Learning Methods" 143
Maia Mrevlishvili, Neumann Type Boundary-Transmission Problem for Composed Elastic Structures 144
Vitali Muladze, On Lyapunov Dimension of Nonlinear Dynamic Systems 145
Madi Muratbekov, Mussakan Muratbekov, Bounded Invertibility of the Sturm- Liouville Operator with Negative Parameter 146
Eldar Mustafayev, Shemsiyye Muradova, Spectral Analysis of One Three-Dimensi- onal Biharmonic Operator 147
Ekaterine Namgalauri, Omar Purtukhia, On Clark-Ocone-Type Formulas for Non- smooth Functionals 148
David Natroshvili, Generalized Multi-Field Mixed Dynamical Problems for Composed Elastic Structures 149
Celil Nebiyev, gs-Essential Submodules 150
Celil Nebiyev, Hasan Hüseyin Ökten, On $\oplus-e$-Supplemented Modules 151
Narayanan Namboodiri Memana Neelakantan, A Concrete Quantum Channel 152
Nodar Okroshiashvili, Preliminary Overview of the Aims and Methods of the Doctoral Thesis "Georgian-Mathematical Automatic Multilingual Semantic Translator" 153
Roland Omanadze, $s Q_{1}$-Degrees of Computably Enumerable Sets 154
Giorgi Oniani, On Sjölin-Soria-Antonov Type Extrapolation for Locally Compact Groups and a.e. Convergence of Vilenkin-Fourier Series 155
Kordan Ospanov, Myrzagali Ospanov, Maximal Regularity of Second-Order Diffe- rential Equations and its Applications 156
Archil Papukashvili, Meri Sharikadze, Zurab Vashakidze, On the Approximate Solution Using the Collocation Method of the Singular Integral Equation Containing the Fixed Singularity 157
Jemal Peradze, The Exactness of an Algorithm for a Nonlinear Static Beam Equation 158
Konstantine Pkhakadze, Logic, Language, Artificial Intelligence and Objectives of Protecting the State Languages of Georgia from Danger of Digital Extinction 159
George Pochkhua, Computer Modeling of Political Conflicts in Case of Variable Demo- graphic Factors of Sides and Variable Parameters of Models 160
Nino Rusiashvili, On the Duality Principle on Polish Groups 161
Fernando León Saavedra, Extended Eigenoperators of the Differentiation Operator: Hypercyclicty, Supercyclicity, Hypercyclic and Supercyclic Subspaces 162
Eteri Samsonadze, On the Number of Integer Non-Negative Solutions of Some Dio- phantine Equations 163
Tsitsino Sarajishvili, The Importance of Basic Algorithmic Structures in the Process of Teaching Algorithms 164
Natia Sazandrishvili, On the Generalized Lifeguard Problem 165

Albert Shatashvili, Tamara Fomina-Shatashvili, Ibrahim Didmanidze, Elena
 Papazova, About One Method, Providing Necessary and Sufficient Conditions for Equivalence of Linearly Connected Two Gaussian Measures in the Hilbert Space
 166

Nugzar Shavlakadze, The Adhesive Contact Problems for a Piecewise-Homogeneous Plate 167
Levan Sulakvelidze, On the Duffin-Schaeffer Conjecture 168
George Tephnadze, Convergence and Summability of the One- and Two-Dimensional Vilenkin-Fourier Series in the Martingale Hardy Spaces 169
Tengiz Tetunashvili, On Some Versions of Sylvester's Problem 170
Lali Tibua, Unification in τ-Logic 171
Anika Toloraia, Boundary-Transmission Problems of the Thermo-Piezo-Electricity The- ory without Energy Dissipation 172
Nino Tophuridze, On Quaternion Polynomial Equations 173
Lela Trapaidze, Comparative Analysis of Some Classical and Modern Stochastic Models 174
Tornike Tsertsvadze, Mixed Boundary Value Problems for the Laplace Equation 175
Nino Tsinaridze, Right Units and Idempotent Elements of a Complete Semigroups of a Binary Relations Defined by Semilattices of unions $\Sigma_{3}(X, 7)$ 176
Sergo Tsiramua, Logical-Probabilistic Methods of Structural Analysis of Multifunctional Elements 177
Soso Tsotniashvili, David Zarnadze, A Generalization of the Canonical Commutative Relation in the Quantum Fréchet-Hilbert Space 178
Giorgi Tutberidze, Convergence and Summability Fejér and T Means with Respect to the One-dimensional Vilenkin-Fourier Series in Martingale Hardy Spaces 179
Duglas Ugulava, David Zarnadze, About the Concept of Orbital Quantum Mechanics 180
Tamaz S. Vashakmadze, The Satisfaction of Boundary Conditions on the Surfaces and an Extension of Complex Analysis for Some Nonlinear DEs 181
Teimuraz Vepkhvadze, Novelties in the New National Curriculum for Mathematics and Ways to Overcome Them 182
Vijay Kumar Vyas, A Class of the Extended Multi-Index Bessel-Maitland Functions and it's Properties 183
Dali Zangurashvili, On the Existence of Group Terms in Some Protomodular Varieties of Universal Algebras 184
Index 185

Abstracts of Plenary Talks

Tarski Problems, Algebraic Geometry Over Groups, and Fraisse Limits

Mikheil Amaglobeli ${ }^{1}$, Alexei Miasnikov ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: mikheil.amaglobeli@tsu.ge
${ }^{2}$ Department of Mathematics, Stevens Institute of Technology, Hoboken, USA
e-mail: amiasnikov@gmail.com

Algebraic geometry over free groups plays a prominent part in solutions to Tarski problems on elementary theories of free groups. To see the relation it suffices to notice that finitely generated groups universally equivalent to a free non-abelian group F are precisely the coordinate groups of irreducible algebraic sets over F, which are happen to be precisely the limits of the group F in Gromov-Hausdorff topology (which are also known as limit groups). Lyndon's exponential group $F^{\mathbb{Z}}[t]$ (which is a free group in the variety of groups with exponents in $\mathbb{Z}[t]$) is the universal group in the class of limit groups, i.e., it contains all limits groups as subgroups, and every finitely generated subgroup of $F^{\mathbb{Z}}[t]$ is a limit group. Similar results hold if one replaces the free group F by an arbitrary non-abelian torsion-free hyperbolic group G.

Recently Kharlampovich, Miasnikov, and Sklinos showed that the Lyndon's group $F^{\mathbb{Z}[t]}$ is the Fraisse limit in the category of iterated free extensions of centralizers of F [1].

We prove that for arbitrary torsion-free non-abelian CSA group G, in particular, for arbitrary torsion-free hyperbolic group G, the Lyndon's $\mathbb{Z}[t]$-completion $G^{\mathbb{Z}[t]}$ of G is the Fraisse limit in the category of iterated centralizer extensions of G.

References

[1] O. Kharlampovich, A. Myasnikov and R. Sklinos, Fraïss'e limits of limit groups. J. Algebra 545 (2020), 300-323.

Trilinear Embedding Theorem for Elliptic Partial Differential Operators in Divergence Form with Complex Coefficients

Andrea Carbonaro, Oliver Dragičević, Vjekoslav Kovač, Kristina Škreb
Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
e-mail: oliver.dragicevic@fmf.uni-lj.si

We introduce the notion of p-ellipticity of a complex matrix function and discuss basic examples where it plays a major role, as well as the techniques that led to the introduction of that notion. We focus on a recent result featuring p-ellipticity, namely, the so-called trilinear embedding theorem for complex elliptic operators and its corollaries.

The talk is based on collaboration with Andrea Carbonaro (U. Genova) and Vjekoslav Kovač and Kristina

Nonlinear Composition Operators in Generalized Morrey Spaces

Massimo Lanza de Cristoforis ${ }^{1}$, Alexey Karapetyants ${ }^{2,3}$
${ }^{1}$ Dipartimento di Matematica 'Tullio Levi-Civita', Università degli Studi di Padova Padova, Italia
e-mail: mldc@math.unipd.it
${ }^{2}$ Institute of Mathematics, Mechanic and Computer Sciences, Southern Federal University Rostov-on-Don, Russia
${ }^{3}$ Regional Mathematical Center, Southern Federal University, Rostov-on-Don, Russia e-mail: karapetyants@gmail.com

Let Ω be an open subset of \mathbb{R}^{n}. Let f be a Borel measurable function from \mathbb{R} to \mathbb{R}. We prove necessary and sufficient conditions on f in order that the composite function $T_{f}[g]=f \circ g$ belongs to a generalized Morrey space $\mathcal{M}_{p}^{w}(\Omega)$ whenever g belongs to $\mathcal{M}_{p}^{w}(\Omega)$. Then we prove necessary conditions and sufficient conditions on f in order that the composition operator $T_{f}[\cdot]$ be continuous, uniformly continuous, Hölder continuous and Lipschitz continuous in $\mathcal{M}_{p}^{w}(\Omega)$ or in its 'vanishing' generalized Morrey subspace $\mathcal{M}_{p}^{w, 0}(\Omega)$. For the uniform, Hölder and Lipschitz continuity we have also conditions that are both necessarv and sufficient

The talk is ba d on joint work whe thents.

Composition Operators on Sobolev Spaces (with Applications to Spectral Theory and Nonlinear Elasticity)

Vladimir Gol'dshtein, Valery Pchelintsev, Alexander Ukhlov

Ben Gurion University of the Negev, Beer Sheva, Israel
e-mail: vladimir@bgu.ac.il

In the present talk we give a review of the theory of composition operators on the Lebesgue and Sobolev spaces with applications to spectral theory of elliptic operators and we shall discuss a new point of view to nonlinear elasticity problems. This talk will be focused on lower estimates for Laplace-Neumann eigenvalues, spectral stability for divergence type elliptic operators and some applications of a new concept of composition duality to nonlinear elasticity problems.

Classical Multiplier Theorems and Recent Improvements

Loukas Grafakos

University of Missouri, USA
e-mail: grafakosl@missouri.edu

A multiplier operator alters the frequency of input functions/signals via multiplication by a fixed function called a multiplier. Multiplier theorems provide sufficient conditions for multiplier operators to preserve integrability. The classical multiplier theorems of Marcinkiewicz and of Hrmander on Euclidean spaces will be reviewed and comparisons between different versions of these results (and examples) will be given. The main focus of the talk is to discuss recent optimal
 Sobolev classes.

Integration over Brownian Motion Sample Paths; the Green Formula

Yevgeniy Guseynov
Independent Research, Washington, DC, USA
e-mail: gyevg@yahoo.com

We introduce a deterministic integral (not a random variable) for continuous functions $f(t, x)$ with respect to continuous functions $g(t)$ which is similar to the one in [1], and prove that this integral exists for almost all by Wiener measure (W-a.a.) Brownian motion sample paths (BMSP) g and for any β-Hölder functions $f, \beta>0$. This theorem completes the result of L. C. Young [4] $(\beta>1 / 2)$ for Hölder functions in the Riemann-Stieltjes integration and provides the integral which is the limit of linear Riemann integrals over approximation of sample paths.

The first integral for functions $f \in L_{2}([a, b])$ with respect to BM was introduced by Paley, Wiener, Zygmund [3] which was constructed relying on the Hilbert space structure of $L_{2}([a, b])$. For general stochastic processes the stochastic integral with respect to BM was introduced by Itô [2] as a limit of mean-square convergent sequence in a probability space (Ω, Σ, P). This stochastic integral and Itô's formula (1951) play a fundamental role in the stochastic calculus and many applications in finance and physics. Meanwhile, the stochastic processes are also observed as their realizations or sample paths but the Itô integral is defined non-constructively as a limit in $L_{2}\left(\Omega \times R_{+}\right)$which does not allow one to evaluate the integral over sample paths.

To compare with the later one, the new deterministic integral defines an integration over realizations of sample paths of stochastic processes and defined as the limit of linear Riemann integrals. For the new integral we prove the continuity of it by the upper limit and the Green formula that reduces its calculation to the standard Riemann integral. It is important to emphasize that the introduced deterministic integration works as well for W-a.a. BMSPs. The constructive definition of the new integral as a limit of the linear Riemann integrals and formulas for its calculations are useful in the evaluation of the integral over realization of the diffusion processes based on their quantifiable information. A simple application of these results to the stochastic differential equations is given.

References

[1] Y. Guseynov, Integrable boundaries and fractals for Hölder classes; the Gauss-Green theorem. Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 103, 27 pp.
[2] K. Itô, Stochastic integral. Proc. Imp. Acad. Tokyo 20 (1944), 519-524.
[3] R. E. A. C. Paley, N. Wiener and A. Zygmund, Notes on random functions. Math. Z. 37 (1933), no. 1, 647-668.
[4] L. C cted with Stieltjes integration. Acta "F DIRAFIT

Floating Mats and Sloping Beaches: Spectral Asymptotics of the Steklov Problem on Polygons

Stas Krymski, Michael Levitin, Leonid Parnovski, Iosif Polterovich, David Sher
Department of Mathematics, University College London, UK
e-mail: l.parnovski@ucl.ac.uk

I will discuss asymptotic behaviour of the eigenvalues of the Steklov problem (aka Dirichlet-toNeumann operator) on curvilinear polygons. The answer is completely unexpected and depends on the arithr ac propertues or tne angles of the polygon.

The talk based on j

Stability of the Inverses and Fredholm Properties of Interpolated Operators

Mieczysław Mastyło

Faculty of Mathematics and Computer Science, Adam Mickiewicz University
Poznań, Poland
e-mail: mastylo@amu.edu.pl

We will discuss the stability of isomorphisms and Fredholm properties of operators on Banach spaces generated by abstract interpolation methods. We prove that interpolated isomorphisms satisfy u rach spaces.

The alk is based

Harish-Chandra Pairs and Group Superschemes

Akira Masuok ${ }^{1}$, Alexandr Zubkov ${ }^{2,3}$
${ }^{1}$ Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan
e-mail: akira@math.tsukuba.ac.jp
${ }^{2}$ Department of Mathematical Science, United Arab Emirates University Al Ain, United Arab Emirates
${ }^{3}$ Sobolev Institute of Mathematica, SORAN, Omsk branch, Omsk, Russia
e-mail: a.zubkov@yahoo.com

In my talk I am going to discuss the recent results in the theory of (not necessary affine) group superschemes, obtained in collaboration with Prof. Akira Masuoka (Tsukuba University, Japan).

First, we proved that the category of locally algebraic group superschemes is equivalent to the category of Harish-Chandra pairs. A Harish-Chandra pair is a couple (G, V), where G is a group scheme (for example, an elliptic curve or more generally, an abelian variety) and V is a finite dimensional G-module equipped with a certain G-equivariant bilinear symmetric map $V \times V \rightarrow$ Lie (G).

Second, using the above fundamental equivalence we proved a superversion of Barsotti-Chevalley theorem. The latter states that any group superscheme G has an ascending series of normal group super-subschemes $H_{1} \leq H_{2} \leq G$ such that H_{1} is an affine group superscheme, H_{2} / H_{1} is an abelian group variety and G / H_{2} is an affine group superscheme as well.

Third, we proved that for any algebraic group superscheme G and its group super-subscheme H the sheaf quotient G / H is a superscheme of finite type. This theorem is a cornerstone result to develop a standard cohomology theorv of linear bundles on G / H

Existence, Uniqueness and Regularity of Space-Periodic Solutions to Stokes and Navier-Stokes Equations

Sergey E. Mikhailov
Department of Mathematics, Brunel University London, Uxbridge, UK
e-mail: sergey.mikhailov@brunel.ac.uk

He uniqueness and existence of solution to stationary anisotropic (linear) Stokes system in a compressible framework on n-dimensional torus are analysed first in a range of periodic Sobolev (Bessel-potential) spaces. By employing the Leray-Schauder fixed point theorem, the linear results are used to show the existence of solution to the stationary anisotropic (non-linear) Navier-Stokes incompressible system on torus in a periodic Sobolev space. Then the solution regularity for stationary anisotronic Navior Ctoloncowne Some counterparts of these results for the cor sponding non-stationary problome are presentec as well.

Behavior at Infinity for Null-Solutions of Higher-Order Elliptic Systems

Dorina Mitrea
Department of Mathematics, Baylor University, Waco, USA
e-mail: Dorina_Mitrea@baylor.edu

The main aim in this talk is to elucidate the structure of null-solutions of higher-order elliptic systems in exterior domains, which exhibit power growth at infinity. We show that the source of this type of growth is a polynomial function, itself a null-solution of the elliptic system, in the sense that the difference between the given function and this polynomial has the same magnitude as the fundamental solution of the elliptic system. Such asymptotic expansions are important in the study of bound

This is joint r rk with Iri

On the Solvability of the Neumann Problem for the Laplacian

Marius Mitrea
Department of Mathematics, Baylor University, Waco, USA
e-mail: Marius_Mitrea@baylor.edu

The Laplacian may be written in infinitely many ways as a generic second-order operator, using various coefficient matrices. In turn, corresponding to each such writing, there corresponds a
 and in th talk we will the elaborate on the following basic sue: characterize the classes of domains and coef ient matric $r\{y$ e fre monding Neun

Effective Properties of Random Composites

Vladimir Mityushev
Pedagogical University, Krakow, Poland
e-mail: mityu@up.krakow.pl

Various analytic formulas for random composites were deduced by means of self-consistent methods (Maxwell's approach, effective medium approximation, differential scheme, Mori-Tanaka method and so forth) for dilute composites when the concentration of inclusion is sufficiently small. Extensions of Maxwell's approach from single- to n-inclusions problems called cluster methods. Many years it was thought that cluster methods can be developed by taking into account interactions between pairs of spheres, triplets of spheres, and so on. However, as it will be demonstrated in the talk the field around a finite cluster of inclusions without clusters interactions can yield a formula for the effective conductivity only for dilute clusters. Therefore, all the known analytical formulae for random composites based on the self-consistent methods including cluster methods yield the same Clausius-Mossotti formula and analogous formulas for elastic composites. We establish analytical approximate formulae for random composites valid for high concentrations following the books [1] and [2]. The main result is based on the constructive solution of the Riemann-Hilbert and \mathbb{R}-linear problems for a multiply connected domain by a method of functional equations.

References

[1] P. Drygaś, S. Gluzman, V. Mityushev and W. Nawalaniec, Applied Analysis of Composite Media: Analytical and Computational Results for Materials Scientists and Engineers. Elsevier, 2020.
[2] S. Gll nan, V. Mityushey and W. Nawalaniec, Compu tional Analysis of Structured Media. Mathe ıatical Ana ;) \{ts) ip tic :Academic ress, London, 2018.

Dirac Operators on \mathbb{R}^{n} with Singular Potentials

Vladimir Rabinovich
Instituto Politécnico Nacional, Ciudad de México, CDMX, Mexico
e-mail: vladimir.rabinovich@gmail.com

We will consider the Dirac operators with singular potentials

$$
\begin{equation*}
\mathbb{D}_{\mathbf{A}, \Phi, Q_{\sin }}=\mathbb{D}_{\mathbf{A}, \Phi}+Q_{\sin } \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbb{D}_{\mathbf{A}, \Phi}=\sum_{j=1}^{n} \alpha_{j}\left(-i \partial_{x_{j}}+A_{j}\right)+\alpha_{n+1} m+\Phi(x) I_{N} \tag{2}
\end{equation*}
$$

is a Dirac operator on \mathbb{R}^{n} with variable magnetic and electrostatic potentials $A=\left(A_{1}, \ldots, A_{n}\right) \in$ $L^{\infty}\left(\mathbb{R}^{n}, \mathbb{C}^{n}\right)$ and $\Phi \in L^{\infty}\left(\mathbb{R}^{n}\right),\left\{\alpha_{j}\right\}_{j=1}^{n+1}$ are $N \times N$ Dirac matrices, that is $\alpha_{j} \alpha_{k}+\alpha_{k} \alpha_{j}=2 \delta_{j k} I_{N}$, I_{N} is the unit $N \times N$ matrix, $N=2^{[(n+1) / 2]}$. In formula (1), $Q_{s i n}=\Gamma \delta_{\Sigma}$ is a singular delta-potential with support on a uniformly regular C^{2}-hypersurface $\Sigma \subset \mathbb{R}^{n}$ being the common boundary of the open sets $\Omega_{ \pm}$. Let $H^{1}\left(\Omega^{ \pm}, \mathbb{C}^{N}\right)$ be the Sobolev space of N-dimensional vector-valued distributions \boldsymbol{u} on $\Omega_{ \pm}$, and $H^{1}\left(\mathbb{R}^{n} \backslash \Sigma, \mathbb{C}^{n}\right)=H^{1}\left(\Omega_{+}, \mathbb{C}^{n}\right) \oplus H^{1}\left(\Omega_{-}, \mathbb{C}^{n}\right)$. We associate with the formal Dirac operator $\mathbb{D}_{\mathbf{A}, \Phi, Q_{\text {sin }}}$ an unbounded in $L^{2}\left(\mathbb{R}^{n}, \mathbb{C}^{n}\right)$ operator $\mathcal{D}_{\mathbf{A}, \Phi}$ defined by the Dirac operator $\mathbb{D}_{\mathbf{A}, \Phi}$ with domain

$$
\operatorname{dom} \mathcal{D}_{\mathbf{A}, \Phi}=\left\{\boldsymbol{u} \in H^{1}\left(\mathbb{R}^{n} \backslash \Sigma, \mathbb{C}^{n}\right): a_{+}(s) \boldsymbol{u}_{+}(s)+a_{-}(s) \boldsymbol{u}_{-}(s)=0, \quad s \in \Sigma\right\}
$$

where $\boldsymbol{u}_{ \pm}(s)=\gamma_{\Sigma}\left(P^{ \pm} \boldsymbol{u}\right)(s), P^{ \pm}: H^{1}\left(\mathbb{R}^{n}, \mathbb{C}^{n}\right) \rightarrow H^{1}\left(\Omega_{ \pm}, \mathbb{C}^{n}\right)$ are the operators of restrictions, and $\gamma_{\Sigma}: H^{1}\left(\Omega_{ \pm}, \mathbb{C}^{4}\right) \rightarrow H^{1}\left(\Sigma, \mathbb{C}^{4}\right)$ is the trace operator, $a_{ \pm}(s)$ are $N \times N$ matrices defined as

$$
a_{+}(s)=\frac{1}{2} \Gamma(s)-i \alpha \cdot \boldsymbol{\nu}(s), \quad a_{-}(s)=\frac{1}{2} \Gamma(s)+i \alpha \cdot \boldsymbol{\nu}(s), \quad s \in \Sigma,
$$

where $\alpha \cdot \boldsymbol{\nu}=\sum_{j=1}^{n} \alpha_{j} \boldsymbol{\nu}_{j}$ and $\boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{n}\right)$ is the unit normal vector to Σ.
The main aims of the talk are:

1) conditions of self-adjointness of the operators $\mathcal{D}_{\mathbf{A}, \Phi}$;
2) the description of their essential spectra for bounded and unbounded interaction hypersurfaces $\Sigma \subset \mathbb{R}^{n} ;$
3) col ections $\mathcal{D}_{\text {A }}$ with the operators of boundary v ue problems for Dirac operators (2) in

Old and New Results on the Boundedness of the Riesz Potential Operator in the Borderline Case

Humberto Rafeiro

Department of Mathematical Sciences, Collegue of Science, United Arab Emirates University Al Ain, United Arab Emirates
e-mail: rafeiro@uaeu.ac.ae

We define the grand Lebesgue space corresponding to the case $p=\infty$ and similar grand spaces for Morrey and Morrey type spaces, also for $p=\infty$, on open sets in \mathbb{R}^{n}. We show that such spaces are useful in the study of mapping properties of the Riesz potential operator in the borderline cases $\alpha p=n$ for Lebesgue spaces and $\alpha p=n-\lambda$ for Morrey and Morrey type spaces, providing the target space "more narrow" than BMO. While for Lebesgue spaces there are known results on the description of the target space in terms better than BMO, the results obtained for Morrey and Morrey type spaces are entirely new. We also show that the obtained results are sharp in a certain sense.

Thi talk is base $\}$ Umarkhadzhiev.

Sharp Estimates for Conditionally Centred Moments and for Compact Operators on L^{p} Spaces

Eugene Shargorodsky ${ }^{1,2}$, Teo Sharia ${ }^{3}$
${ }^{1}$ Department of Mathematics, King's College London, London, United Kingdom
${ }^{2}$ Technische Universität Dresden, Fakultät Mathematik, Dresden, Germany
e-mail: eugene.shargorodsky@kcl.ac.uk
${ }^{3}$ Department of Mathematics, Royal Holloway University of London
Egham, United Kingdom
e-mail: t.sharia@rhul.ac.uk

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, ξ be a random variable on $(\Omega, \mathcal{F}, \mathbf{P}), \mathcal{G}$ be a sub- σ-algebra of \mathcal{F}, and let $\mathbf{E}^{\mathcal{G}}=\mathbf{E}(\cdot \mid \mathcal{G})$ be the corresponding conditional expectation operator. We obtain sharp ectimatoc for the moments of ξ. This allows us to find the of imal constant in the bounded sempact approxil ation property of $L^{p}([0,1]), 1<p<\infty$.

Variational Measures and Descriptive Characterization of Generalized Integrals

Valentin Skvortsov
Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, Moscow, Russia
e-mail: vaskvor2000@yahoo.com

We consider integrals which play an important role in various fields of harmonic analysis and in some application.

The known descriptive characterization of the indefinite Lebesgue integral in terms of absolutely continuous functions is equivalent to the following statement: a function f is L-integrable on $[a, b]$ if and only if there exists a function F of bounded variation on $[a, b]$ which generates an absolutely continuous Lebesgue-Stieltjes measure and $F^{\prime}(x)=f(x)$ a.e.; the function $F(x)-F(a)$ being the indefinite L-integral of f.

In case of non-absolute generalizations of the Lebesgue integrals (of Denjoy-Perron- or Hen-stock-type) indefinite integrals fail to be of bounded variation and so cannot generate a finite Stieltjes measure. In this case a descriptive characterization can be obtained in terms of some generalized σ-finite outer measure (so-called variational measure) generated by the indefinite integral.

Variational measures can be defined with respect to various derivate bases. In the simplest case of interval basis on an interval $[a, b]$ the definition is as follows. Let a tagged interval be a pair ($[c, d], x$) with $x \in[c, d]$ being a tag, $[c, d] \subset[a, b]$, and let δ be a strictly positive function on $[a, b]$ called a gauge. We say that a finite collection of tagged intervals $\left\{\left(I_{i}, x_{i}\right)\right\}$ is a δ-fine partition $\left\{\left(I_{i}, x_{i}\right)\right\}$ on $[a, b]$ tagged in $E \subset[a, b]$ if $I_{i} \subset[a, b] \cap[x-\delta(x), x+\delta(x)], I_{i}$ are pairwise non-overlapping and $x_{i} \in E$ for all i.

For a function F on $[a, b]$ and a set $E \in[a, b]$ the variational measure of E generated by F is defined by $\mathrm{V}_{F}(E):=\inf _{\delta}\left\{\sup \sum \Delta F\left(I_{i}\right)\right\}$ where sup is taken over all δ-fine partition $\left\{\left(I_{i}, x_{i}\right)\right\}$ on $[a, b]$ tagged in E and inf is taken over all gauges defined on E.

It can be checked that V_{F} is a metric outer measure on all subset of $[a, b]$.
A descriptive characterization of the Denjoy-Perron integral is given by the following statement (see [1]): A function f is DP-integrable on $[a, b]$ if and only if there exists a function F on $[a, b]$ which generates an absolutely continuous variational measure with $F^{\prime}(x)=f(x)$ a.e.; the function $F(x)-F(a)$ being the indefinite DP-integral of f.

Most of integrals serve to recover a primitive from its derivative which in turn depends on derivate basis and a space where it is defined. We discuss in this talk constructions and descriptive characterizations of the above type of integrals defined on various spaces, in particular on compact groups and rela a wo various aerivatives, in particular the deriv ive defined for functions in L^{r} space.

Acknowledgm nt

The talk is partially supported by the Russian Foundation for Basic Research, Grant \# 20-01-00584.

References

[1] T. P. Lukashenko, V. A. Skvortsov and A. P. Solodov, Generalized Integrals. URSS, Moscow, 2011.

Kippenhahn Curves and Numerical Ranges of Some Structured Matrices

Ilya M. Spitkovsky
Division of Science and Mathematics, New York University Abu Dhabi (NYUAD) Abu Dhabi, United Arab Emirates
e-mails: ims2@nyu.edu, imspitkovsky@gmail.com

The numerical range $W(A)$ (a.k.a. the field of values, or the Hausdorff set) of an n-by- n matrix A is defined as the image of the unit sphere of \mathbb{C}^{n} under the mapping $f_{A}: x \mapsto x^{*} A x$. It is a compact subset of \mathbb{C}, which is also convex due to the celebrated Toeplitz-Hausdorff theorem. Moreover, as was first observed in [7], W(A) is the convex hull of a certain algebraic curve $C(A)$ of class n, thus nowadays called the Kippenhahn curve of A. This provides an insight into the Elliptical range theorem: for $n=2$ the numerical range is an elliptical disk (degenerating into the line segment connecting the eigenvalues of A when A is normal).

As n increases, there is more variety in possible shapes of $W(A)$. Surprisingly though, for some classes of matrices $W(A)$ stays elliptical (or ends up being the convex hull of a small, compared to n, number of ellipses). The state of the matter, as of the beginning of the century, has been described in [3]. It became clear later that the phenomenon at hand is caused by $C(A)$ consisting of several components, the "exposed" of them being ellipses.

In this talk, we describe several such classes. It is based on [1], [2], [4]-[6] and some work in progress.

References

[1] N. Bebiano, J. da Providéncia and I. M. Spitkovsky, On Kippenhahn curves and higher-rank numerical ranges of some matrices. arXiv:2104.07893 [math.FA], 2021;
https://arxiv.org/abs/2104.07893.
[2] N. Bebiano, J. da Providéncia, I. M. Spitkovsky and K. Vazquez, Kippenhahn curves of some tridiagonal matrices. arXiv:2011.00849v1 [math.FA], 2020;
https://arxiv.org/abs/2011.00849; to appear in Filomat.
[3] E. S. Brown and I. M. Spitkovsky, On matrices with elliptical numerical ranges. Linear Multilinear Algebra 52 (2004), no. 3-4, 177-193.
[4] T. Geryba and I. M. Spitkovsky, On the numerical range of some block matrices with scalar diagonal blocks. Linear Multilinear Algebra 69 (2021), no. 5, 772-785.
[5] T. Geryba and I. M. Spitkovsky, On some 4-by-4 matrices with bi-elliptical numerical ranges. Linear Multilinear Algebra 69 (2021), no. 5, 855-870.
[6] M. Jiang and I. M. Spitkovsky, Low-dimensional reciprocal matrices with elliptical compo-

https://arxiv
[7] R. Kippenhahn 193-228.

Math. Nachr. 6 (1951),

Space-Time Methods for Partial Differential Equations

Olaf Steinbach

Institute of Applied Mathematics, TU Graz, Graz, Austria
e-mail: o.steinbach@tugraz.at

For the numerical solution of time-dependent partial differential equations we apply space-time discretization methods which are based on a variational formulation in the space-time domain. This approach allows an adaptive resolution of the solution in space and time simultaneously, and parallelization in space and time for an efficient iterative solution.

We first discuss a standard space-time variational formulation in Bochner spaces, with applications to the solution of distributed optimal control and inverse problems, subject to the heat equation. More recent work is on time-varying computational domains in order to do a shape optimization of electrical machines.

An alternative approach is a space-time variational formulation in anisotropic Sobolev spaces, where we use a modified Hilbert transformation to end up with a stable scheme in the space-time domain. This approach also allows to consider the acoustic wave equation, where we present first results for an unconditionally stable space-time finite element method, and new coercivity estimates for related space-time boundary element methods.

The talk is based on joint work with U. Langer (Linz), F. Tröltzsch (Berlin), H. Yang (Korneuburg), P. Gangl, (Graz), M. Gobrial (Graz), M. Zank (Wien), C. Urzua-Torres (Delft), and R. Löscher (Darmstadt).

References

[1] U. Langer, O. Steinbach, F. Tröltzsch and H. Yang, Space-time finite element discretization of parabolic optimal control problems with energy regularization. SIAM J. Numer. Anal. 59 (2021), no. 2, 675-695.
[2] O. Steinbach and M. Zank, Coercive space-time finite element methods for initial boundary value problems. Electron. Trans. Numer. Anal. 52 (2020), 154-194.
[3] O. Steinbach and M. Zank, A generalized inf-sup stable variational formulation for the wave equation. J. Math. Anal. Appl. 505 (2022) 125457.
[4] O. Steinbach and C. Urzúa-Torres, A new approach to space-time boundary integral equations for the wave equation. arXiv, 2105.06800, 2021; https://arxiv.org/abs/2105.06800.
[5] O. Steinbach, C m m indary element methods for

New Estimates for the Maximal Functions and Applications

Sergey Tikhonov

ICREA, CRM, UAB, Barcelona, Spain
e-mail:stikhonov@crm.cat

We discuss sharp pointwise inequalities for maximal operators, in particular, an extension of DeVore's inequality for the moduli of smoothness and a logarithmic variant of Bennett-DeVoreSharpley's inequality for rearrangements.

Changes in the National Curriculum in the Field of Mathematics

Ketevan Tsertsvadze

Ministry of Education and Science of Georgia, Tbilisi, Georgia
e-mail: k.tsertsvadze@mes.gov.ge

The report addresses changes implemented within the national curriculum.
Teaching the appropriate level of mathematical literacy poses a challenge to all countries. The present-day life puts different demands on the mathematical knowledge and skills of the graduating student of our secondary schools. Simultaneously, qualitatively new teaching tools have appeared, which are: computer programs, simulations, online teaching systems, electronic resources, etc.

In my report I present a vision of how we intend to deal with the challenges of quality teaching of mathematics in schools providing general education with the use of modern teaching methods and tools.

The report will consider the following issues:

1. Overview of the current situation, problems;
2. Vision for resolving existing problems;
3. Changes in the third generation national curriculum and the challenges of this plan implementation proce
4. How to bridge a sap betwee

Coupling and Decoupling of Free Flow and Flow in Porous Media and Related Interfacial Conditions

Xiaoming Wang

Southern University of Science and Technology, Shenzhen, Guangdong Province, China
e-mail: wangxm@sustech.edu.cn

Many natural and engineering problems involve the interaction of free fluid flow with fluid flow in porous media. Well-known examples include flows in karst aquifers, fluid filtration processes, proton exchange membrane fuel cell, hyporheic zone among many others.

In this talk, we address the following physically important questions mathematically:

1. How do free flows interact with flows in the porous media?
2. Can the interface conditions be derived in a systematic manner?
3. How are the various boundary conditions related to each other?
4. Are there physicallv imnortant recimos whorothe two mander decouple?

Dispersive Estimates for the Schrödinger Equation

Ricardo Weder
Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México Ciudad de México, México
e-mail:weder@unam.mx

The importance of the dispersive estimates for Schrödinger equations in spectral theory and in nonlinear analysis will be discussed. Furthermore, the literature on the $L^{p}-L^{p^{\prime}}$ estimates will be reviewed, starting with the early results in the 1990th, and with an emphasis in the results in one dimension. New results will be presented, in $L^{p}-L^{p^{\prime}}$ estimates for matrix Schrödinger equations in the half-line, with general selfadjoint boundary condition, and in matrix Schrödinger equations in the full-line with point interactions. In both cases we consider integrable matrix potentials that have a finite first moment.

The talk is based on joint work with Tuncay Aktosun and Iván Naumkin.

References

[1] T. Aktosun and R. Weder, Direct and Inverse Scattering for the Matrix Schrödinger Equation. Applied Mathematical Sciences, 203. Springer, Cham, 2021.
[2] I. Naumkin and R. Weder, $L^{p}-L^{p^{\prime}}$ estimates for matrix Schrödinger equations. J. Evol. Equ. 21 (2021), no. 1, 891-919.
[3] R. Weder, The L^{p} bound er equations. arXiv 1912.12793 v 3 ; https: arxiv.org/abs,/1012.10790 ///

Limiting Weak-type Behaviors for Singular Integral Operators and Maximal Function

Qingying Xue
Beijing Normal University, Bei Tai Ping Zhuang, Haidian District, Beijing, China
e-mail: qyxue@bnu.edu.cn

The best constant problem for some important operators' norm inequalities play important roles in Harmonic analysis and other fields. It is known that the best constant problem is closely connected with the limiting weak-type behaviors of these operators. In this talk, we will recall some known results about limiti ...an oype venarion rut several operators, and ntroduce our recent works on singular integral c erators wif

Abstracts of Sectional Talks

Design Model for Creation of Intelligent Learning Systems Based on Bayesian Networks

Sarsengali Abdymanapov, Serik Altynbek, Alibek Barlybayev, Madi Muratbekov

Center of Information Technologies, Kazakh University of Economics, Finance and International Trade, Nur-Sultan, Kazakhstan
e-mails: rector@kuef.kz; serik_aa@bk.ru; abarlybayev@kuef.kz; mmuratbekov@kuef.kz

Recently, there has been a rapid growth in networked Intelligent Learning Systems (ILS) to support learning processes to help students navigate responsively in interactive learning materials.

Web-based educational systems facilitate distance learning and offer easy access to any area of knowledge and learning process at any time, for learners from different walks of life, with different needs, preferences and characteristics. Differences in student characteristics play an important role in the design of an Internet-based learning environment. Hence, successful online learning requires multimedia techniques, adaptive techniques, and reasoning skills in addition to a user-friendly interface. Students often enjoy the ease of use and communication in a virtual learning environment, as well as customized learning paths. Thus, the challenge is to design web-based learning systems that dynamically adapt to each individual user in order to deliver knowledge efficiently. Consequently, web-based learning systems must be dynamically adaptable to the individual student, and they must be able to monitor student activities and provide personalization based on specific needs, preferences and knowledge. Moreover, these systems should offer students more freedom to navigate online course content and control their learning pace and learning flow. With these features, educational institutions, whether traditional or online, have rapidly begun to implement adaptive learning environments, virtual learning environments, and e-learning management systems to increase the number of online course students.

A technology that supports adaptive navigation, which helps learners to acquire knowledge faster and improve learning outcomes, is one of the common technologies used in educational web systems. Many ILS use technology such as the Intelligent Learning Systems platform, which supports learners' navigation in cyberspace by adapting to the goals and knowledge of the individual user. Ability of ILS to provide adaptability is based on student modeling technology. Student modeling, which we talked about above, is a process that is responsible for representing the goals and needs of students, analyzing student performance, and defining prior and acquired knowledge. However, the student modeling process is not black and white, but it often deals with uncertainty, and it is impossible to say for sure whether the student has assimilated the concept or not. Thus, the challenge is to build an effective student model, which is a key component of the ILS for overcoming uncertainty.

References

[1] T. Anderson, The Theory and Practice of Online Learning. AU Press. Athabasca University, 2008.

Controlling the Transmission Dynamics of Schistosomiasis: Mathematical Model Approach

Agatha Abokwara, Chinwendu E. Madubueze
Department of Mathematics, Statistics and Computer Science, Federal University of Agriculture, Makurdi, Nigeria
e-mails: ce.madubueze@gmail.com; agathamicheal@gmail.com

Schistosomiasis is one of the neglected tropical disease affecting communities in flood prone environment or where fishing activities take place. This has been a draw back to the health and economic life of the citizens in these areas. This study is to evaluate the impact of public health education and snail control activities on the spread of schistosomiasis. The model is developed with attention given to the snail and human populations which are the hosts of the miracidia and cercariae respectively. The existence and stability of disease free-equilibrium and endemic states are established. The disease-free equilibrium state is showed to be locally and globally asymptotically stable whenever the basic reproduction number is less than unity. The stability of endemic equilibrium state of the model is also analysed using centre manifold theory and Lyapunov function for its local and global stability when basic reproduction number is more than unity. The numerical simulations of the model are carried to evaluate the impact of these control strategies, public health education and snail control on schistosomiasis transmission. It was observed that public health education and cnail control role in mitigating the spread of the disease.

Weighted Estimates and Compactness of a Class of Integral Operators with Logarithmic Singularity

Akbota Abylayeva, Ryskul Oinarov, Bolat Seilbekov

Department of Fundamental Mathematics, L. N. Gumilyov Eurasian National University Nur-Sultan, Kazakhstan
e-mails: abylayeva_b@mail.ru; o_ryskul@mail.ru; bolat_3084@mail.ru

Let $I=(0, \infty)$ and let v, u be almost everywhere positive and locally integrable functions on the interval I. Let $1<p, q<\infty$ and $p^{\prime}=\frac{p}{p-1}$. Let us denote by $L_{p, v} \equiv L_{p}(v, I)$ the set of measurable functions f on I for which

$$
\|f\|_{p, w}=\left(\int_{0}^{\infty}|f(x)|^{p} w(x) d x\right)^{\frac{1}{p}}<\infty .
$$

Let W be a strictly increasing and locally absolutely continuous function on the interval I. Let $\frac{d W(x)}{d x}=w(x)$, for almost all $x \in I$.

Consider the operator

$$
\begin{equation*}
T_{\alpha, \beta} f(x)=\int_{0}^{x} \frac{\left(\ln \frac{W(x)}{W(x)-W(s)}\right)^{\beta} u(s) f(s) w(s) d s}{(W(x)-W(s))^{1-\alpha}}, x \in I, \tag{1}
\end{equation*}
$$

where $\alpha>0, \beta \geq 0$.
The boundedness of the operator (1) from $L_{p, w}$ to $L_{q, v}$ when $\beta=0$ is obtained in the paper [1] for $\alpha>1 / p, 1<p \leq q<\infty$ and $0<q<p<\infty$.

Further, we assume that W is non-negative on I and $\lim _{x \rightarrow 0^{+}} W(x)=0$. The following theorem holds.
Theorem. Let $0<\alpha<1, \frac{1}{\alpha}<p \leq q<\infty$ and $\beta \geq 0$. Let the function u be non-increasing on I. Then the operator $T_{\alpha, \beta}$, defined by formula (1), is bounded from $L_{p, w}$ to $L_{q, v}$ if and only if

$$
\begin{gathered}
A_{\alpha, \beta}=\sup _{z>0} A_{\alpha, \beta}(z)<\infty \\
A_{\alpha, \beta}(z)=\left(\int_{z}^{\infty} v(x) W^{q(\alpha-\beta-1)}(x) d x\right)^{\frac{1}{q}}\left(\int_{0}^{z} W^{\beta p^{\prime}}(s) u^{p^{\prime}}(s) w(s) d s\right)^{\frac{1}{p^{\prime}}}
\end{gathered}
$$

and operator $T_{\alpha, \beta}$ is compact from $L_{p, w}$ to $L_{q, v}$ if and only if $A_{\alpha, \beta}<\infty$ and

$$
\lim _{z \rightarrow 0^{+}} A_{\alpha, \beta}(z)=\lim _{z \rightarrow \infty} A_{\alpha, \beta}(z)=0
$$

Moreover, $\left\|T_{\alpha, \beta}\right\| \approx A_{\alpha, \beta}$, where $\left\|T_{\alpha, \beta}\right\|$ is the norm of the operator (1) from $L_{p, w}$ to $L_{q, v}$.

References

[1] A. M. Abylayeva, R. Oinarov and L.-E. Persson, Bound Hardy type operators. J. Inequal. Appl. 2016, Paper N

Convergent Affine Bounding Functions for Polynomials: Bernstein Least Squares

Ibraheem Abu-Falahah ${ }^{1}$, Tareq Hamadneh ${ }^{2}$, Mohammad Obaidat ${ }^{3}$
${ }^{1}$ Department of Mathematics, Hashemite University, Zarqa, Jordan
e-mail: iabufalahah@hu.edu.jo
${ }^{2}$ Department of Mathematics, Al Zaytoonah University of Jordan, Amman, Jordan
e-mail: t.hamadneh@zuj.edu.jo
${ }^{3}$ Department of Electrical power and Mecatronices Engineering, Tafila Technical University, Tafila, Jordan
e-mail: maobaidat76@ttu.edu.jo

In this work, we consider the computation of bounding functions for multivariate polynomials over simplices. Bounding the range of functions is an important issue in many areas of applied mathematics and computing like global optimization, computer aided geometric design, stability analysis and robust control. The expansion of a (multivariate) polynomial function F is given into the so-called simplicial Bernstein basis over a simplex (triangles), [2]. The Bernstein expansion is used due to the tightness of the enclosure and its rate of convergence properties to the exact range, [1]. The expansion of Bernstein can be extended to rational polynomial functions. The Bernstein lower bound is also used to certify whether a given function is positive over a simplex. Our main goal is providing convergent affine lower bound for polynomials over the whole domain. We show the linear and quadratic convergent with respect to raising the degree and subdivision of a simplex.

The bound can be used to certify the positivity of polynomials over subsimplices. Certifying the positivity of functions can be improved by subdividing the given simplex at a specific point. Specifically, if the domain is shrunk or subdivided to smaller subdomains, then the Bernstein bound shrinks too. On the other hand of applications, the key to finding a Lyapunov function for a polynomial linear system is to find positivity certificates, where the subdivision method satisfies local positivity certificates over subsimplices.

However, computing Bernstein coefficients on the face values of a simplex is the fastest way for computing the minimum bound. In this work, we hold this property onto the simplicial case together with proving further important properties of the Bernstein basis over a simplex. First, we provide a representation for the Bernstein coefficients and the enclosure bound of polynomials over a simplex. Subsequently, we provide an convergent affine lower bound for polynomials over subsimplices. Finally, convergent properties and applications on stability of control systems are addressed.

References

[1] T. Hamadneh, M. Ali and H. AL-Zoubi, Linear optimization of polynomial rational functions: applications for positivity analysis. Mathematics 2020, no. 8(2), 283.
[2] R. Leroy, Convergence under subdivision a simplicial Bernstein basis. Reliab. Comput.

On Singular Extensions of Continuous Functionals From $C([0,1])$ to Variable Lebesgue Spaces

Daviti Adamadze, Tengiz Kopaliani

Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University Tbilisi, Georgia
e-mails: daviti.adamadze2013@ens.tsu.edu.ge; tengiz.kopaliani@tsu.ge

Valadier and Hensgen proved independently that the restriction of functional

$$
\phi(x)=\int_{0}^{1} x(t) d t, \quad \in L^{\infty}([0,1])
$$

on the space of continuous functions $C([0,1])$ admits a singular extension back to the whole space $L^{\infty}([0,1])$. Some general results in this direction for the Banach lattices were obtained by Abramovich and Wickstead. In present note we investigate analogous problem for variable exponent Lebesgue spaces, namely we prove that if the space of continuous functions $C([0,1])$ is closed subspace in $L^{p(\cdot)}([0,1])$, then every bounded linear functional on $C([0,1])$ is the restriction of a singular linear functional on $L^{p(\cdot)}([0,1])$.

Acknowledgement

The authors were supported by Volks in frames of "International Doctoral

Ramsey Numbers
Vladimer Adeishvili ${ }^{1}$, Ivane Gokadze ${ }^{2}$
${ }^{1}$ Department of Teaching Methodology, Akaki Tsereteli State University
Kutaisi, Georgia
e-mail: vladimir.adeishvili@atsu.edu.ge
${ }^{2}$ Ltd Kutaisi Public School \# 1, Kutaisi, Georgia
e-mail: Ivane.gokadze@atsu.edu.ge

In modern mathematics, it is difficult to find open-ended problems, such problems that are still unsolved and at the same time, whose main idea and problem description can be formulated in the language of elementary mathematics so that the problem is not difficult for lower grade students. For a mathematician, all of the above are additional challenges and motivators to tackle such problems, although they are very difficult to solve successfully and with great work, justification is probably necessary.

The paper focuses on one of these types of problems, presents the already known results on the topic, and the content of the still-unsolved problems related to the topic, in particular, discusses Ramsey-type problems and the so-called Ramsey numbers.

Before discussing Ramsey numbers and their problems, the paper implies that each of the two people either knows or does not know each other. Also, the encounter is two-way (if A knows B so B knows A) The Ramsay number $R(f, e)$ is the smallest natural number that has the following property: For any $R(f, e)$ person, there are f people, each of whom knows each other, or e person, none of whom knows each other. Here, we can notice that $R(f, e)=R(e, f)$.

The paper also shows that the number $R(f, e)$ exists for any f and e numbers, but specifically, what the number $R(f, e)$ is equal to, it is verv difficult to fioure out For todov the exact value of none of the numbers $R(f, e)$ is knor, except that $f \leq e \leq 5$.

The paper discusses some basic roblems rel ?

BVP for the First Order Elliptic Systems in the Plane

George Akhalaia ${ }^{1}$, George Makatsaria ${ }^{2}$, Nino Manjavidze ${ }^{3}$
${ }^{1}$ Ilia Vekua Institute of Applied Mathematics of
Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: giaakha@gmail.com
${ }^{2}$ Business and Technology University, Tbilisi, Georgia
e-mail: giorgi.makatsaria@gmail.com
${ }^{3}$ Ilia State University, Tbilisi, Georgia
e-mail: nino.manjavidze@iliauni.edu.ge

In this presentation the Riemann-Hilbert type boundary value problem in some classes of solutions for general first order elliptic systems in plane domains bounded by smooth curves will be discussed. In some cases, Noethericity conditions of the problem are given.

The Consistent Estimators of Beta ("B") Statistical Structure

Lela Aleksidze, Laura Eliauri, Zurab Zerakidze
Gori State University, Gori, Georgia
e-mails: lela.aleksidze@gmail.com; laura.eliauri@gmail.com; zura.zerakidze@mail.ru

The density of Beta ("B") low is determined by the equality

$$
f(x, \alpha, \beta)=x^{\alpha-1}(1-x)^{\beta-1} / B(\alpha, \beta)
$$

where

$$
B(\alpha, \beta)=\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} d x, \alpha>0, \beta>0
$$

The probability measure μ corresponding to the Beta ("B") density: $\mu(A)=\int_{A} f(x, \alpha, \beta) d x$ is called "B" measure.
Definition 1. A statistical structure $\left\{E, S, \mu_{i}, i \in I\right\}$ is called Beta ("B") Statistical structure if $\mu_{i}(\forall i \in I)$ are "B" measure.

For each $i \in I$ we denote by $\bar{\mu}_{i}$ the completion of the measure μ_{i}, and by $\operatorname{dom}\left(\bar{\mu}_{i}\right)$ - the σ-algebra of all $\bar{\mu}_{i}$-measurable subsets of E. We denote

$$
S_{1}=\bigcap_{i \in I} \operatorname{dom}\left(\bar{\mu}_{i}\right) .
$$

Definition 2. The "B" statistical structure $\left\{E, S_{1}, \bar{\mu}_{i}, i \in I\right\}$ is called strongly separable if there exists a family of S_{1}-measurable sets $\left\{Z_{i}, i \in I\right\}$ such that the relations are fulfilled:
(1) $\mu_{i}\left(Z_{i}\right)=1 \quad \forall i \in I$;
(2) $Z_{i_{1}} \cap Z_{i_{2}}=\varnothing \forall i_{1} \neq i_{2}, \quad i_{1}, i_{2} \in I$;
(3) $\bigcup_{i \in I} Z_{i}=E$.

Definition 3. We will say that the "B" statistical structure $\left\{E, S_{1}, \bar{\mu}_{i}, i \in I\right\}$ admits a consistent estimators of parameters $i \in I$ if there exists at least one measurable mapping $\delta:\left(E, S_{1}\right) \rightarrow$ $(I, B(I))$ such that $\bar{\mu}_{i}(\{x: \delta(x)=i\})=1 \forall i \in I$.
Theorem. In order that the Beta ("B") orthogonal statistical structure $\left\{E, S_{1}, \bar{\mu}_{i}, i \in I\right\}$, card $I=$ c, admitted a consistent estimators of parameters $i \in I$ it is necessary and sufficient that this statistical structure be strongly separable.

References

[1] Z. Zerakidze and O. Purtukhia, The weakly consistent, strongly consistent and consistent estimates of the parameters. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. 31 (2017), 151-154.
[2] Z. S. Zerakidze and O. G. Pu akhia, Consistent criteria for hynothesis testin $\xi_{\text {§ }}$ (Russian) Ukraïn. Mat. Zh. 71 (2019), no. 4, 554-571.
, 4, 486-5 ; tip in tra zan Math. 71 (2019),

On the Uniformization of Some Function Couples of Three Variables

Teimuraz Aliashvili
Institute of Fundamental and Interdisciplinary Mathematics Study, Ilia State University Tbilisi, Georgia
e-mail: teimuraz.aliashvili@iliauni.edu.ge

In the connection with D. Siersma's approach to the investigation of non-complete intersection singularities it is proved that all polynomials algebraically dependent on equations of simple curve singularities are polynomials of the corresponding left-hand sides from the list of M. Giusti.

References

[1] D. Siersma, Vanishing cycles and ecial fibres Singularity thearusd ds applicatio , Part I (Coventry, 1988/1989), 292-301,

Lorenz-Like System as a Set of Coupled Driven and Damped Nonlinear Oscillators

Teimuraz Aliashvili ${ }^{1}$, Ivane Murusidze ${ }^{2}$, Giorgi Rakviashvili ${ }^{1}$
${ }^{1}$ Institute of Fundamental and Interdisciplinary Mathematics Study, Ilia State University Tbilisi, Georgia
e-mails: teimuraz.aliashvili@iliauni.edu.ge; giorgi.rakviashvili@iliauni.edu.ge
${ }^{2}$ Institute of Applied Physics, Ilia State University, Tbilisi, Georgia
e-mail: miv@iliauni.edu.ge

We develop a mathematical formalism within which a Lorentz-like system is represented as a set of second-order ordinary differential equations which describe three nonlinearly coupled oscillators with damping and self-excitation. The advantage of this formalism is not in reducing the mathematical difficulties of solving nonlinear dynamics of such systems, but rather to gain deeper insight it affords into their formal structure. It explicitly shows the intrinsic damping as well as the modulations of the natural frequencies of each oscillator resulting from their nonlinear coupling. This approach enables us to construct an effective Lagrangian and generalized Hamiltonian (energy) for the system. The "grounded" and transparent formalism is the basis for developing a prototypical,
 underlie the cyclic processes systems with a dissipative na

Apollonius Problem on the Number of Normals Passing Through a Point of a Conic
Yagub Aliyev
School of IT and Engineering, ADA University, Baku, Azerbaijan
e-mail: yaliyev@ada.edu.az

We study a variant of Apollonius problem on determining the number of normals to an ellipse passing through a given point. The origin of the problem is Book V of Apollonius' Conics. We mention also the case of hyperbolas and parabolas. We study the following problem: Let A be a general point on the plane of the ellipse with equation $\frac{x^{2}}{a^{2}}+\frac{a^{2}}{b^{2}}=1$, where $a>b>0$. How many points B, different from A, do exist on this ellipse, such that the line $A B$ is perpendicular to the tangent line of this ellipse at the point B ? We denote this number by $n(A)$. We do not exclude the case where the point A is on the given ellipse. In fact the main aim of the present paper is to study this case in more detail.

Firstly, we suppose that the point A is not on the ellipse. In this variant the problem (Apollonius Problem) was considered in [4, §13]; [3, p. 71 (Problem 13), pp. 257-258 (solution)]; [1, Section 17.7.4]. For historical background of this problem see [5, Chapter VII] and [2, Chapter 12]. We will present here a new solution using elementary calculus. After this we find intersection points of the given ellipse and its astroida. The obtained points surprisingly have elegant coordinates. These points completely solve the problem for the points of the given ellipse.

References

[1] M. Berger, Geometrie. Cedic/Fernand Nathan, Paris, 1978; Russian transl.: Mir, Moscow, 1984.
[2] B. A. Rosenfeld, Apollonius of Perga. (Russian) MCCME, Moscow, 2004.
[3] V. A. Sadovnichij, A. A. Grigorian and S. V. Konjagin, Problems of Students Mathematical Olympiads. (Russian) Publisher of Moscow University, 1987.
[4] V. M. Tikhomirov, Tales of Maxima and Minima. American Mathematical Society - Mathematical Association of America, 1991; Russian original: Library "Kvant", 56. Nauka, Moscow, 1986.
[5] B. L. van der Warden, Ontwaken Wetenschap: Eayntische. Babylonvsche en Cri zse Wiskunde, P. Noordhoff N.V., Groni en, 1950; F , nd a Mil Noscow, $19:$

Poisson Brackets and Poisson Prime Ideals in Polynomial Algebras

Maram Alossaimi
School of Mathematics and Statistics, Sheffield University, Sheffield, UK
e-mail: maram.alosaimi@gmail.com

The concept of Poisson algebra is one of the most important concepts in mathe- matics that makes a link between commutative and noncommutative algebra. In this talk, I will give the definition of the Poisson algebra, talk about some properties of polynomial Poisson algebras, Poisson prime ideals, Poisson spectra, simple Poisson algebras and examples.

On Temporal Heyting Algebras

Phridon Alshibaia

Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
Tbilisi, Georgia
e-mail: palshibaia@yahoo.com

Modalized Heyting calculus $m H C$ introduced by Leo Esakia in his work [1], is the augmentation of the Intuitionistic logic Int by a modal operator \square. This modalized Heyting calculus is a weakening of the proof-intuitionistic logic $K M$ of Kuznetsov and Muravitsky by discarding Löb axiom. There is exact embedding of the $m H C$ calculus into the modal system K4.Grz.

Temporal Heyting calculus $t H C$ is a temporal enrichement of $m H C$. This calculus was introduced by Leo Esakia. The temporal Heyting calculus $t H C$ is defined on the basis of $m H C$ with additional axioms for the "adjoint" modality \diamond, namely:
(t1) $p \rightarrow \square \diamond p ;$
(t2) $\diamond \square p \rightarrow p$;
$(\mathrm{t} 3) \diamond(p \vee q) \rightarrow \diamond p \rightarrow \diamond q ;$
(t4) $\diamond \perp \rightarrow \perp$
and an additional rule:

$$
p \rightarrow q \Longrightarrow \diamond p \rightarrow \diamond q .
$$

Algebraic models of $m H C$ are $f H A$-algebras (frontal Heyting algebras). In their work [2] Jose Luis Castiglioni, Marta Sagastume, Hernan Javier San Martin have extended Heyting duality to the category fHA.

We investigate variety of temporal Heyting algebras tHA, which represent algebraic models of temporal Heyting calculus $t H C$ and have the following results:

1. We develop a theory of temporal Heyting algebras.
2. We generalize Heyting duality to the category tHA.
3. Characterization of simple $t H A$-algebras and subdirectly irreducible $t H A$-algebras is given.

References

[1] L. Esakia, The modalized Heyting calculuc. a concorvativo modol intuitionistic logic. J. Appl. Non-Classich
[2] J. L. Castiglioni, M. S. Sagastum Math. Logic No. 45 (2010), 201-

Towards a Georgian Controlled Language

Nino Amiridze ${ }^{1}$, Anna Chutkerashvili ${ }^{1}$, Besik Dundua ${ }^{1,2}$, Temur Kutsia ${ }^{3}$
${ }^{1}$ Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mails: nino.amiridze@gmail.com; annachutkerashvili@gmail.com
${ }^{2}$ Kutaisi International University, Kutaisi, Georgia
e-mail: besik.dundua@kiu.edu.ge
${ }^{3}$ RISC, Johannes Kepler University Linz, Austria
e-mail: kutsia@risc.jku.at

Controlled natural languages (CNLs) are engineered languages that are based on natural language, but have their vocabulary, syntax, and/or semantics restricted [1]. The motivation is to have a language that, on one hand, looks as natural as possible and, on the other hand, is simple and unambiguous.

Application areas of CNL are quite broad. They serve improving communication and mutual understanding between humans (especially for people with specific reading and understanding restrictions), facilitate manual or automatic translation, are suitable for reasoning, writing technical documents and legal texts, interchanging business rules among organizations, for efficient communication in emergency situations and crisis management, etc. Examples include technical documentations of Boeing and IBM, special English CNLs for communications between ships and harbors, etc.

While English dominates the landscape of CNLs ([1] analyzes 100 English CNLs), controlled (sub)languages have been developed for many other languages (e.g., Bulgarian, French, Spanish, Chinese, Russian, German, Greek, Spanish, and Japanese). However, Georgian is not among them. In general, from the computational point of view, despite some recent and ongoing attempts, Georgian is still pretty under-resourced.

In this talk we discuss challenges on constructing Georgian controlled language, which aims at establishing clear and unambiguous communication between different parties in emergency situations.

Acknowledgement

This research has been supported by the Shota Rustaveli National Science Foundation of Georgia under the grant \# FR-19-18557.

References

[1] T. Kuhn, A survey and cla guistics 40 (2014), no. 1, 1:

Anti-Unification: Recent Advances and Applications in Natural Language Processing

Nino Amiridze ${ }^{1}$, Temur Kutsia ${ }^{2}$
${ }^{1}$ Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: nino.amiridze@gmail.com
${ }^{2}$ RISC, Johannes Kepler University Linz, Austria
e-mail: kutsia@risc.jku.at

Anti-unification [7] is a well-known method to compute generalizations in logic. Given two objects, the goal of anti-unification is to reflect commonalities between these objects in the computed generalizations, and highlight differences between them. This technique has many interesting applications in the areas such as, e.g., inductive logic programming, inductive and analogical reasoning, software code close detection, program analysis, proof generalization, automated program repair, etc.

In natural language processing, anti-unification has been used in tasks such as semantic parsing, grammar and grounded language learning, semantic classification of sentences based on their parse trees (used in chatbot development), detecting semantic textual similarity, modeling metaphors, etc., see, e.g., [1] for an overview. The major technique in these applications is still the original Plotkin-Reynolds algorithm with some adaptations.

Our group at RISC, together with collaborators, contributed in the area of anti-unification by designing, studying, and implementing new powerful algorithms in various unranked, higher-order, equational, and fuzzy theories, see, e.g., [2]-[6]. In this talk, we overview some of them in the context of applicability in natural language processing.

Acknowledgement

This work was partially supported by the Shota Rustaveli National Science Foundation (SRNSFG) under the Grant \# FR-19-18557.

References

[1] N. Amiridze and T. Kutsia, Anti-unification and natural language processing. EasyChair Preprint no. 203, EasyChair, 2018; https://easychair.org/publications/preprint/hzsv.
[2] A. Baumgartner and T. Kutsia, A Library of Anti-unification Algorithms. In: Fermé E., Leite J. (Eds.) Logics in Artificial Intelligence. JELIA 2014, pp. 543-557, Lecture Notes in Computer Science, vol 8761. Springer, Cham, 2014.
[3] A. Baumgartner and T. Kutsia, Unranked second-order anti-unification. Inform. and Comput. 255 (2017), part 2, 262-286.
[4] A. Baumgartner, T. Kutsia, J. Levy and M. Villaret, Higher-order pattern anti-unification in linear time. J. Automat. Reason. 58 (2017), no. 2, 293-310.
[5] D. M. Cerna and T. Kutsia, Idempotent anti-unification. ACM Trans. Comput. Log. 21 (2020), no. 2, Art. 10, 32 pp.
[6] T. Kutsia and C. Pau, Matching and generalization modulo proximity and tolerance relations. In: Proc. TbiLLC'19, LNCS, Springe
 American Elsevier, New York.

Model of Coronavirus Spread in the Light of Vaccination

Natela Archvadze ${ }^{1}$, Merab Phkhovelishvili ${ }^{2}$
${ }^{1}$ Department of Computer Sciences, Ivane Javakhishvili Tbilisi State University Tbilisi, Georgia
e-mail: natela.archvadze@tsu.ge
${ }^{2}$ Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
e-mail: merab5@list.ru

Understanding the principle and speed of virus spread is critically important to take the right decisions in relation to the safe behavior of society.

All predictions of coronavirus spread are based on opinions, expectations, anticipations, and hopes that the virus "soon reach a plateau", "the peak will be passed soon", "we are at the beginning of the fourth wave", etc. The situation is rapidly changing and requires adoption of responsible decisions both from government authorities and ordinary citizens. The lives, health, and financial wellbeing of people depend on prompt adoption and correctness of such decisions.

Many prediction models were discussed specifically for coronavirus, from which we emphasize [1], where a quite accurate model is implemented by means of math apparatus. In this paper, we consider a model, where the impact of vaccination on the spread of coronavirus and its mortality is additionally taken into account.

The virus propagation model, which we consider, is based on the combination of parameters, whose values are unique for each country depending on population density, population behavioral patterns, time of virus introduction, and government actions. Additionally, we introduce two parameters: NV - number of vaccinated people and NE - vaccine efficiency. Because the number of infected persons is in inverse proportion to the number of vaccinated, therefore, let's multiply NT (ti) by inverse number of the product of vaccinated people's number (NV) and vaccine efficiency (NE), obtaining the vaccination impact formula:

$$
\operatorname{NTVAC}(t i)=\mathrm{NT}(t i) \cdot \frac{1}{(\mathrm{NE} * \mathrm{NV})}
$$

and for calculation of vaccination impact on the number of deceased persons by ti time the following formula:

$$
\operatorname{NLVAC}(t i)=\mathrm{NL}(t i) \cdot \frac{1}{(\mathrm{NE} * \mathrm{NV})}
$$

We build a hybrid model from various prediction models using parallel data [2], including for such actual issues as a coronavirus spread model.

References

[1] https://www.kommersant.ru/doc/4322667.
[2] Z. Gasitashvili, M. Pkhovelishvili an N. Arcnvaaze, Predıction ot events means of parallelism. In: 2019 International C
and Engineence on
and (MACISE), pp. 32-3.
2019.

Numerical Methods in the Question on Lattice Points in Shifted Balls

Natiga Aslanova
Department of Informatics, Ganja State University, Ganja, Azerbaijan
e-mail: natiga.cabbarova@mail.ru

In Number Theory one studies the question on the number of lattice points enclosed into various domains of multidimensional spaces. Let's denote by $T(N)$ the number of lattice points in the sphere $x^{2}+y^{2}+z^{2}=N$ and put

$$
R=R(r)=T\left(r^{2}\right)-\frac{4}{3} \pi r^{3} .
$$

The question on estimation of this variance is known as Sphere Problem. There is a conjecture which states that $R \ll r^{1+\varepsilon}$.

Besides, in series of works (see [1]) the problem was studied from other points of view. Authors of those works investigated the fluctuations in the number $N_{\alpha}(r)$ of lattice points reminder term inside a sphere of radius r centered at a point $\alpha \in[0,1)^{3}$ different from the origin.

We apply computer calculations for some r and points (x, y, z) to analyze the behavior of the relative deviation of the number of lattice points from the volume. The results' analyze show that the center of the sphere with minimal deviation is random. There is a point for which a relative deviation for the sphere centered at this point is very large, which indicates its propensity to growth, as a radius stands large. This fact agrees, at the origin, with the following result of the work [1]:

$$
\lim _{T \rightarrow \infty}(T \log T)^{-1} \int_{1}^{T}|R(\sqrt{u})| d u=\frac{32}{7} \frac{\zeta(2)}{\zeta(3)}
$$

The program written in Python used for some values of ball's radiuses. We have computed the relative deviation d of the number of lattice points in shifted balls. There were considered shiftings of the balls with radiuses $60,99,200,300$. As the time of calculations grows proportional to the volume of the ball, we suffice with shifting in four steps in the case of radiuses 60 and 99 . For the radius 200 we consider shifting in three steps, and in the case of the radius 300 consider two steps. For got results of calculations we preserved 4 decimal digits after of the point, when the relative deviation is calculated. Since the value of math.pi is taken with an error no more than 10^{-11}, then the nominator of the fraction d is known with an error no more than 10^{-3}. Since $r \leq 300$, then among these 4 decimal digits at least one after the point is a right digit.This is sufficient for establishing approximate shifting for which the relative deviation d is small or large. We fixing the first coordinate x, computed a minimal absolute relative deviation and indicated the centers where the minimum is occurs.

References

[1] P. M. Bleher and F. J. Dyson, Mean squ 68 (1994), no. 4, 383-393.

Derivations Period 2 of Semiprime Rings

Mehsin Jabel Atteya
Department of Mathematics, College of Education, Al-Mustansiriyah University, Iraq
e-mail: mehsinatteya88@gmail.com

Ring theory is a show-piece of mathematical unification, bringing together several branches of the subject and creating a powerful machine for the study of problems of considerable historical and mathematical importance. Rings derivations are not the kind of subject that undergoes tremendous revolutions. Moreover, this has been studied by many algebraists in the last years, especially the relationships between derivations and the structure of rings. The study of derivation was initiated during the 1950s and 1960s. Precisely, derivations of rings got a tremendous development in 1957. A map $d: R \rightarrow R$ is called a derivation if $d(x+y)=d(x)+d(y)$ and $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$.

In other words, d is called a derivation if the Leibniz's rule satisfy.
A mapping $d: R \rightarrow R$ is called period 2 on R if $d^{2}(x)=x$ for all $x \in R$. Recall that R is semiprime if $a R a=0$ implies $a=0$ and R is prime if $a R b=0$ implies $a=0$ or $b=0$. The main purpose of this paper is to introduce and study the definition of derivations period 2 via semiprime ring and prime ring as following:

An additive mapping $d: R \rightarrow R$ is called de property period 2 gather together. Accurately, ring that satisfied certain conditions.

Note on the Multifractal Formalism of Covering Number on the Galton-Watson Tree

Najmeddine Attia, Meriem Bel Hadj Khalifa
Department of Mathematics, Faculty of sciences of Monastir, University of Monastir Monastir, Tuisia
e-mails: najmeddine.attia@gmail.com; meriem.bhk@outlook.fr

We consider, for t in the boundary of Galton-Watson tree ($\partial \mathrm{T}$), the covering number $\mathrm{N}_{n}(t)$ by cylinder of generation n. For a suitable set I and a sequence $\left(s_{n, \gamma}\right)$, we establish almost surely, and uniformly on γ, the Hausdorff and packing dimensions of the set

$$
\left\{t \in \partial \mathrm{~T}: \quad \mathrm{N}_{n}(t)-n b \sim s_{n, \gamma}\right\} \text { for } b \in I .
$$

Keywords: Random covering, Hausdorff dimensic , indexed n

On the One Nonparametric Estimator of the Bernoulli Regression Function

Petre Babilua ${ }^{1}$, Elizbar Nadaraya ${ }^{1}$, Mzevinar Patsatsia ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mails: petre.babilua@tsu.ge; elizbar.nadaraya@tsu.ge
${ }^{2}$ Department of Mathematics, Faculty of Mathematics and Computer Sciences, Sokhumi State University, Tbilisi, Georgia
e-mail: mzevinarpatsatsia@gmail.com

The estimate for the Bernoulli regression function is constructed using the Bernstein polynomial. The question of its consistency and asymptotic normality is studied. Testing hypothesis is
 hypothesis on the equality of two Bernou i regression
constructed tests is studied. constructed tests is studied.

Inverse Problems and Their Discrete Analogs for the Second Order Quasi-Linear Equations of Mixed Type

Giorgi Baghaturia ${ }^{1}$, Marina Menteshashvili ${ }^{1,2}$
${ }^{1}$ Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
${ }^{2}$ Sokhumi State University, Tbilisi, Georgia
e-mails: gi.baghaturia@gtu.ge; m.menteshashvili@gtu.ge

We describe the process of construction of general integrals for some quasi-linear non-strictly hyperbolic equations of second order. General integrals are obtained by means of characteristic differential relations. We use these General integrals, as a powerful instrument for investigating and solving of Cauchy problem posed for various quasi-linear partial differential equations with an admissible parabolic degeneration. The given functions describing the initial conditions are defined on a closed interval. We also study a variant of the inverse problem and prove that the considered problem has a solution under certain conditions. We illustrate the Cauchy and inverse problems in some concrete examples. In these cases, the definition domains of the solution are investigated. In some specific cases the families of the characteristic curves have either common envelopes or singular points. Also, a corresponding convergence of the scheme is proved.

Polynomial Generators of $M S U_{*}[1 / 2]$ Related to Classifying Maps of Certain Formal Group Laws

Malkhaz Bakuradze
Department of Algebra and Geometry, Ivane Javakhishvili Tbilisi State University
Tbilisi, Georgia
e-mail: malkhaz.bakuradze@tsu.ge

We provide a set of polynomial generators of $M S U_{*}[1 / 2]$ defined by the formal group law in spherical cobordism. One aspect is to obtain the genera on $M S U_{*}[1 / 2]$ with values in polynomial ring as the restrictions of the classifying map of the Abel formal group law and the Buchstaber formal group law. The latter is associated with the Krichever-Hoehn complex elliptic genus.

References

[1] M. Bakuradze, Polynomial gener formal group laws. arXiv:2107.01
certain

On Menshov-Rademacher Inequality

Mzevinar Bakuridze ${ }^{1}$, Sergei Chobanyan ${ }^{2}$, Vaja Tarieladze ${ }^{2}$
${ }^{1}$ Batumi Shota Rustaveli State University, Batumi, Georgia
e-mail: bakuridzemzevinari@mail.ru
${ }^{2}$ Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
e-mails: chobanya@msu.edu; v.tarieladze@gtu.ge

In [5] the following version of Menshov-Rademacher inequality is contained: let $\varphi_{n} \in H=$ $L_{2}[0,1], n=1,2, \ldots$ be an orthonormal sequence and $\left(a_{n}\right)_{n \in \mathbb{N}} \in l_{2}$ be a sequence of numbers; then the estimate

$$
\int_{0}^{1}\left(\sup _{n \geq 1}\left|\sum_{k=1}^{n} a_{k} \varphi_{k}(t)\right|\right)^{2} d t \leq K \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}\left(1+\log _{2} n\right)^{2}
$$

holds with some universal constant K.
The further study of the constant was made in $[1,2,4]$.
We plan to discuss these results and their some consequences.
The talk is based mainly on [3].

Ackowledgement

The third author was partially supported by the Shota Rustaveli National Science Foundation Grant \# DI-18-1429: "Application of Probabilistic Methods in Discrete Optimization and Scheduling Problems".

References

[1] W. Bednorz, A note on the Men'shov-Rademacher inequality. Bull. Pol. Acad. Sci. Math. 54 (2006), no. 1, 89-93.
[2] S. A. Chobanyan, Some remarks on the Men'shov-Rademacher functional. (Russian) Mat. Zametki 59 (1996), no. 5, 787-790; translation in Math. Notes 59 (1996), no. 5-6, 571-574.
[3] S. Chobanyan, M. Bakuridze and V. Tarieladze. On Menshov-Rademacher theorem in quasiorthogonal case. 2021, to appear.
[4] S. Chobanyan, Sh. Levental and H. Salehi, On the constant in Men'shov-Rademacher inequality. J. Inequal. Appl. 2006, Ar \Perp voyov, 1 pp.
[5] L. Kantorovic, Some theorems on th almost eve ? e \{nf of 1! ${ }^{\text {R. (Dokl.) cad. }}$ Sci. URSS, n. Ser. 14 (1937), 537-5 0.

On Axiomatic Characterization of Alexander-Spanier Normal Homology Theory of General Topological Spaces

Vladimer Baladze ${ }^{1}$, Anzor Beridze ${ }^{2}$, Leonard Mdzinarishvili ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Exact Sciences and Education, Batumi Shota Rustaveli State University, Batumi, Georgia
e-mail: vladimer.baladze@bsu.edu.ge
${ }^{2}$ School of Mathematics, Kutaisi International University, Kutaisi, Georgia
e-mail: anzor.beridze@kiu.edu.ge
${ }^{3}$ Department of Mathematics, Faculty of Informatics and Control Systems, Georgian Technical University, Tbilisi, Georgia
e-mail: 1.mdzinarishvili@gtu.ge

On the category $\mathcal{K}_{C M}^{2}$ of pairs of compact metric spaces the exact homology theory was defined by N. Steenrod. First axiomatic characterization of the Steenrod homology theory on the category $\mathcal{K}_{C M}^{2}$ was done by J. Milnor. There are exact homology theories defined by other authors (A. N. Kolmogoroff, G. Chogoshvili, K. A. Sitnikov, A. Borel and J. C. Moore, H. N. Inasaridze, D. A. Edwards and H. M. Hastings, W. S. Massey, E. G. Sklyarenko). Later, on the category \mathcal{K}_{C}^{2} of pairs of compact Hausdorff spaces the axiomatic characterization of an exact homology theory was obtained by N. Berikashvili, L. Mdzinarishvili and Kh. Inasaridze, L. Mdzinarishvili, Kh. Inasaridze. For paracompact spaces S. Saneblidze generalized the result obtained by N. Berikashvili.

In the paper [1] we have generalized the result for general topological spaces. We constructed an exact, the so-called Alexander-Spanier normal homology theory on the category $\mathcal{K}_{\text {Top }}^{2}$, which is isomorphic to the Steenrod homology theory on the subcategory of compact pairs \mathcal{K}_{C}^{2}. Moreover, we gave an axiomatic characterization of the constructed homology theory [1].

References

[1] V. Baladze, A. Beridze and L. Mdzina Spanier normal homology theory of ge https://arxiv.org/abs/2102.04856

Solving the Linear Difference Equation with Periodic Coefficient via the Analytic Formula of Generalized Fibonacci Sequences

Hajar Benkhaldoun, Rajae Ben Taher
Department of Mathematics, Faculty of Sciences, University Moulay Ismail
Meknes, Morocco
e-mail: benkhldoun.hajer@gmail.com; bentaher89@hotmail.fr

The aim of this talk is to establish explicit solutions of the homogeneous linear difference equations with periodic coefficients. For this purpose, we get around the problem by converting each equation of this class to an equivalent linear difference equation with constant coefficients. The approach used reposes on the analytic formula of the Generalized Fibonacci Sequences.

References

[1] R. Ben Taher and H. Benkhaldoun, Solvir ficients via Fibonacci sequences. Linear M

On Some Models of Set Theory

Mariam Beriashvili

Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: mariam_beriashvili@yahoo.com

According to well-known set-theoretical results, there are models of ZFC in which all projective subsets of \mathbf{R} are well-behaved from the point of view of descriptive set theory, in particular, they all are Lebesgue measurable. For instance, the Axiom of Projective Determinacy (PD) implies prominent regularity properties of the projective sets: Lebesgue measurability, the Baire property, the perfect subset property and the Ramsey property.

This implies that definable absolutely nonmeasurable functions on \mathbf{R} can only exist in certain models of ZFC without substantial large cardinals. Assuming that there exists a well-ordering of \mathbf{R} whose graph is Δ_{2}^{1}-subset of the plane, there exists a Vitali set in \mathbf{R} which is a Δ_{2}^{1}-subset of \mathbf{R}. Consequently, under this assumption, there are projective sets which are Lebesgue non-measurable and do not have the Baire property. Recall that this assumption holds true in Gödel's Constructible Universe L. (cf. [2], [4]).

In [1] we have shown, that there exists a model of ZF, such that there is no well-ordering of the reals but there is a Hamel basis.
A. Miller has shown that in \mathbf{L}, there is Π_{1}^{1}-Hamel basis. It is an old result by S. Feferman that the existence of Vitali sets doesn't imply that there is a well-ordering of the reals (cf. [2], [4]). Still in ZFC, there is a Mazurkiewicz set which is simultaneously a Hamel basis, cf. [3]. In joint work with R. Schindler we formulate a sufficient criterion for a model of ZF to have a Mazurkiewicz set.
Theorem $1(\mathbf{Z F})$. Assume that there is some sequence $\left(A_{i}, r_{i}: i<\lambda\right)$ such that for all $i \leq j<\lambda$,
(a) $A_{i} \subset A_{j}$;
(b) $\mathbb{R}=\bigcup_{k<\lambda} A_{k}$;
(c) r_{i} is a real which is not in $\operatorname{comp}\left(A_{i}\right)$;
(d) $\operatorname{comp}\left(A_{i} \cup\left\{r_{i}\right\}\right) \subset A_{i+1}$.

There is then a Mazurkiewicz set.

References

[1] M. Beriashvili, R. Schindler, L. Wu and L. Yu, Hamel bases and well-ordering the continuum. Proc. Amer. Math. Soc. 146 (2018), no. 8, 3565-3573.
[2] T. Jech, Set Theory. Pure and Applied Mathematics. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.
[3] A. B. Kharazishvili, Nonmeasurable Sets and Functions. North-Holland Mathematics Studies, 195. Elsevier Science B.V., Amsterdam,
[4] R. Schindler, Set Theory. Exploring Ind endence an

Some Class of Polyhedrons in \mathbf{R}^{3} which are Not Primitive

Shalva Beriashvili
Georgian Technical University, Tbilisi, Georgia
e-mail:Shalva_89@yahoo.com

Decomposing a geometric object into simpler parts is one of the most fundamental problems in computational geometry. In the Euclidean plane $\mathbf{R}^{\mathbf{2}}$ a triangulation of polygon is called decomposing into triangles without adding new vertices and every simple polygon can be triangulated. It is known that it is possible to divide any polygon with $n-3$ diagonals into $n-2$ triangles. The generalization of this process to higher dimensions is also called a triangulation. For example, polyhedron in \mathbf{R}^{3} can be decomposing with tetrahedrons. In higher dimensional spaces polyhedrons we can decompose with simplices. By the investigation of the triangulations of convex polyhedrons, I have crossed (connected) and considered a certain class of convex polyhedrons (primarily, in the space \mathbf{R}^{3}), which are called primitive polyhedrons.
Notion 1. Let Q be a convex three-dimensional polyhedron in the space \mathbf{R}^{3}.
We recall that a convex polyhedron Q^{\prime} is a primitive extension of Q if there exist a triangular facet D of Q and a tetrahedron T in \mathbf{R}^{3} such that D is also a faced of T and
(*) $T \cap Q=D$;
${ }^{(* *)}$ The set of all vertices of Q^{\prime} coincides with the union of the sets of all vertices of Q and T.
Notion 2. Let $\left\{Q_{1}, Q_{2}, \ldots, Q_{k}\right\}$ be a finite sequence of convex tree-dimensional polyhedra in \mathbf{R}^{3}.
We say that this sequence is primitive if Q_{1} is a tetrahedron and, for each natural index $i \in[1, k-1]$, the polyhedron Q_{i+1} is a primitive extension of Q_{i}.
Notion 3. A convex tree-dimensional polyhedron $Q \subset \mathbf{R}^{3}$ is called primitive if $Q=Q_{k}$ for some primitive sequence $\left\{Q_{1}, Q_{2}, \ldots, Q_{k}\right\}$ of convex polyhedra in \mathbf{R}^{3}.

It is shown that in the three-dimensional Euclidean space some prism is not primitive polyhedron.

References

[1] Sh. Beriashvili, On some properties of primitive polyhedrons. Trans. A. Razmadze Math. Inst. 174 (2020), no. 1, 23-28.
[2] A. B. Kharazishvili, Introduction to Combinatorial Geometry. (Russian) Tbilis. Gos. Univ., Tbilisi, 1985. Sciences, Tbilisi, 2016.

The Law of Large Numbers for Weakly Correlated Random Elements in The Spaces $l_{p}, 1 \leq p<\infty$

Valeri Berikashvili, George Giorgobiani, Vakhtang Kvaratskhelia

Muskhelishvili Institute of Computational Mathematics of
the Georgian Technical University, Tbilisi, Georgia
e-mails: v.berikashvili@gtu.ge; giorgobiani.g@gtu.ge; v.kvaratskhelia@gtu.ge

The Law of Large Numbers ($L L N$) is a popular area of research and has been intensively studied by many authors for the sequences of independent (or uncorrelated) random variables. One of the first results of the $L L N$ for the dependent random variables was obtained in 1928 by A. Khinchin [1]:
Theorem (A. Khinchin, 1928). Let $\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \ldots$ be a sequence of random variables such that for any positive integer n, ξ_{n} has a mathematical expectation μ_{n} and variance σ_{n}^{2}. Furthermore, let g be a nonnegative function, defined on the set of nonnegative integers such that for the coefficient of correlation $\varrho_{m n}$ of random variables ξ_{m} and ξ_{n} the following inequalities hold

$$
\left|\varrho_{m n}\right| \leq g(|m-n|), \quad m, n=1,2, \ldots
$$

If

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}}\left(\sum_{i=0}^{n-1} g(i)\right)\left(\sum_{i=1}^{n} \sigma_{i}^{2}\right)=0
$$

then the sequence of random variables $\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \ldots$ satisfies the $L L N$.
The purpose of this presentation is to show an analogue of this theorem for random elements with values in the Banach spaces $l_{p}, 1 \leq p<\infty$.

References

[1] A. Y. Khinchin, Sur la loi forte des grands nom 186 (1928), 285-287.

Boundedness and Compactness Criteria of a Certain Class of Matrix Operators with Variable Limits of Summation

Aigul Beszhanova, Ainur Temirkhanova

Department of Fundamental Mathematics, L. M. Gumilyov Eurasian National University Nur-Sultan, Kazakhstan
e-mails: beszhanova@mail.ru; ainura-t@yandex.kz

Let $1<p, q<\infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1,\left\{\omega_{i}\right\}_{i=1}^{\infty},\left\{u_{i}\right\}_{i=1}^{\infty}$ be non-negative, $\left\{v_{i}\right\}_{i=1}^{\infty}$ positive sequences of real numbers, which will be referred to as weights. Let $l_{p, v}$ be the space of sequences $f=\left\{f_{i}\right\}_{i=1}^{\infty}$, for which the following norm is finite:

$$
\|f\|_{p, v}:=\left(\sum_{i=1}^{\infty}\left|f_{i} v_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

We consider the matrix operators of the following form

$$
\begin{equation*}
(A f)_{n}=\sum_{k=\alpha(n)}^{\beta(n)} a_{n, k} f_{k}, \quad n \geq 1, \tag{1}
\end{equation*}
$$

where $\left(a_{n, k}\right)$ is a non-negative matrix of operator A, which satisfy the following Oinarov's discrete general condition: there exists $d \geq 1$, a sequence of positive numbers $\left\{\omega_{i}\right\}_{i=1}^{\infty}$ and a non-negative matrix $\left(b_{i, j}\right)$, such that the inequalities

$$
\frac{1}{d}\left(b_{n, k} \omega_{m}+a_{k, m}\right) \leq a_{n, m} \leq d\left(b_{n, k} \omega_{m}+a_{k, m}\right)
$$

holds for all $1 \leq k \leq n, \alpha(n) \leq m \leq \beta(k)$, where $\alpha(n), \beta(n)$ are sequences of the natural numbers such that:
(i) $\alpha(n)$ and $\beta(n)$ are strictly increasing sequences;
(ii) $\quad \alpha(1)=\beta(1)=1$ and $\alpha(n)<\beta(n)$, for $n \geq 2$.

Note that from (2) it follows $n \leq \alpha(n)<\beta(n)$ for $n \geq 2$.
In this work we obtained necessary and suffic ness of the matrix operator (1) from $l_{p, v}$ into l_{q},

when $1<$

Striving to Transcend the Fuzzy Ontology

Merihan Hazem Anwar Labib Bishara

Faculty of Business and Technologies, International Black Sea University
Tbilisi, Georgia
e-mail: merihan.hazem20@gmail.com

The importance of the need for ontology languages is increasing with time and nowadays the biggest ontologies are used in medicine since automatized medical tools are based exactly on such background knowledge bases.

An example of the biggest medical ontology is the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) which is a standardized, multilingual vocabulary of clinical terminology that is used by physicians and other health care providers for the electronic exchange of clinical health information.

The importance of ontology lies not only in the medical sector but also extends to many other fields as well like biology, bioinformatics, e-commerce, geography, etc.,

Although the ontology languages are standardized by W3C, there are still many problems remaining with these ontologies, where information is vague and imprecise which is so-called, fuzzy ontologies, Fuzzy ontologies are obtained by integrating fuzzy logic with ontologies.

As a result of this increasing importance of ontology, there have been continuous attempts by scientists and researchers to solve the problem of the so-called, fuzzy ontologies, and this, in turn, led them to what is called Unranked Fuzzy Logic.

The final step that has been achieved in Unranked Fuzzy Logic is that its tableaux calculus was sound and complete, but the Unranked Furnu I

In this research paper, we will introdu athe answerstomany thestimut mentation of such kind of logic.

About the Issues of Ambulatory Monitoring Devices

Merium Hazem Anwar Labib Bishara

Faculty of Business and Technologies, International Black Sea University
Tbilisi, Georgia
e-mail: merium.hazem20@gmail.com

Technological improvements have become increasingly intertwined with daily living and consumers are beginning to control their health using consumer-grade software and hardware.

As ambulatory monitoring devices that can be worn on the body as an accessory or implanted into garments are known as smart wearables like smartwatches, wristbands, and other gadgets which can provide health information, particularly in measuring heart rates.

The heartbeat is measured by the number of contractions of the heart as beats per minute, the lower the number, the better the heart performs. Activity, fitness level, mental state, and medicine can all impact heart rates.

Therefore Heart rate inconstancy can be a gigantic threat for people, particularly for those who are analyzed with any kind of heart disease or recuperated from a previous cardiovascular condition. In order to avoid this threat, continuous monitoring of heart disorder is preferred.

Thus a lot of Ambulatory monitoring devices are allowing a new paradigm in health care for their continuous monitoring and they are becoming increasingly popular. However, the problem with these devices is that they are limited only to monitoring the individual's heart rate and since the individual may lack medical knowledge, an abnormal heartbeat could result in a life-threatening situation.

In this paper, we will be covering ambulatory monitorino devicoc and thoir limitationelu as how to take advantage of their benefits while av ding their drawbacks, and the importance of an individual's heart rate data to the medical auth

About Unranked Fuzzy Unification

Anriette Michel Fouad Bishara ${ }^{1}$, Mikheil Rukhaia ${ }^{2}$
${ }^{1}$ Faculty of Business and Technologies, International Black Sea University
Tbilisi, Georgia
e-mail: anriettehazem@yahoo.com
${ }^{2}$ Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: mrukhaia@logic.at

Solving equations between logic terms is a fundamental problem with many important applications in mathematics, computer science, and artificial intelligence. It is needed to perform an inference step in reasoning systems and logic programming, to match a pattern to an expression in rule-based and functional programming, to extract information from a document, to infer types in programming languages, to compute critical pairs while completing a rewrite system, to resolve ellipsis in natural language processing, etc. Unification and matching are well-known techniques used in these tasks.

Unification (as well as matching) is a quite well-studied topic for the case when the equality between function symbols is precisely defined. This is the standard setting. There is quite some number of unification algorithms whose complexities range from exponential [4] to linear [3]. Besides, many extensions and generalizations have been proposed. Those relevant to our interests are unification with sequence variables and flexible-arity (unranked) function and predicate symbols [2].

Unranked fuzzy logic [1] is an extension of first-order Łukasiewicz product logic (£ $\Pi \forall$) with sequence variables and unranked function and predicate symbols. In this talk we consider unification problem for this logic. Unranked fuzzy unification is divided into two parts: unranked unification and solving sets of linear inequalities. Unranked unification, and thus unranked fuzzy unification, is non-terminating in general, but there are son wo. nusum challenges of unranked fuzzy unification and iden fy correspo ang yin thats.

Acknowledgement

This work was supported by Shota Rustaveli National Science Foundation of Georgia under the project \# YS-19-367.

References

[1] A. Bishara and M. Rukhaia, Towards unranked fuzzy theory. In IEEE International Conference on System Analysis \& Intelligent Computing (SAIC), pp. 1-4, IEEE, 2020.
[2] T. Kutsia and M. Marin, Solving, reasoning, and programming in common logic. In 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, (SYNASC), pp. 119-126, IEEE, Computer Society, 2012.
[3] M. Paterson and M. N. Wegman, Linear unification. Eighth Annual ACM Symposium on Theory of Computing (Hershey, Pa., 1976), pp. 181-186, Assoc. Comput. Mach., New York, 1976.
[4] J. A. Robinson, A machine-oriented logic based on the resolution principle. J. Assoc. Comput. Mach. 12 (1965), 23-41.

The Tensor Completions in Varieties Hall's W-Power Groups

Tengiz Bokelavadze

Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia
e-mail: tengiz.bokelavadze@atsu.edu.ge

In the present paper some problems of the theory of the varieties of Hall's W-power groups and tensor completions of Hall's W-power groups in a variety are considered.

References

[2] M. Amaglobeli and T. Bokelavadze, Abelian and nilpotent varieties of power groups. Georgian Math. J. 18 (2011), no. 3, 425-439.
[1] Ph. Hall, Nilpotent groups. Notes of Lectures Given at the Canadian Mathematical Congress Summer Seminar, University of Algebra, August 12-30, 1957.
[3] A. A. Lashkhi and T. Z. Bokelavadze, A subgroup groups. (Russian) Dokl. Akad. Nauk 429 (2009), 80 (2009), no. 3, 891-894.
rice and the geometry of Hall's W-nower
). $6,731-7$?

Program for Enrollment of Entrants in Higher Education on the National Exams, Problems and Ways to Solve Them

George Bolotashvili
V. Chavchanidze Institute of Cybernetics of the Georgian Technical University, Tbilisi, Georgia
e-mail: bolotashvili@yahoo.com

The program of admission of applicants to universities at passing state exams hac hoon_nortiollu studied. It has been proven that the recruitment o applicants to higher education institutions and the distribution of grants occurs with significant e ors. A way ? hif ro also given.

Solving the Linear Ordering Problem Using
 the Faceted Cuts $(N P=P)$
 George Bolotashvili

V. Chavchanidze Institute of Cybernetics of the Georgian Technical University, Tbilisi, Georgia
e-mail:bolotashvili@yahoo.com

In this paper, a survey of the results is given, giving a polynomial algorithm for the NP hard of linear ordering problem. We consider the linear ordering problem as an integer linear programming problem. Solving the linear programming problem and obtaining a non-integer solution, we find all the necessary cutting facets using a polynomial algorithm and with the obtained facets we again solve the linear programming problem. This approach to solving the problem continues until now until we get an integer solution. Every time we c 1 nnd all the necessary tacets using a polynomia algorithm. Therefore we obtain a polynomial al rithm for s ${ }^{\text {s }}$, li r , f, problem.

Compactness of Commutators for the Calderon-Zygmund Type Singular Operator on Global Morrey-Type Spaces

Nurzhan Bokayev
L. N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
e-mail: bokayev2011@yandex.ru

In this paper we give sufficient conditions of compactness of Commutators for singular operators $[b, T]$ from Global Morrey-type space $\mathrm{GM}_{p \theta_{1}}^{w_{1}}$ to $\mathrm{GM}_{p \theta_{2}}^{w_{2}}$. Let $1 \leq p, \theta \leq \infty, w$ be a measurable nonnegative function on $(0, \infty)$. The Global Morrey-type space $\mathrm{GM}_{p \theta}^{w} \equiv \mathrm{GM}_{p \theta}^{w}\left(\mathbb{R}^{n}\right)$ is defined as the set of all functions $f \in L_{p}^{l o c}\left(\mathbb{R}^{n}\right)$ with finite quasi-norm

$$
\|f\|_{\mathrm{GM}_{p \theta}^{w}} \equiv \sup _{x \in \mathbb{R}^{n}}\|w(r)\| f\left\|_{L_{p}(B(x, r))}\right\|_{L_{\theta}(0, \infty)},
$$

where $B(t, r)$ the ball with center at the point t and of radius r [2].
In this paper we consider the Calderon-Zygmund type singular operator

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x, y) f(y) d y
$$

where $\mathrm{K}(\mathrm{x}, \mathrm{y})$ is standart singular kernel.
For a function $b \in L_{l o c}\left(\mathbb{R}^{n}\right)$ by M_{b} denote multiplier operator $M_{b} f=b f$, where f-measurable function. Then the commutator between T and b is defined by $[b, T]=M_{b} T-T M_{b}$. By $\operatorname{VMO}\left(\mathbb{R}^{n}\right)$ we denote the BMO-closure $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, where $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ the set of all functions from $C^{\infty}\left(\mathbb{R}^{n}\right)$ with compact support.
Theorem. Let $1<p<\infty, 1<\theta_{1} \leq \theta_{2}<\infty, b \in \operatorname{VMO}\left(\mathbb{R}^{n}\right)$, the functions w_{1}, w_{2} satisfy the conditions

$$
\left\|w_{2}(r)\left(\frac{r}{t+r}\right)^{\frac{n}{p}}\right\|_{L_{\theta_{2}}(0, \infty)} \leq\left\|w_{1}(r)\right\|_{L_{\theta_{1}}(t, \infty)} .
$$

Then the commutator $[b, T]$ is a compact operator from $\mathrm{GM}_{p, \theta_{1}}^{w_{1}}$ to $\mathrm{GM}_{p, \theta_{2}}^{w_{2}}$.
The compactness of Commutators for singular integrals on Morrey spaces was considered in [3]. The condition of compactness of set in Global Morrey-type spaces was obtained in [1].

References

[1] N. A. Bokayev, V. I. Burenkov and D. T. Matin, On precompactness of a set in general local and global Morrey-type spaces. Eurasian Math. J. 8 (2017), no. 3, 109-115.
[2] V. I. Burenkov, Recent progress in studying the boundedness of classical operators of real

[3] Y. Chen, Y. Ding and X. Wang, O mpactness ? att fo ar ar integrals
Morrey spaces. Canad. J. Math. 64 (201

In Regard to Multidimensional Density Distribution of Projection Type of Nonparametric Statistical Assessment

Tristan Buadze, Vazha Giorgadze
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
e-mails: tristan.buadze@yahoo.com; vaja.giorgadze1992@gmail.com

The study of empirical analogies of density distribution is based on the main statistical challenge, which is represented by density terminology of theoretical distribution. Nonparametric statistical assessment task of an unknown density distribution is among them, which is one of the basic challenges of mathematical statistics.

Recently attention of many authors was drawn towards Lebega's variations in force properties and size, towards the search of probable sizes of density of empirical analogies.

The founder of Georgian probability school, professor G.Mania, together with the member corresponder of Georgian science academy, E. Nadaraia, studied and based on independant observation versatilely generalized E.Glivenko and N. Smirnov's "histogramic" and Rozemblat-Parzen's "hearty" type assessments. Together with this, E. Nadaraya discussed and generalized "projection" type assessments structured by M. Chencovi in which spectral disintegration of "heart" is used on the basis of orthonormal function. He got new results and also determined density deviation of framed assessment with L_{2} metric precision.

In the presented study an unknown multidimensional density distribution of Chencov's type nonparametric statistical assessment of root-mean-square integral deviation of asymptotic behaviour is discussed. For the deviation of μ size square integral function in L_{2} space Laplace transformation is offered.

Random processes and Gauss's random field's general methods, which enable the generalization of the existing results are chosen as the main methods of the study.

References

[1] T. G. Buadze and G. A. Sokhadze, On a statistical problem in Hilbert space, Vol. I. (Russian) Georgian Engineering News, 2006, no. 4.
[2] G. M. Mania, Statistical Estimation of a Probability Distribution. (Russian) Izdat. Tbilis. Univ., Tbilisi, 1974.
[3] E. A. Nadaraya, Nonparametric Estimation of P Mathematics and its Applications (Soviet Series Dordrecht, 1989.

Asymptotic Analysis and Regularity Results of Dynamical Boundary-Transmission Problems of the Generalized Thermo-Electro-Magneto-Elasticity for Composed Structures

Tengiz Buchukuri ${ }^{1}$, Otar Chkadua ${ }^{1,2}$, David Natroshvili ${ }^{3}$
${ }^{1}$ Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Sokhumi State University, Tbilisi, Georgia
e-mails: t_buchukuri@yahoo.com; otar.chkadua@gmail.com
${ }^{3}$ Departament of Mathematics, Georgian Technical University, Tbilisi, Georgia
e-mail: natrosh@hotmail.com

The talk is devoted to the investigation of mixed boundary-transmission problems of dynamics for composed elastic structures consisting of two contacting anisotropic bodies which occupy two three-dimensional adjacent regions with a common contacting interface. The structure contains an interfacial crack. The contacting elastic bodies are subject to different mathematical models. In particular, we consider Green-Lindsay's model of generalized thermo-electro-magneto-elasticity in one component, while in the other one, we considered Green-Lindsay's model of generalized thermo-elasticity. The interaction of the thermo-mechanical and electro-magnetic fields in the composed homogeneous piecewise elastic structure is described by the fully coupled systems of partial differential equations of dynamics and the appropriate boundary-transmission conditions. This problem by means of Laplace transform is reduced to the corresponding problem of pseudooscillations.

Using the potential method and the theory of pseudodifferential equations on manifolds with a boundary, we prove the uniqueness and existence of the solutions of the pseudo-oscillation problem in suitable function spaces, investigate the regularity of solutions and singularities of the corresponding thermo-mechanical and electro-magnetic fields near the interfacial crack edges, derive the explicit expressions for the stress singularity exponents, and show that they depend essentially on the material parameters. A special class of composed elastic structures is considered, where the so-called oscillating stress singularities do not occur.

Finally, by the inverse Laplace transform the solutions of the original dynamical problems are constructed with the help of the solutions of the corresponding elliptic problems of pseudooscillations.

Acknowledgement

This work was supported by Shota Rustav (Grant \# FR-18-126).
(F)

Shell Equations in Terms of Günter's Derivatives, Derived by the Γ-Convergence

Tengiz Buchukuri, Roland Duduchava

Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: t_buchukuri@yahoo.com; RolDud@gmail.com

A mixed boundary value problem for the L'ame equation in a thin layer $\Omega^{h}: \mathcal{C} \times[-h, h]$ around a surface \mathcal{C} with the Lipshitz boundary is investigated. We show that when thickness h of the layer tends to zero $h \rightarrow 0$, the corresponding energy functional, scaled properly, converges in the Γ-limit sense to some functional defined on mid-surface \mathcal{C} of the layer, which corresponds to twodimensional boundary value problem for associated Euler-Lagrange equation in terms of Gúnter's derivatives. The obtained equations together with boundary conditions can be considered as a boundary value problem defined on a shell model. This BVP on \mathcal{C}, considered as the Γ-limit of the initial BVP, is written in terms of Günter's tangential derivatives on \mathcal{C} and represents a new form of the shell equation. It is shown that the Neumann boundary condition from the initial BVP on the upper and lower surfaces transforms into a right-hand side term of the basic equation of the limit BVP.

Acknowledgement

This work was supported by Shota Rustaveli (Grant \# DI-2016-16).

Generalization of Schwartz's Theorem

Natela Chachava, Ilia Lomidze

Tbilisi Free University, Tbilisi, Georgia
e-mails: i.lomidze@freeuni.edu.ge; chachava.n@yahoo.com

The equality in the weak sense of second order mixed derivatives is proved for function having isolated singularities. This is a generalization of Schwartz's theorem (in some sources it is called Mixed Partials theorem or Clairaut's theorem or Young's theorem):

A number of physical problems, in particular those related to point (idealized) objects, have to be described by generalized functions (such as the Dirac function and related to it). Thus, it seems interesting to investigate whether the conditions of Schwartz's theorem can be expanded. We have proved the
Theorem. Let a function $F(x)=F\left(x_{1}, \ldots, x_{N}\right)$ and its second order derivatives be defined and continuous at all points of a closed area \bar{D} of the Euclidian space $\mathbb{E}^{N}\left(\bar{D} \subset \mathbb{E}^{N}, N=2,3, \ldots\right)$ except one interior point P,

$$
P=x^{(P)}=\left(x_{1}^{(P)}, x_{2}^{(P)}, \ldots, x_{N}^{(P)}\right) \in D, \quad P \notin \partial D
$$

where the function F has an isolated singularity (for example, a pole of order $k, k \in \mathbb{N}$). Then the second order derivatives $\partial_{\alpha} \partial_{\beta} F(x)(\alpha, \beta=1, \ldots, N)$ are commutative (in the weak sense) at all points of \bar{D} :

$$
\partial_{\alpha} \partial_{\beta} F(x)-\partial_{\beta} \partial_{\alpha} F(x) \doteq 0, \quad x=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \bar{D}, \quad \alpha, \beta=1, \ldots, N .
$$

Here the symbol \doteq is used for equalities in the weak sense. That is, one has

$$
\int_{D_{1}}\left[\partial_{\alpha} \partial_{\beta} F(x)-\partial_{\beta} \partial_{\alpha} F(x)\right] f(x) d x_{1} \cdots d x_{N}=0, \quad D_{1} \subset \bar{D},
$$

where $f(x)$ is o y continuo $\}$

On an Algorithm for Integer Optimization

Georgi Chelidze ${ }^{1,2}$, Mikheil Nikoleishvili ${ }^{1}$, Vaja Tarieladze ${ }^{1}$
${ }^{1}$ Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
${ }^{2}$ Kutaisi International University, Kutaisi, Georgia
e-mails: giorgi.chelidze@kiu.edu.ge; mikheil.nikoleishvili@gmail.com; v.tarieladze@gtu.ge

1. Formulation of problem

Let $n>1$ be a natural number, \mathbb{Z}_{+}be the set of non-negative integers, $L \in \mathbb{Z}_{+}, L>0, \mathbf{k}_{n}=$ $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$ and $\mathbf{s}_{n}=\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{Z}_{+}^{n}$.

Optimization problem. Find

$$
b\left(L, n ; \mathbf{k}_{n}, \mathbf{s}_{n}\right)=\max \prod_{i=1}^{n}\left(x_{i}+s_{i}\right)
$$

when $x_{i}, i=1, \ldots, n$ are non-negative integers such that

$$
\sum_{i=1}^{n} x_{i}=L \text { and } x_{i} \geq k_{i}, \quad i=1, \ldots, n
$$

2. Algorithm for solution

We plan to discuss the following steps, which provide an algorithm for solution of the problem.
Write

$$
I_{n}:=\{1, \ldots, n\}, \quad q:=\frac{L+\sum_{i=1}^{n} s_{i}}{n} \text { and } r:=L+\sum_{i=1}^{n} s_{i}-n[q] .
$$

Assume further that

$$
d:=L-\left(\sum_{i=1}^{n} k_{i}+n\right) \geq 0
$$

and denote

$$
\begin{gathered}
\alpha=\min _{1 \leq i \leq n}\left(k_{i}+s_{i}\right), \quad \beta=\max _{1 \leq i \leq n}\left(k_{i}+s_{i}\right), \\
\mathcal{I}_{1}=\left\{i \in I_{n}: s_{i}+k_{i} \leq q\right\}, \quad \mathcal{I}_{2}=\left\{i \in I_{n}: s_{i}+k_{i}>q\right\}, \\
m:=\operatorname{card}\left(\mathcal{I}_{1}\right), \quad \mathcal{I}_{1}:=\left\{i_{1}, \ldots, i_{m}\right\} .
\end{gathered}
$$

The following statements are valid.
(a) $q \geq 1+\frac{d}{n}+\alpha>\alpha$, in particular, $m \geq 1$ and

$$
\left(\prod_{i=1}^{n-1}\left(1+k_{i}+s_{i}\right)\right) \cdot\left(1+k_{n}+d+s_{n}\right) \leq b\left(L, n ; \mathbf{k}_{n}, \mathbf{s}_{n}\right) \leq(1+[q])^{r}[q]^{n-r}
$$

(b) If $m=n$, i.e. if $q \geq \beta$, then we have the following equality:

$$
b\left(L, n ; \mathbf{k}_{n}, \mathbf{s}_{n}\right)=(1+[q])^{r}[q]^{n-r} .
$$

(c) If $m<n$, i.e. if $q<\beta$, then

$$
q=[q] \Longrightarrow b\left(L, n ; \mathbf{k}_{n}, \mathbf{s}_{n}\right)<q^{n}
$$

and

$$
b\left(L, n ; \mathbf{k}_{n} ; \mathbf{s}_{n}\right)=b\left(L_{m}, m ;, \mathbf{k}_{m} ; \mathbf{s}_{m}\right) \prod_{i \in \mathcal{I}_{2}}\left(k_{i}+s_{i}\right),
$$

where

$$
L_{m}:=L-\sum_{i \in \mathcal{I}_{2}} k_{i}, \quad \mathbf{k}_{m}:=\left(k_{i_{1}}, \ldots, k_{i_{m}}\right), \quad \mathbf{s}_{m}:=\left(s_{i_{1}}, \ldots, s_{i_{m}}\right) .
$$

(d) If $m=1$, then

$$
b\left(L, n ; \mathbf{k}_{n} ; \mathbf{s}_{n}\right)=\left(L_{1}+s_{i_{1}}\right) \prod_{i \in I_{n} \backslash\left\{i_{1}\right\}}\left(k_{i}+s_{i}\right),
$$

where

$$
L_{1}:=L-\sum_{i \in I_{n} \backslash\left\{i_{1}\right\}} k_{i} .
$$

The talk is based on [1].

Acknowledgements

The authors were partially support 1 by the S \# DI-18-1429:"Application of Prob ilictio Moth duling Problems".

References

[1] G. Chelidze, M. Nikoleishvili and V. Tarieladze, On AM-GM inequality and general problems of maximization of products. 2021, to appear.

In the European Union with the Georgian and Abkhazian Languages, i.e. Short Overview of the Results Achieved for Aims of Defense Georgian and Abkhazian Languages from Dangers of Digital Extinction

George Chichua, Merab Chikvinidze, Konstantine Demurchev, David Kurtskhalia, Shalva Malidze, Beso Mikaberidze, Konstantine Pkhakadze

Scientific-Educational Center for Cultural Protection and Technological Development of Georgian State Languages, Georgian Technical University, Tbilisi, Georgia
e-mail: gllc.ge@gmail.com

At the presentation on the base of European language policy and European expert studies directed on the protection of languages, we explain clearly the meaning of the phrase "In The European Union With The Georgian and Abkhazian Languages" and its direct connection with the aims of defense of the Georgian state languages - Georgian and Abkhazian from danger of digital extinction [1], [2]. Also, during the presentation we will shortly overview the social, theoretical and practical results achieved for aims of defense Georgian and Abkhazian languages from dangers of digital extinction within projects funded by the Shota Rustaveli Georgian National Science Foundation, which were performed under the direction of K. Pkhakadze. They are: MG-ISE-191315 (Tbilisi First International Summer School "Logic, Language, Artificial Intelligence"), PHDF-18-1228 ("In the European Union with Georgian and Abkhazian Languages, i.e. the Doctoral Thesis - Elaboration of the New Developing Tools and Methods of the Georgian Smart Corpus and Improvement of Already Existing Ones" (Docoral Student - Sh. Malidze), AR/122/4-105/14 ("One More Step Towards Georgian Talking Self-Developing Intellectual Corpus"), DO/308/4-105/14 (In the European Union with the Georgian Language, i.e., the Doctoral Thesis - Georgian Grammar Checker (Analyzer), (Doctoral Student - M. Chikvinidze)), DO/305/4-105/14 ("In the European Union with the Georgian Language, i.e., the Doctoral Thesis - Georgian Speech Synthesis and Recognition" (Doctoral Student - G. Chichua)) and FR/362/4-105/12 ("Foundations of Logical Grammar of Georgian Language and Its Application in Information Technology").

References

[1] K. Pkhakadze, M. Chikvinidze, G. Chichua, D. Kurtskhalia, I. Beriashvili, S. Malidze, The Georgian Intellectual Web-Corpus: Aims, Methods, Recommendation. Additional Publication of the Journal "Georgian Language and Logic", 2017, 4-320.
[2] K. Pkhakadze, M. Chikvinidze, G. Chichua, Sh. Malidze, D. Kurtskhalia, C. Demurchev and N. Oqroshiashvili, In the European Wnion with Convin - aims and problems of complete technold y support of Georgian and Δ bleborian language Bull. Georgian Natl. Acad. Sci. (N.S.)
mandir

Asymptotical Solution of the Mixed Problem for a System of Equations in Partial Derivatives Describing the Process of Propagation of Explosive Shock Waves in Nonhomogeneous Gravitational Gas Bodies

Temur Chilachava, Nato Kakulia
Department of Applied Mathematics, Sokhumi State University, Tbilisi, Georgia
e-mail: temo_chilachava@yahoo.com; natokakulia@gmail.com

Mathematical modeling of explosive processes in gravitational gas bodies is one of the actual problems in astrophysics [1]-[6].

The work considers a nonautomodel problem about the central explosion of nonhomogeneous gas body (star) bordering vacuum, which is in equilibrium in its own gravitational field. Asymptotic method of thin impact layer is used to solve the mixed problem for a system of equations in partial derivatives describing the process of propagation of explosive shock waves in nonhomogeneous gravitational gas bodies. The solution of the problem in the vicinity behind the shock wave (discontinuity surface of the first kind) is sought in the form of a singular asymptotic decomposition by a small parameter. Analytically, the main approximation for the law of motion and the thermodynamic characteristics of the medium was accurately found. The Cauchy's problem for zero approximation of the law of motion of the shock wave is solved exactly, in the form of elliptic integrals of the first and second kind. Corresponding asymptotics of solutions are calculated.

References

[1] T. I. Chilachava, A central explosion in an inhomogeneous sphere in equilibrium in its own gravitational field. Fluid Dynamics 23 (1988), 472-477.
[2] T. Chilachava, On the asymptotic method of solution of one class of gravitation theory nonlinear problems. Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics 11 (1996), no. 3, 18-26.
[3] T. Chilachava, On the solution of one nonlinear problem of mathematical physics. Semin. I. Vekua Inst. Appl. Math. Rep. 23 (1997), 88-94.
[4] T. Chilachava, On the asymptotic method of solution of one class of nonlinear mixed problems of mathematical physics. Bull. Georgian Acad. Sci. 157 (1998), no. 3, 373-377.
[5] T. Chilachava, On the asymptotic method of solution of one class of astrophysic problems. Appl. Math. Inform. 4 (1999), no. 2, 54-66,
[6] L. I. Sedov, Similarity and Dimensional Met

Nonlinear Mathematical Models Describing the Initial Stage of Infection Spread

Temur Chilachava, Linda Khukhua
Department of Applied Mathematics, Sokhumi State University, Tbilisi, Georgia
e-mail: temo_chilachava@yahoo.com; xuxualinda7@gmail.com

It is of great interest to predict the extent of the epidemic by creating appropriate mathematical models [1]. Mathematical and computer models of the possible spread of infectious disease, in particular malaria, are discussed in [2]. Since the beginning of 2020, the incurable infectious disease COVID-19 has spread around the world, which has already killed many people and changed the world (economy, development rate, etc.).

Naturally, at this stage, several vaccines have already been developed that have different probabilities (percentages) of acquiring immunity to a given disease, but not complete immunity (100%). In many scientific centers, attempts are being made to create mathematical models for predicting the extent of the spread of this infection.

The work discusses new mathematical models that describe the early stages of the spread of certain infectious diseases, including COVID-19. In the first model, two groups of people are considered: those without healthy immunity; asymptomatic infected. In the second model, three groups of people are considered: those without healthy immunity; asymptomatic infected; identified infected.

In the first model, the infectivity variable coefficient is taken as a linear incremental function of two unknown function variables. The first integral is obtained. Cauchy's problem is solved analytically exactly. In the second model, in the case of constant infection coefficients, the first two integrals of a three-dimensional dynamic system are found and the problem is reduced to the Cauchy's problem for one unknown function.

References

[1] N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and its Applications. Second edition. Hafner Press [Macmillan Publishing Co., Inc.] New York, 1975.
 spreading of malaria (on an example of Gali Academy of Sciences 1 2011, 317-324.

The Spectral Picture and Joint Spectral Radius of the Generalized Spherical Aluthge Transform

Raúl E. Curto
Department of Mathematics, The University of Iowa, Iowa City, Iowa, USA
e-mail: raul-curto@uiowa.edu

For an arbitrary commuting d-tuple \boldsymbol{T} of Hilbert space operators, we fully determine the spectral picture of the generalized spherical Aluthge transform $\Delta_{t}(\boldsymbol{T})$ and we prove that the spectral radius of \boldsymbol{T} can be calculated from the norms of the iterates of $\Delta_{t}(\boldsymbol{T})$.

We first determine the spectral picture of $\Delta_{t}(\boldsymbol{T})$ in terms of the spectral picture of \boldsymbol{T}; in particular, we prove that, for any $0 \leq t \leq 1, \Delta_{t}(\boldsymbol{T})$ and \boldsymbol{T} have the same Taylor spectrum, the same Taylor essential spectrum, the same Fredholm index, and the same Harte spectrum. We then study the joint spectral radius $r(\boldsymbol{T})$, and prove that

$$
r(\boldsymbol{T})=\lim _{n}\left\|\Delta_{t}^{(n)}(\boldsymbol{T})\right\|_{2} \quad(0<t<1),
$$

where $\Delta_{t}^{(n)}$ denotes the n-th iterate of Δ_{t}. For $d=t=1$, we give an example where the above formula fails.

The talk is based on recent research wit Chafiq Ben

The Factorized Difference Schemes for the Numerical Solution of a Quasi-linear System of Hyperbolic Type Equations

Tinatin Davitashvili ${ }^{1}$, Hamlet Meladze ${ }^{2}$
${ }^{1}$ The Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University Tbilisi, Georgia
e-mail: tinatin.davitashvili@tsu.ge
${ }^{2}$ Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
e-mail: h_meladze@hotmail.com

In this paper, factorized difference schemes for a two-dimensional system of hyperbolic type equations with mixed derivatives are considered.

When constructing a difference scheme, the method of regularization of difference schemes, proposed by A. A. Samarsky, is used. The convergence of the scheme is nrovod The footomiond difference schemes for a second-order general perbolic system are used to solve numerically system of equations of elasticity theory, in th algorithm can be effectively used for parallel cc

Smartphone Sensor-Based Fall Detection Using Machine Learning Algorithms

Mariam Dedabrishvili
Faculty of Business and Technologies, International Black Sea University
Tbilisi, Georgia
e-mail: mdedabrishvili@ibsu.edu.ge

Human Activity Recognition and particularly detection of abnormal activities such as falls have become a point of interest to many researchers worldwide since falls are considered to be one of the leading causes of injury and death, especially in the elderly population. The prompt intervention of caregivers in critical situations can significantly improve the autonomy and well-being of individuals living alone and those who require remote monitoring. This paper presents a study of accelerometer and gyroscope data retrieved from smartphone embedded sensors, using iOS-based devices. In the project framework there was developed a mobile application for data collection with the following fall type and fall-like activities: Falling Right, Falling Left, Falling Forward, Falling Backward, Sitting Fast, and Jumping. The collected dataset has passed the preprocessing phase and afterward was classified using different Machine Learning algorithms, namely, by Decision Trees, Random Forest, Logistic Regression, k-Nearest Neighbour, XGBoost, LightGBM, and Pytorch Neural Network. Unlike other similar studies, during the experimental setting, volunteers were asked to have smartphones freely in their pockets without tightening and fixing them on the body. This natural way of keeping a mobile device is quite challenging in terms of noisiness however it is more comfortable to wearers and causes fewer constraints. The obtained results are promising that encourages us to continue working with the aim to reach sufficient accuracy along with building a real-time application for potential users.

Acknowledgments

This work was supported by Shota Rust reli Nation cic Fo id Theorgia (SF JSFG) under the Grant \# YS-19-1633.

The Role of Complex Assignments in the Development of Students Critical Thinking in Mathematics

Manana Deisadze
Department of Teaching Methods, Akaki Tsereteli State University, Kutaisi, Georgia
e-mail: manana.deisadze@atsu.edu.ge

The National Curricula aims at developing critical thinking skills in students. A student should critically analyze facts and ideas; ask and answer questions; discuss with arguments, make assumptions, identify problems, look for alternative ways, and make decisions. With this respect, the role of complex assignments in math teaching is important already on the primary level.

This paper represents the content, structure and major features of complex assignments. It

 essential for the advancement of critical t

Final Result of the Doctoral Thesis "Methods and Tools for Intellectual Classification of Georgian Texts"

Konstantine Demurchev

Scientific-Educational Center for Cultural Protection and Technological Development of Georgian State Languages, Georgian Technical University, Tbilisi, Georgia

e-mail: gllc.ge@gmail.com

Within the framework of the doctoral program "Informatics" of the Georgian Technical University doctoral thesis "Methods and Tools for Intellectual Classification of Georgian Texts" (Ph.D. student - K. Demurchev, Supervisor - Director of the Scientific-Educational Center for Georgian Language Technology of the Georgian technical University K. Pkhakadze) was launched in 2017. The doctoral thesis is mainly based on the Georgian Intellectual Web-Corpus developed based on Pkhakadze's logical grammar of the Georgian language within the framework of two-year AR/122/4-105/14 project "One More Step Towards Georgian Talking Self-Developing Intellectual Corpus" (project supervisor K. Pkhakadze, project was funded by Shota Rustaveli Georgian National Scientific Foundation) [2], which, in turn, is a sub-project of the long-term project "Technological Alphabet of Georgian Language" [1] of the Center for the Georgian Language Technology of the Georgian Technical University. At the same time, the doctoral thesis is aimed to develop methods and tools for automatical and intellectual classification of Georgian texts, that makes this research as an important part of the long-term project "Technological Alphabet of Georgian Language", which was launched in 2012 and aimed to complete technology support of the Georgian language [3]. Thus, in view of all above mentioned, at the presentation, we will review the first experimental version of the automatic intellectual Georgian text classification, which is a final result of the doctoral thesis "Methods and Tools for Intellectual Classification of Georgian Texts" and, also, we will review that methods and tools, which were used in construction of it.

References

[1] K. Pkhakadze, The technological alphabet of the Georgian language - one of the main Georgian challenges of the XXI century. Proceedings of the Parliamentary Conference "Georgian Language - Challenges of the 21st Century", 2013, 95-102.
[2] K. Pkhakadze, M. Chikvinidze, G. Chichua, D. Kurtskhalia, I. Beriashvili and S. Malidze, The Georgian intellectual web-corpus: aims, methods, recommendation. Additional Publication of the Journal "Georgian Language and Logic", 2017, 4-320.
[3] K. Pkhakadze, M. Chikvinidze, G. Chichua, Sh. Malidze, D. Kurtskhalia, C. Demurchev and
 and problems of complete technology upport of chand vanguages. ull. Georgian Nat. Acad. Sci. 14 (2020),

Extremal Problems for Bicentric Polygons

Ana Diakvnishvili

Ilia State University, Tbilisi, Georgia
e-mail: ana.diakvnishvili.1iliauni.edu.ge

There will be considered some extremal problems for families of bicentric polygons with fixed inscribed and circumscribed circles. Each such family is completely determined up to a congruence by three positive numbers (R, r, d), where R is the radius of circumscribed circle, r is the radius of inscribed circle and d is the distance between their centers. Extremal problems for such families of bicentric polygons will be studied for three objective functions: perimeter P, sum of diagonals D, and will be also described Coulomb potential E of unit charges placed at the vertices.

Namely, we describe the shapes of extremal polygons and calculate the maximal and minimal value as explicit functions of variables (R, r, d). As follows from the Fuss relations for a fived R all these extremal values become functions of sing variable d. We describe several properties of the functions and present drawings of their grapl . Some fui
polygons will also be given.

On the Free S_{1}^{ω}-Algebras
Antonio Di Nola ${ }^{1}$, Revaz Grigolia ${ }^{2}$, Ramaz Liparteliani ${ }^{3}$
${ }^{1}$ Department of Mathematics, University of Salerno, Salerno, Italy
e-mail: adinola@unisa.it
${ }^{2}$ Department of Mathematics, Ivane Javakhishvili Tbilisi State University
Tbilisi, Georgia
e-mail: revaz.grigolia@tsu.ge
${ }^{3}$ Institute of Cybernetics, Georgian Technical University, Tbilisi, Georgia
e-mail: r.liparteliani@yahoo.com

$M V$-algebras are the algebraic counterpart of the infinite valued Łukasiewicz sentential calculus, as Boolean algebras are with respect to the classical propositional logic. As it is well known, $M V$ algebras form a category which is equivalent to the category of abelian lattice ordered groups (ℓ-groups, for short) with strong unit.

It is known that any subvariety of $M V$-algebras is generated by finitely many algebras, and explicit axiomatizations have been obtained [1], [2], [4]. Notice that the free algebras over the subvarieties of $M V$-algebras have been described functionally in [5] using McNaughton functions. Finitely generated free $M V_{n}$-algebras (that correspond to n-valued Lukasiewicz logic) was described algebraically in [1], [2].

In this paper we give an algebraic description of finitely many generated free $M V$-algebras in the variety $\mathcal{V}\left(S_{1}^{\omega}\right)$ generated by the algebra S_{1}^{ω} (denoted as C) that was introduced by Chang and later by Komori who also introduced S_{n}^{ω}-algebras for $n \geq 2$. Moreover, we give ordered spectral spaces of the free algebras. Non-exact algebraic description of free m-generated S_{1}^{ω}-algebra (or $M V(C)$ algebra) have been given in [3] where the free algebras are represented by subdirect product of infinite family of chains. In present talk we represent free algebras by means of subdirect product of the finite family of chains according to Panti's result in [5]. Notice, that although 1- and 2generated free S_{1}^{ω}-algebras have been represented by the authors before, here we give more clear and simple visualization of spectral space.

References

[1] R. Grigolia, Algebraic analysis of Łukasiewicz-Tarski's n-valued logical systems. Selected papers on Łukasiewicz sentential calculi, pp. 81-92. Zakład Narod. im. Ossolié., Wydawn. Polsk. Akad. Nauk, Wroctaw, 1977.
[2] R. Grigolia, Free Algebras of Non-Classical Logics. (Russian) Metsniereba, Tbilisi, 1987.
[3] A. Di Nola and R. Grigolia, Gödel spaces and perfect $M V$-algebras. J. Appl. Log. 13 (2015), no. 3, 270-284.
[4] A. Di Nola and A. Lettieri, Equational characterization of all varieties of MV-algebras. J. Algebra 221 (1999), no. 2, 463-474.
[5] G. Panti, Varieties of MV-algebras. Mult valued logit r. (1999), no. 1, 141-157.

Involutive Symmetric Goedel Spaces, their Algebraic Duals and Logic

Antonio Di Nola ${ }^{1}$, Revaz Grigolia ${ }^{2}$, Gaetano Vitale ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of Salerno, Salerno, Italy
e-mails: adinola@unisa.it; gvitale@unusa.it
${ }^{2}$ Department of Mathematics, Ivane Javakhishvili Tbilisi State University Tbilisi, Georgia
e-mail: revaz.grigolia@tsu.ge

It is introduced a new algebra $(A, \otimes, \oplus, *, \rightharpoonup, 0,1)$ called $L_{P} G$-algebra if $(A, \otimes, \oplus, *, 0,1)$ is $L_{P^{-}}$ algebra (i.e. an algebra from the variety generated by perfect $M V$-algebras [1]) and ($A, \rightarrow, 0,1$) is a Gödel algebra (i.e. Heyting algebra satisfying the identity $(x \rightharpoonup y) \vee(y \rightharpoonup x)=1)$.

The lattice of congruences of an $L_{P} G$-algebra $(A, \otimes, \oplus, *, \rightharpoonup, 0,1)$ is isomorphic to the lattice of Skolem filters (i.e. special type of $M V$-filters) of the $M V$-algebra ($A, \otimes, \oplus, *, 0,1$). The variety $\mathbf{L}_{\mathbf{P}} \mathbf{G}$ of $L_{P} G$-algebras is generated by the algebras $(C, \otimes, \oplus, *, \rightharpoonup, 0,1)$ where $(C, \otimes, \oplus, *, 0,1)$ is Chang $M V$-algebra. Any $L_{P} G$-algebra is bi-Heyting algebra. The set of theorems of the logic $L_{P} G$ is recursively enumerable. Moreover, the description of finitely generated free $L_{P} G$-algebras and their dual objects - $M V$-spaces is given.

References

[1] A. Di Nola and A. Lettieri, Perfect MV-alge ras are cat ric eq va TV Felian ℓ groups. Studia Logica 53 (1994), no. 3, 417-4 2.

Random Elastic Composites with Circular Inclusions

Piotr Drygaś

Institute of Mathemtics, University of Rzeszów, Rzeszów, Poland
e-mail:drygaspi@ur.edu.pl

Consider 2D multi-phase random composites with different circular inclusions. A finite number n of inclusions on the infinite plane forms a cluster. The corresponding boundary value problem for Muskhelishvili's potentials is reduced to a system of functional equations. Solution to the functional equations can be obtained by a method of successive approximations or by the Taylor expansion of the unknown analytic functions. Next, the local stress-strain fields are calculated and the averaged elastic constants are obtained in symbolic form. An extension of Maxwell's approach and other various self-consisting cluster methods from single- to n - inclusions problems is developed. An uncertainty when the number of elements n in a cluster tends to infinity is
 yields new analytical approximate formulas f the effecti random 2D composites.

Convolution Equations on the Abelian Group $\mathcal{A}(-1,1)$ and Their Applications

Roland Duduchava ${ }^{1,2}$
${ }^{1}$ The University of Georgia, Tbilisi, Georgia
${ }^{2}$ Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: roldud@gmail.com

The interval $\mathcal{J}:=[-1,1]$ turnes into the Abelian group $\mathcal{A}(\mathcal{J})$ if endowed with the group operation $x+\mathcal{J} y:=(x+y)(1+x y)^{-1}, x, y \in \mathcal{J}$. The invariant Haar measure is $d_{\mathcal{J}} x:=\left(1-x^{2}\right)^{-1} d x$ and the Fourier transformation is

$$
\begin{equation*}
\left(\mathcal{F}_{\mathcal{J}} v\right)(\xi):=\int_{-1}^{1}\left(\frac{1-y}{1+y}\right)^{i \xi} \frac{v(y) d y}{1-y^{2}}=\int_{-1}^{1}\left(\frac{1-y}{1+y}\right)^{i \xi} v(y) d_{\mathcal{J}} y, \quad \xi \in \mathbb{R} . \tag{1}
\end{equation*}
$$

These tools allow to solve exactly convolution equations on this group

$$
\begin{equation*}
c_{0} \varphi(x)+(k * \mathcal{J} \varphi)(x):=c_{0} u(x)+\int_{-1}^{1} k\left(\frac{x-y}{1-x y}\right) \frac{v(y) d y}{1-y^{2}}=h(x), \quad x \in \mathcal{J} . \tag{2}
\end{equation*}
$$

To the class of equations (2) belongs

$$
\begin{equation*}
\sum_{k=0}^{n}\left[a_{k}(t) \mathfrak{D}^{k} u(t)-b_{k}(t) \int_{-1}^{1}\left(\frac{1-\tau^{2}}{1-t^{2}}\right)^{d_{k}} \frac{\mathfrak{D}^{k} u(\tau) d \tau}{\tau-t}\right]=f(t), \quad t \in \mathcal{J} \tag{3}
\end{equation*}
$$

where $d_{k} \in \mathbb{C}$ are complex numbers, coefficients are sufficiently smooth. Here $\mathfrak{D} u(x):=(1-$ $\left.x^{2}\right) \frac{d}{d x} u(x)$ is the natural derivative of functions on the group $\mathcal{A}(-1,1)$.

It turned out that to the class of convolution equations (2) belong the following cebrated equations with important applications-Prandtl equation

$$
\begin{equation*}
\boldsymbol{P} u(x)=\frac{c_{0} u(x)}{1-x^{2}}+\frac{c_{1}}{\pi i} \int_{-1}^{1} \frac{u^{\prime}(y) d y}{y-x}=f(x), x \in \mathcal{J} \tag{4}
\end{equation*}
$$

Singular Tricomi equation

$$
\left.\boldsymbol{T} v(x)=c_{0} v(x)+\frac{c_{1}}{\pi i} \int_{-1}^{1} \frac{v(y) d y}{y-x}+\frac{c_{2}}{\pi i} \int_{-1}^{1} \frac{v(y) d y}{1-x y}=g(x), x €\right\}
$$

and also Lavrentjev-Bitsadze equation. Moreover, Laplace-Beltrami equation on the unit sphere in $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ is also a \mathcal{J}-convolution operator with a parameter.

These equations have ample of applications in Mechanics and Mathematical physics and were investigated by many authors. Equations (4) and (5) were investigated by V. E. Petrov in [1], [2] in the general Banach spaceless setting, while in [3] equation (1) was investigated in the Bessel potential space setting $\widetilde{\mathbb{H}}^{s}(\mathcal{J}),-1 \leqslant s \leqslant 1$. These equations were considered as the image of
classical Fourier convolutions on \mathbb{R} under the diffeomorphism $x=-\tanh t: \mathbb{R} \rightarrow \mathcal{J}$ mapping the real axes \mathbb{R} to the interval \mathcal{J}.

We solve equations (2)-(5) in the full scale of Bessel potential spaces $\mathbb{H}_{p}^{s}\left(\mathcal{J}, d_{\mathcal{J}} x\right)$ for $-\infty<$ $s<\infty, 1<p<\infty$. For an integer $s=m=1,2, \ldots, \mathbb{H}_{p}^{m}\left(\mathcal{J}, d_{\mathcal{J}} x\right)$ coincides with the Sobolev space $\mathbb{W}_{p}^{m}\left(\mathcal{J}, d_{\mathcal{J}} x\right)$ of functions which have weighted p-integrable derivatives $\mathfrak{D}^{k} u \in \mathbb{L}_{p}\left(\mathcal{J}, d_{\mathcal{J}} x\right)$ for $k=1,2, \ldots, m$.

References

[1] V. E. Petrov, Integral transform on a segment. Problems in mathematical analysis. No. 31. J. Math. Sci. (N. Y.) 132 (2006), no. 4, 451-481.
[2] V. E. Petrov, The generalized singular Tricomi equation as a convolution equation. (Russians) Dokl. Akad. Nauk., Ross. Akad. Nauk. 411 (2006), no. 2, 173-177; translation in Dokl. Math. 74 (2006), no. 3, 901-905.
[3] V. E. Petrov and T. A. Suslina, Regularity https://arxiv.org/abs/2008.06715, 2020

On Alexander-Spanier Normal Cohomology Groups of Locally Finitely Valued Cochains

Fridon Dumbadze
Batumi Shota Rustaveli State University, Batumi, Georgia
e-mail: Fridon@inbox.ru

For a topological space X and an abelian group G let $C^{n}(X ; G)$ be the group of all functions $\varphi: X^{n+1} \rightarrow G$. Following V. Baladze a function φ is called locally zero if there exists a normal covering \mathcal{U} such that for every $U \in \mathcal{U}$ and for each points $x_{i} \in U, i=0,1, \ldots, n$ we have that $\varphi\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0$, i.e., φ vanishes on \mathcal{U}^{n+1}.

Let $C_{0}^{n}(X ; G)$ be the group of all locally zero functions. The group of all locally finitely valued functions [2] we denote by $C_{L}^{n}(X ; G)$.

There exist cohomology groups $H_{N}^{n}(X ; G)$ and $H_{L N}^{n}(X ; G)$ of cochain complexes

$$
C^{*}(X ; G)=\left(C^{n}(X ; G) / C_{0}^{n}(X ; G), \delta\right)
$$

and

$$
C_{L}^{*}(X ; G)=\left(C_{L}^{n}(X ; G) / C_{L}^{n}(X ; G) \cap C_{0}^{n}(X ; G), \delta\right),
$$

where δ is the coboundary homomorphism [1,2].
Each continuous map $f: X \rightarrow Y$ induces a cochain map f^{\sharp} and a homomorphism f^{*} of the defined cochain complexes and cohomology groups.

For a subset, resp., a closed subset, $A \subset X$ and the inclusion map $i: A \rightarrow X$ consider the homomorphisms

$$
i^{\sharp}: C^{*}(X ; G) \rightarrow C^{*}(A ; G), \quad i^{\sharp}: C_{L}^{*}(X ; G) \rightarrow C_{L}^{*}(A ; G)
$$

and denote by $C^{*}(X, A ; G)$, resp. by $C_{L}^{*}(X, A ; G)$ their kernels.
There exist cohomology groups

$$
H_{N}^{*}(X, A ; G) \text { and } H_{L N}^{*}(X, A ; G),
$$

which are called respectively the Alexander-Spanier normal cohomology Groups and the AlexanderSpanier normal Cohomology Groups of locally finitely valued cochains .

The first group was defined by V. Baladze; he and his pupils established some properties of the group.

Our main aim is to prove that for the group $H_{L N}^{*}(X, A ; G)$ Steenrod-Eilenberg's type axioms and tautness properties are satisfied.

References

[1] E. H. Spanier, Algebraic Topology. McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.
[2] W. S. Massey, Homology and cohomology theory. An app cochains. Monographs and Textbooks in Pure and Appli Dekker, Inc., New York-Basel, 1978.

Development of the Math Skills and Competences in the Engineering-Technological Curriculums

Maya Dzadzamia ${ }^{1}$, Mariana Takidze ${ }^{2}$, Lela Turmanidze ${ }^{2}$
${ }^{1}$ MA of Education Management, Batumi Shota Rustaveli State University Batumi, Georgia
e-mail: takidze.mariana@mail.ru
${ }^{2}$ Department of Mathematic, Batumi Shota Rustaveli State University
Batumi, Georgia $[0.15 \mathrm{~cm}]$ e-mails: lela.turmanidze@bsu.edu.ge; maya.dzadzamia@bsu.edu.ge

The present research discusses the international experience in developing Math skills and competences in the Engineering-Technological curriculums. The paper deals with the study of the Georgian higher educational institutions in the regard of the mentioned as well as involvement of stakeholders in elaboration and implementation of curriculums.

In conclusion, the recommendations, based on the comparative analysis of the Georgian and International practice, are presented.

References

[1] Standards and Guidelines for Quality Assurance in the European Higher Education Area (ESG). Brussels, Belgium, 2015.
[2] Universities Contribution to the Bologna Process. An Introduction. 2nd edition, www.unideusto.org/tuningeu/images/stories/
[3] A Framework for Mathematics Curricula in Engineering Education. European Society for Engineering Education (SEFI), Brussels ISBN: 978-2-87352-007-6.
[4] A Tuning-AHELO Conceptual Framework of Expected Desired/ Learning Outcomes in Engineering. OECD Education Working Papers, no. 60, OECD Publishing. OECD, 2011.
[5] M. Carr, Improving Core Mathematical Skills in Engineering Undergraduates. Dublin Institute of Technology, 2011.
[6] Performance Standards and Competencies. St. e Department of Education Fatsped, 2015.
[7] UK Standard For Professional Engineering O

Schwarz Gradients and Differentiability for Functions of Two Variables

Omar Dzagnidze ${ }^{1}$, Irma Tsivtsivadze ${ }^{2}$
${ }^{1}$ Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: omar.dzagnidze@tsu.ge
${ }^{2}$ Akaki Tsereteli Kutaisi State University, Kutaisi, Georgia
e-mail: irmatsiv@gmail.com

In the present paper, the Schwarz derivative is generalized for functions of two variables. For this we introduce the Schwarz concepts of differentiability and differential, an ordinary gradient, an angular gradient, a strong gradient, a generalized angular gradient and a generalized strong gradient.

It is proved that the Schwartz differentiability is equivalent to the existence of a generalized angular Schwarz gradient whose components are the coefficients of a Schwartz differential. Also, a necessary and sufficient condition and a sufficient condition of alternative form are established.

We prove that the existence of a generalized angular partial Schwarz derivative implies a generalized angular smoothness with respect to this variable.

It is established that the Schwarz differentiability of a function at some point implies the smoothness of this function at the same point. An obvious outcome of the . functions contains both a set of ordinary differentiable function and a set of cehwor diff rert
functions.

Two-Dimensional Unsteady Flow of a Viscous Incompressible Fluid in a Porous Channel
Eka Elerdashvili ${ }^{1}$, Levan Jikidze ${ }^{2}$, Varden Tsutskiridze ${ }^{1}$
${ }^{1}$ Department of Mathematics, Georgian Technical University, Tbilisi, Georgia e-mails: Elerdashvili@yahoo.com; btsutskirid@yahoo.com
${ }^{2}$ Department of Engineering Mechanics and Technical Expertise in Construction, Georgian Technical University, Tbilisi, Georgia
e-mail: levanjikidze@yahoo.com

Two-dimensional unsteady flow of a viscous incompressible fluid through a porous channel is considered. This motion gets excited from the periodical time change of a pressure drop and a percolation velocity.

The approximate method presented below gives the possibility to find a solution in a practically convenient form, as well as take into account the final conductivity of the channel walls [1]-[3].

References

[1] L. A. Jikidze and V. N. Tsutskiridze, Approximate method for solving an unsteady rotation problem for a porous plate in the conducting fluid with regard for the heat transfer in the case of electroconductivity. In Several Problems of Applied Mathematics and Mechanics. Series: Science and Technology Mathematical Physics (ebook), pp. 157-164, New York, 2013.
[2] L. G. Loitsansky, Mechanics of Liquids and Gases. (Russian) Sciences, Moscow, 1987.
 in the presence of a trans rse magnet fold dan Math. st. 170 (2016), no. 2, 280-286.

Modeling of Wave Structures in the Upper Ionospheric Plasma in Spherical Coordinates

Khatuna Elbakidze ${ }^{1,2}$
${ }^{1}$ Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ International Black Sea University, Tbilisi, Georgia
e-mail: khchargazia@ibsu.edu.ge

Physical mechanism of generation of the new modes of ultra-low-frequency (ULF) electromagnetic planetary waves in F-region of the spherical ionosphere due to the latitudinal inhomogeneity of the geomagnetic field is suggested. The frequency spectra, phase velocity, and wavelength of these perturbations are determined. It is established, that these perturbations are self-localized as nonlinear solitary vortex structures in the ionosphere and moving westward or eastward along the parallels with velocities much greater than the phase velocities of the linear waves. The properties of the wave structures under i

Asymptotic Behavior and Numerical Solution of Initial-Boundary Value Problem for One Nonlinear System

Mikheil Gagoshidze

Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: MishaGagoshidze@gmail.com

The following initial-boundary value problem is considered:

$$
\begin{gathered}
\frac{\partial U}{\partial t}=\frac{\partial}{\partial x}\left(V^{\alpha} \frac{\partial U}{\partial x}\right), \\
\frac{\partial V}{\partial t}=-a V^{\beta}+b V^{\gamma}\left(\frac{\partial U}{\partial x}\right)^{2}+c V^{\gamma-\alpha} \frac{\partial U}{\partial x}, \\
U(0, t)=0,\left.\quad V^{\alpha} \frac{\partial U}{\partial x}\right|_{x=1}=\psi, \\
U(x, 0)=U_{0}(x), \quad V(x, 0)=V_{0}(x),
\end{gathered}
$$

where $a, b, c, \alpha, \beta, \gamma, \psi$ are constants and U_{0}, V_{0} are given functions on $[0 ; 1]$. Such type problems are studied in many works (see, for example, [1], [2]). Large time behavior of solution is studied. The possibility of a Hopf bifurcation is established. Approximate solutions are also constructed.

References

[1] T. A. Dzhangveladze, Stability of the stationary solution of a system of nonlinear partial differential equations. (Russian) Current problems in mathematical physics, Vol. I (Russian) (Tbilisi, 1987), 214-221, 481-482, Tbilis. Gos. Univ., Tbilisi, 1987.
 I. Vekua Appl. Math

From Plato's Linguophilosophical Views to Challenges of the Digital Age

Nino Gegenava

Faculty of Humanities, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: Ninogegenava0325@gmail.com

The report is based on a Bachelor's thesis "Plato's Linguophilosophical Views" (Student N. Gegenava, Thesis Advisor - Prof. N. Tomashvili) [1], [2], [6], [7], as well as on the research that was done after the completion of the thesis to further understand the depths and widths of the challenges of the digital age, the most important of which is constructing computers almost fully knowledgeable in different languages [3]-[5]. Thus, the presentation will be discussing Plato's views of language, its characteristics and their importance in the development of philosophical and lingual researches. In addition, the presentation, taking into account Plato's ideas about language, will underline the dire need to have right understanding of the nature of language to finding most excellent solution to the momentous problem of constructing computers that possess knowledge of language. This shines a light upon the cruciality of intensive research on of philosophy of language in general and, accordingly, on philosophy of Georgian language, as we stand on the verge of entering the digital age.

References

[1] B. Jowett, DomínioPúblico-PesquisaBásica. 1892; online: Dominiopublico.gov.br.
[2] B. Jowett, Theaetetus, by Plato. 1892; online: Gutenberg.org.
[3] K. Pkhakadze, On the linguistic relation and logical declension in the Georgian language. Georgian Language and Logic, 2005, no. 1, 19-77.
[4] K. Pkhakadze, L. Abzianidze and A. Maskharashvili, Georgian language's theses. Reports of the Seminar of I. Vekua Institute of Applied Mathematics 34 (2008), 108-121.
[5] K. Pkhakadze, G. Chankvetadze, L. Tibua, M. Ivanishvili, L. Lekiashvili and E. Soselia, Logical, programming, and natural languages - do they represent three different types of the semantic system? - i.e. about lingual sign and our lingual ideology. Journal "Iveria" (Georgian-European University, Paris) X-XI (2004), 220-248.
[6] Plato, Cratulac. of Cregvadze, B., "Carpe Diem", 2017.
[7] D. Sedle Plato's C

Further Improvement of the Numerical Model of the Mesoscale Boundary Layer of the Atmosphere

Giorgi Geladze, Manana Tevdoradze

Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mails: givi-geladze@rambler.ru; mtevdoradze@gmail.com

A numerical model of the full cycle of cloud and fog genesis in the mesoboundary layer of atmosphere has been created. The critical values of relative humidity at which the formation of humidity processes takes place have been determined.

A numerical model of the distribution of aerosol from an instantaneous point source into the mesoboundary layer of the atmosphere has been created. The time intervals at which the deposition of a cur vir uil vaivino surtace vegilis allu enas nav been determined.
ae formatic f lased on th synthesis and "overlay" of the two above

Boundary Value Problems of Thermoelastic Diffuzion Theory with Microtemperatures and Micriconcentrations

Levan Giorgashvili, Shota Zazashvili
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
e-mails: lgiorgashvili@gmail.com; s.zazashvili@gtu.ge

The talk deals with the linear theory of thermoelastic diffusion for elastic isotropic and homogeneous materials with microtempeatures and microconcetrations. For the system of the corresponding differential equations of pseudo-oscillations the fundamental matrix is constructed explicitly in terms of elementary functions. With the help of Green's identities the general integral representation formula of solutions is derived by means of generalized layer and Newtonian potentials. The basic Dirichlet and Neumann type boundary value problems are formulated in appropriate function spaces and the uniqueness theorems are proved. The existence theorems for classical solutions are established by using the potential method.

References

[1] M. Aouadi, M. Ciarletta and V. Tibulo, A thermoelastic diffusion theory with microtemperatures and microconcentrations. Journal of Thermal Stresses, 40 (2017), no. 4, 486-501.
[2] L. Giorgashvili and S. Zazashvili, Mathematical problems of thermoelasticity of bodies with microstructure and microtemperatures. Trans. A. Razmadze Math. Inst. 171 (2017), no. 3, 350-378.
[3] L. Giorgashvili and bodies with micros (2018), no. 1, 30-5

On Some Aspects of the Current Education Reform of Secondary School

Guram Gogishvili
Faculty of Business, Computing and Social Sciences, St. Andrew the First Called Georgian University, Tbilisi, Georgia
e-mail: guramgog@gmail.com

The new school model in the secondary education system introduces radical innovations. Among the multifaceted organizational and qualitative innovations, the assessment system of teachers and students was clearly identified, which, in particular, included the current assessment system.

The abolition of all levels of centralized exams in secondary school has completely changed the existing system of student assessment. It is currently planned to significantly improve the quality of formation and development of students' creative and research skills by working on complex assignments, and this activity and its assessment will become the main focus of students' assessment. Such a strategy, without the involvement of experienced and highly qualified teachers, can even give us negative results. Not excluded a replication of already prepared assignments among the students, to avoid work on their creation and so it will limit the students' activity only to this.

It is essential that teachers discover new and current topics for complex assignments. In this regard, many interesting topics of research and discussion must be selected.

The report will illustrate the construction of a number of complex assignments on the topics of polyhedra. We will cover the topics with interesting materials: from the history of mathematics (including issues of the identification and research of Platonic bodies, mystical representations related to them); analytic geometry, polyhedra's symmetry issues; issues of graph theory and, in general, topology; matrix algebra; combinatorics; crystallography; physics; chemistry (namely, the structure of some molecules); architecture; famous issues of art.

The connections of the named issues will be considered in the talk and also underlined the importance of understanding the relationships of the research of current events in the world and the importance of a unified representation of various events with multilateral aspects in the student's perception.

Working on creating of interesting nractionl ammonassignments will help to develop students' synthe \subset thinking, will make the subject, more interesti and multifaceted and increase the moti-

On the One Mnemonic Scheme for Studying a Two-Dimensional Random Process

David Gulua
Department of Computational Mathematics, Georgian Technical University
Tbilisi, Georgia
e-mail: d_gulua@gtu.ge

A complex redundant system with two types of operation is considered. The formalization of the process under consideration leads us to the study of a two-dimensional random process.

It is well known that the study of a one-dimensional random process is simplified by the introduction of a mnemonic scheme for the state graph of systems. According to the researchers, the difficulties associated with the study of such processes grow enormously with an increase in dimension.

We have proposed a mnemonic scheme for a two-dimensional random process. The usefulness of usin

So e explicit fo la 1 of construct concrete model. The results of numerical experi ents are pr $0=15$

On the Convergence of the Perturbation Algorithm for the Semidiscrete Scheme for the Evolution Equation with Variable Operator in the Banach Space

David Gulua ${ }^{1}$, Jemal Rogava ${ }^{2}$
${ }^{1}$ Department of Computation Mathematics, Georgian Technical University Tbilisi, Georgia
e-mail: d_gulua@gtu.ge
${ }^{2}$ Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia

We study the semi-discrete schemes for the following evolutionary problem in the Banach space X :

$$
\begin{equation*}
\left.\left.\frac{d u(t)}{d t}+A(t) u(t)=f(t), \quad t \in\right] 0, T\right], \quad u(0)=u_{0} \tag{1}
\end{equation*}
$$

were $A(t)$ is a closed linear operator with the domain $D(A)$, which is everywhere dense in $X(D(A)$ does not depend on $t) ; f(t)$ is a continuously differentiable function with values in $X ; u_{0}$ is a given vector from $X ; u(t)$ is the sought function.

On the interval $[0, T]$, we define the grid $t_{k}=k \tau, k=0,1, \ldots, n$, with the step $\tau=T / n$. Using the difference formula of second order approximation for the approximation of the first derivative equation (1) can be represented at the point $t=t_{k+1}$ as:

$$
\begin{equation*}
\frac{\Delta u\left(t_{k}\right)}{\tau}+\frac{\tau}{2} \frac{\Delta^{2} u\left(t_{k-1}\right)}{\tau^{2}}+A\left(t_{k+1}\right) u\left(t_{k+1}\right)=f\left(t_{k+1}\right)+\tau^{2} R_{k+1}(\tau, u), \quad R_{k}(\tau, u) \in H \tag{2}
\end{equation*}
$$

where $\Delta u\left(t_{k}\right)=u\left(t_{k+1}\right)-u\left(t_{k}\right), \tau^{2} R_{k}(\tau, u)$ is the approximation error of the first derivative at the point $t=t_{k}$. Using the perturbation algorithm on the basis of representation (2) we obtain the following system of equations:

$$
\frac{\Delta u_{k}^{(i)}}{\tau}+A\left(t_{k+1}\right) u_{k+1}^{(i)}=f\left(t_{k+1}\right)+\frac{1}{2} \frac{\Delta^{2} u_{k-1}^{(i-1)}}{\tau^{2}}, \quad k=i+1, \ldots, n, \quad i=0,1, \quad u_{k}^{(-1)}=0
$$

Let the vector $v_{k}=u_{k}^{(0)}+\tau u_{k}^{(1)}(k=2, \ldots, n)$ be an approximate value of the exact solution of problem (1) for $t=t_{k}, v_{k} \approx u\left(t_{k}\right)$.

The following theorem is valid.
Theorem. Let $A(t)$ is a closed linear operator with the domain $D(A)$, which is everywhere dense in X and for any z with $\operatorname{Re}(z) \geq 0$ the operator $(z I+A)$ has a bounded inverse, and $\left\|(z I+A)^{-1}\right\| \leq c(1+|z|)^{-1}, c=$ const >0. Let solution $u(t)$ sufficiently smooth function. Then, if

$$
\begin{gathered}
D\left(A^{m}(t)\right)=D\left(A^{m}(0)\right), \quad(m=2,3), \\
\left\|\left(A^{m}\left(t^{\prime}\right)-A^{m}\left(t^{\prime \prime}\right)\right) A^{-m}(s)\right\| \leq c\left|t^{\prime}-t^{\prime \prime}\right| \forall t^{\prime}, t^{\prime \prime}, s \in[0, T], \quad m=1,2
\end{gathered}
$$

and

$$
\begin{aligned}
& \|\left(A\left(t_{k+1}\right)-2 A\left(t_{k}\right)+1+1, \quad\left\|\left(t_{k}\right)-v_{k}\right\|=O(1), \quad\right. \text { that }
\end{aligned}
$$

Mathematical Modeling of Dynamics of Suspension

Davit Gurgenidze, Gela Kipiani, Tamaz Obgadze

Georgian Technical University, Tbilisi, Georgia
e-mails: gurgenidzedavid@gtu.ge; gelakip@gmail.com; t.obgadze@gtu.ge

In work features of mathematical modeling of dynamics of suspensions are considered and the corresponding mathematical model is under construction. The particle of suspension is considered as disperse mix which mass represents the sum of masses firm components and a liquid disperse component of the corresponding volume. On the basis of the law of constancy of weight, expression for mix density is based. The rheological equation of mix differs from Navier-Stokes's rheology in viscosity coefficient. The coefficient of viscosity of suspension, depends on concentration of a firm component. On the basis of Cauchy's equations and the equation of continuity the corresponding system of the rem ruction. The received system becomes isolated ie diffusion sedimentation firr

The Electrogravitational Instability of an Oscillating Streaming Fluid Cylinder

Alfaisal Abdelhameed Mohamed Hasan

Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt
e-mail: alfaisal772001@gmail.com

The electrogravitational instability of an oscillating streaming fluid cylinder surrounded by a selfgravitating tenuous medium pervaded by transverse varying electric field is discussed under the action of selfgravitating, capillary and electro dynamic forces. This has been done for all modes of perturbation. A second order integro-differential equation of Mathieu type has been drived. Several published works are obtained as limiting cases from the present general one. The model is stable due to the stabilizing effect of bation. The
 The streaming has a strong destabi

On an Integral Equation of Fredholm Type for the Class of Bounded Functions on Real Axes

Sabina Ibrahimova ${ }^{1}$, Ilgar Jabbarov ${ }^{2}$
${ }^{1}$ Department of Mathematical Analysis, Ganja State University, Ganja, Azerbaijan
${ }^{2}$ Department of Geometry and Algebra, Ganja State University, Ganja, Azerbaijan

e-mail: ilgar_js@rambler.ru

In the present work one considers the question on solution of integral equations of Fredholm type

$$
\begin{equation*}
\phi(x)=f(x)+\lambda \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} K(x, \xi) \phi(\xi) d \xi \tag{1}
\end{equation*}
$$

in the class of bounded functions given on real axes, where $f(x)$ is bounded and continuous in \mathbb{R}. We suppose that the function $K(x, \xi)$ (kernel) is bounded and continuous function in $\mathbb{R} \times \mathbb{R}$. For simplicity we consider the case of symmetric kernel.

If we take the case of ordinary Fredholm equation of second type, the question on solvability is the question demanding special investigation in some classes of functions (for example in the class of Bohr almost periodic functions). This is natural, because of that fact that here we consider the class of functions on all real axes. Consideration of the equations of the type (1) is free of some difficulties. The main result of the present work is as follows.
Theorem. Let the function $K(x, \xi)$ be continuous and bounded function in $\mathbb{R} \times \mathbb{R}$. Let the ordinary equation

$$
\phi(x)=f(x)+\frac{\lambda}{T} \int_{0}^{T} K(x, \xi) \phi(\xi) d \xi
$$

have solutions for some unbounded sequence of numbers $0<T_{1}<T_{2}<\cdots$. Then the equation (1) has solutions.

On the base of this result we construct the complete theory of the Fredholm type equation (1). It is possible introduce the notions of Fredholm determinant and show that this is an integral function. Defining the eigenvalues of the kernel we give the criterion of solubility non-homogenious equation. We give an explicit solution of the equation (1).

References

[1] W. Rudin, Principles of Mathematical Analysis. Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill B к しo., New York-Auckland-Düsseldorf, 1976.
[2] E. C. Titchmarsh, The Theory of Functions. Jecond edit , ess, Oxford, 1939.

Trace Inequalities for Fractional Integrals in Central Morrey Spaces

Giorgi Imerlishvili ${ }^{1}$, Alexander Meskhi ${ }^{2,3}$
${ }^{1}$ Georgian Technical University, Tbilisi, Georgia
e-mail: imerlishvili18@gmail.com
${ }^{2}$ Kutaisi Internatioinal University, Kutaisi, Georgia
${ }^{3}$ Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: alexander.meskhi@kiu.edu.ge

Let (X, d, μ) be a quasi-metric measure space with doubling measure μ. Suppose that ν is another measure on X. Necessary condition and sufficient condition on a measure ν guaranteeing the trace inequality

$$
\left\|K_{\alpha} f\right\|_{\mathcal{L}_{r}^{q}(X, \nu)} \leq C\|f\|_{\mathcal{L}_{s}^{p}(X, \mu)}
$$

are established, where $\mathcal{L}_{r}^{q}(X, \nu)$ and $\mathcal{L}_{s}^{p}(X, \mu)$ are central Morrey spaces defined with respect to measures ν and μ respectively, and K_{α} is the fractional integral operator defined on (X, d, μ). The results are new even for fractional integral operators and Morrey spaces defined on \mathbb{R}^{n}. In particular, we have necessary condition and sufficient condition for a measure ν defined on \mathbb{R}^{n} governing the trace inequality

$$
\left\|I_{\gamma} f\right\|_{\mathcal{L}_{r}^{q}\left(\mathbb{R}^{n}, \nu\right)} \leq C\|f\|_{\mathcal{L}_{s}^{p}\left(\mathbb{R}^{n}\right)},
$$

where I_{γ} is the Riesz potential operator on $\mathbb{R}^{n}, 0<\gamma<n$.
The problem is studied for multilinear fractional integrals as well.

Acknowledgement

The authors were supported by t \# DI-18-118).

On Automorphisms and Fixing Number of co-Normal Product of Graphs

Muhammad Imran ${ }^{1}$, Shahid ur Rehman ${ }^{2}$, Imran Javaid ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, United Arab Emirates University Al Ain, United Arab Emirates
e-mail: imrandhab@gmail.com
${ }^{2}$ Centre for advanced studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan
e-mails: shahidurrehman1982@gmail.com; imran.javaid@bzu.edu.pk

An automorphism of a graph describes its structural symmetry and the concept of fixing number of a graph is used for breaking its symmetries (except the trivial one). In this paper, we evaluate automorphisms of the co-normal product graph $G_{1} * G_{2}$ of two simple graphs G_{1} and G_{2} and give sharp bounds on the order of its automorphism group. We study the fixing number of $G_{1} * G_{2}$ and prove sharp bounds on it. Moreover, we compute the fixing number of the co-normal product graph of some families.

References

[1] D. L. Boutin, Identifying graph automorphisms using determining sets. Electron. J. Combin. 13 (2006), no. 1, P rank one upper tri

Using the Function of Two Variables to Solve Elementary Mathematical Problems

Phridoni Janashia
Independent Professional, Kutaisi, Georgia
e-mail: janashia.phridon@gmail.com

In order to solve mathematical problems, a connection need to be established between the given values. This connection can be described by a logical reasoning or we can make an equation corresponding to their relationship. Describing this relationship through a formula is more convenient than using logical reasoning.

The goal is to describe certain types of proportional relationships as function of two variables, where independent and dependent variables will be identified from the beginning. It is not necessary to pre-determine whether the relationship is directly proportional or inversely proportional.

Writing functions with two variables makes easier to solve the problem. It should be highlighted that while making a function, the so-called proportionality coefficient comes in, which physically connects the argumer will the runction.

I use this approa 1 successfu? Din le Na Dathemati al problems in the school course - it makes eas

On Investigation and Approximate Solution of Nonlinear Model Describing Electromagnetic Field Diffusion Process

Temur Jangveladze ${ }^{1,2}$
${ }^{1}$ Georgian Technical University, Tbilisi, Georgia
${ }^{2}$ Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia

e-mail: tjangv@yahoo.com

The nonlinear Maxwell system is considered, which describes the propagation of magnetic field in the medium and the temperature change at the expense of Joule heating and heat conductivity. If there is not heat conductivity this system may be rewritten in the integro-differential form [1].

Some aspects of the investigation and numerical solution of this partial differential system and the above-mentioned integro-differential analogs are studied in many works (see, for example, [1]-[3] and references therein).

Our aim was to investigate and numerical solution of the one-dimensional version of the Maxwell system and its integro-differential analogs. Especially, the semi-discrete and finite difference scheme for initial-boundary value problems for some kind of nonlinearities are constructed and investigated. The asymptotic behavior of solutions is also studied. The corresponding numerical experiments are done.

References

[1] D. G. Gordeziani, T. A. Dzhangveladze and T. K. Korshiya, Existence and uniqueness of the solution of a class of nonlinear parabolic problems. (Russian) Differentsial'nye Uravneniya 19 (1983), no. 7, 1197-1207; translation in Differ. Equ. 19 (1983), no. 7, 887-895.
[2] T. Jangveladze, Investigation and numerical solution of nonlinear partial differential and integro-differential models based on system of Maxwell equations. Mem. Differ. Equ. Math. Phys. 76 (2019), 1-118.
[3] T. Jangveladze, Z. Kiguradze and F Neta, Numerical Selutiqms ef Thre flasses of N linear Parabolic Integro-Differential Equa mand

Entropy Research of Enhanced Hybrid Model Based on Classical Cryptosystem

Elza Jintcharadze, Tsitsino Sarajishvili
Department of Computer Sciences, Batumi Shota Rustaveli State University Batumi, Georgia
e-mails: elza.jintcharadze@bsu.edu.ge; tsitsino.sarajishvili@bsu.edu.ge

In the modern world, privacy is one of the key issues addressed by information security.Security of transferred digital data is becoming vital. Various attackers are trying to have unauthorized access to private data. There are many cryptographic systems available today to ensure the security of digital data, but each has its advantages and disadvantages. A big amount of data is transferred over the internet and it must be encrypted with some methods. Nowadays, there are asymmetric cryptographic algorithms that have a very high rate of information security, but they have also one big disadvantage, they consume a lot of system resources, also need a lot of encryption time.

This article presents a novel encryption algorithm that is based on classical encryption methods and Unicode information technology standards. The main principle is to use of substitution encryption method. To make experiments on this novel cryptosystem was developed a web application through modern web programming technologies. This software product is easy to implement and fast for usage. The cryptosystem was tested by encrypting and decrypting the plaintext using the proposed software.

Experimental research showed the following advantages of the proposed cryptosystem: transferred information security rate is very high and good encryption speed. The security of the proposed cryptosystem is based on diffusion, randomness, and substitution. The security rate of the algorithm was also researched based on an entropic study. The encrypted text is very random and the attacker cannot even detect the original language of plaintext. The empirical results revealed that the proposed hybrid model is secure and can be used in real-time applications.

References

[1] M. Barakat, C. Eder and T. Hanke, An Introduction to Cryptography. Santa Clara, CA, USA, 2018.
[2] A. Canteaut and P. Junod, Advanced Linear Cryptanalysis of Block and Stream Ciphers, 2011.
[3] E. Jintcharadze and M. Iavich, Hybrid implementation of Twofish. AES. ElGamal and RSA cryptosystems. IEEE East cou Desigil a 1est symposium (EWDTS), 2020
[4] W. Thomas, Cryptographic Boolean fur $)^{2}$, l^{2} li 2009.

Testing Hypotheses Concerning Equal Parameters of Normal Distribution

Kartlos Kachiashvili ${ }^{1,2,3}$
${ }^{1}$ Faculty of Informatics and Control Systems, Georgian Technical University Tbilisi, Georgia
${ }^{2}$ Department of Probability Theory and Mathematical Statistics, Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University Tbilisi, Georgia
${ }^{3}$ Department of Informatics, Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
e-mails: k.kachiashvili@gtu.ge, kkachiashvili@gmail.com

The problem of testing complex hypotheses with respect to the equal parameters of normal distribution using the constrained Bayesian method is discussed. Hypotheses are tested using maximum likelihood and Stein's methods. The optimality of decision rule is shown by the criteria: the mixed direction false discovery rate, the false discovery rate, the Type I and Type II errors, under the conditions of providing the desired level of constraint. The algorithms for the implementation of the created methods and the programs for their realization are given. Simulation results show the correctness of the theoretical results and their superiority over the classical Bayes method.

References

[1] K. Kachiashvili, Constrained Bayesian Methods of Hypotheses Testing: A New Philosophy of Hypotheses Testing in Parallel and Sequential Experiments. Nova Science Publishers, Inc., New York, 2018.
[2] N. Mukhopadhyay and G. Cicc a normal distribution having ed 625-665.
hetti, Applinationg se ree timating t mean in
al mean an (2) in inal. 23 (20 1), no. 4,

Weighted Differential Inequality and Oscillatory and Spectral Properties of a Class of Fourth Order Differential Operators

Aigerim Kalybay ${ }^{1}$, Ryskul Oinarob ${ }^{2}$
${ }^{1}$ KIMEP University, Almaty, Kazakhstan
e-mail: kalybay@kimep.kz

${ }^{2}$ L. N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
e-mail: o_ryskul@mail.ru

Let $I=(0, \infty)$ and $1<p \leq q<\infty$. Let u be a continuous nonnegative function. Suppose that v and r are positive functions sufficiently times continuously differentiable on I such that $v^{-1}=\frac{1}{v} \in L_{p^{\prime}}^{l o c}(I)$ and $r^{-1}=\frac{1}{r} \in L_{1}^{l o c}(I)$, where $p^{\prime}=\frac{p}{p-1}$. Consider the following inequality

$$
\begin{equation*}
\left(\int_{0}^{\infty}|u(t) f(t)|^{q} d t\right)^{\frac{1}{q}} \leq C\left(\int_{0}^{\infty}\left|v(t) D_{r}^{2} f(t)\right|^{p} d t\right)^{\frac{1}{p}}, \quad f \in C_{0}^{\infty}(I), \tag{1}
\end{equation*}
$$

where

$$
D_{r}^{2} f(t)=\frac{d}{d t} r(t) \frac{d f(t)}{d t} .
$$

We first establish criteria for the fulfillment of inequality (1). Then we apply the obtained results to find the oscillatory properties of the differential equation

$$
D_{r}^{2}\left(v(t) D_{r}^{2} y(t)\right)-u(t) y(t)=0, \quad t \in I
$$

and the spectral properties of the operator generated by the differential expression

$$
l y(t)=\frac{1}{u} D_{r}^{2}\left(v(t) D_{r}^{2} y(t)\right)
$$

Some Remarks on Equidecomposability of Sets

Tamar Kasrashvili

Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
e-mail: tamarkasrashvili@yahoo.com

The present report is devoted to various definitions of equidecomposability of sets. The connection between finitely equidecomposable and countable equidecomposable sets will be shown.

In particular:
(a) if X and Y are finitely equidecomposable, then they are also countable equidecomposable;
(b) in \mathbf{R}^{n} there exist two sets X and Y, with $\lambda_{n}(X)>0$ and $\lambda_{n}(Y)=0$, which are not countable equidecomposable under than of all affine translations of \mathbf{R}^{n};
(c) in \mathbf{R}^{n} there exist two sets X and Y such that $\operatorname{card}(X)=\operatorname{card}(Y)=c$ and X is not countably equidecomposable with Y.

Acknowledgement

This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG), Grant \# FR-18-6190.

References

[1] A. B. Kharazishvili, T, World Scientific Publi

On Endomorphisms of a Separable p-Group

Tariel Kemoklidze

Department of Mathematics, Akaki Tsereteli State University, Kutaisi, Georgia
e-mail: tariel.kemoklidze@atsu.edu.ge

We consider a separable abelian p-group G whose basic subgroup is unbounded and G is not direct sum of cyclic p-groups or G is of finite order or is the mult

Models of Spreading False Information and SARS-CoV-2 Virus

Nugzar Kereselidze ${ }^{1,2}$
${ }^{1}$ Faculty of Natural Sciences, Mathematics, Technology and Pharmacy, Sokhumi State University, Tbilisi, Georgia
${ }^{2}$ Tskhum-Abkhazian Academy of Sciences, Institute of Computer Sciences
Tbilisi, Georgia
e-mail: nkereselidze@sou.edu.ge

Computer and mathematical models of spread of false information [2] and SARS-CoV-2 virus [3] are proposed. Mathematical models are constructed using a system of nonlinear ordinary differential equations. The models cover the stages of denial of false information and vaccination. Variable coefficients are also considered in the models [1]. Computer simulation is performed in MatLab environment.

References

[1] T. Chilachava, L. Karalashvili and N. Kereselidze, Integrated models of non-permanent information warfare. International Journal on Advanced Science, Engineering and Information Technology 10 (2020), no. 6, 2222-2230.
[2] N. Kereselidze, Mathematical and computer RAI models of false information dissemination. WSEAS Transactions on Computer Research 7 (2019), 56-63.
[3] N. Kereselidze, SARS CoV 2 Vimene gement Problems. Security Management roblems of Complex Suctemo Matrials XXVI International Conference (December 19 2020), Mos

Various Definitions of Almost Invariant Sets and their Applications

Marika Khachidze
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
e-mail: m.khachidze1995@gmail.com

Almost invariant sets have important applications in various directions of mathematics. In particular, in the theory of invariant and quasi-invariant measures, infinite combinatorial analysis, etc.

In my presentation I will be concerned with so-called almost invariant sets in infinite (mostly, in uncountable) sets. There are various possibilities to define such sets (see, [2]). We will consider below only three variants of their definitions, their equivalence and some applications of those sets in the theory of invariant and quasi-invariant measures (see, [1]).

Acknowledgement

This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG), Grant \# FR-18-6190.

References

[1] M. Khachidze and A. Kirtadze, One example of application of almost invariant sets. Rep. Enlarged Sess. Semin. I. Vekua Annl Math 32 (2018) 2124
[2] A. Kharazis, ili, On some applications of alvent invariants s. Bull. TICMI 23 (2019), no. 2, 115-1

The Parameter Estimation in Stochastic Volatility Models

Meriem Ben Hadj Khalifa ${ }^{1}$, Yuliya Mishura ${ }^{2}$, Mounir Zili ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir Monastir, Tunisia
e-mails: Meriem.Bhk@fsm.rnu.tn; Mounir.Zili@fsm.rnu.tn
${ }^{2}$ Department of Probability, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
e-mail address: myus@univ.kiev.ua

We consider a stochastic differential equation

$$
\begin{equation*}
d X_{t}=\theta a\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}, Y_{t}\right) d W_{t}, \tag{1}
\end{equation*}
$$

with a general diffusion coefficient $\sigma\left(t, X_{t}, Y_{t}\right)$, where Y is some additional adapted stochastic process, and θ is an unknown drift parameter. Such equations arise as the models of some markets in mathematical finance. We investigate the existence and uniqueness weak and strong solutions of this equation under diverse conditions on the coefficients a, σ and the process Y.

A first particular interest is given to the case where $\sigma\left(t, X_{t}, \cdot\right):=\beta\left(t, X_{t}\right)$ is independent of Y. In this case, we investigate the problem of estimation of the unknown drift parameter in (1), with the coefficients supplying standard existence uniqueness demands. We also consider a particular situation when the ratio of drift and diffusion coefficients is non-random, and establish the strong consistency of the estimator with different ratios, from many classes of non-random standard functions.

A second intersect is given to the particular case where the diffusion coefficient is the product of two factors:

$$
\sigma\left(t, X_{t}, Y_{t}\right)=\sigma_{1}\left(t, X_{t}\right) \sigma_{2}\left(t, Y_{t}\right)
$$

In this case we also estimate the drift parameter θ and we establish the strong consistency of the maximum likelihood estimator for this unknown parameter.

In the general case, we study the drift parameter estimation and we take some examples of the main equation and of the process Y to supply the strong consistency.

We illustrate our
Keywords. maximu likelihood in mation, str ag consistency, weak and
strong solution.

On the Approximate Solutions of the Schrödinger Equation

Nino Khatiashvili

Ilia Vekua Institute of Applied Mathematics of
Ivane Javakhishvili Tbilisi State University, Tbiisi, Georgia
e-mail: ninakhatia@gmail.com

The problem of the approximation of solutions of stationary linear as well as nonlinear Schrödinger equations is considered.

The linear Schrödinger equation is studied in the areas of polygonal configuration. By means of the conformal mapping method 2D linear Schrödinger equation is replaced by the approximate elliptic equation. The initial area is mapped on the rectangle and the exact solution of the elliptic equation is obtained.

The results has applications to the quantum mechanics and biophysics [1], [2], [4], [5], [7].
Also, the multi-dimensional cubic non-linear Schrödinger equation is considered in the infinite area.The equation is replaced by the approximate non-linear elliptic equation. The exact solutions of this equation vanishing at infinity are obtained. These solutions represent solitary waves [2], [6]. Their profiles are plotted by means of "Maple".

The problem of approximation of non-stationary Schrödinger equation by means of finitedifference schemes and integral equations has been discussed in [3], [8].

References

[1] V. Akhobadze, D. Gamrekeli, N. Khatiashvili and K. Pirumova, On some pathologies connected with the crystalization process at the human body (gallstones formation). Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. 29 (2015), 1-4.
[2] G. Auletta, M. Fortunato and G. Parisi, Quantum Mechanics. Cambridge University Press, 2009.
[3] N. Khatiashvili, On the system of integral equations connected with the Schrodinger equation. Proc. I. Vekua Inst. Appl. Math. 59/60 (2009/10), 30-34.
[4] N. Khatiashvili, On the hexagonal quantum billiard. Semin. I. Vekua Inst. Appl. Math. Rep. 40 (2014), 14-27
[3] N. Khatiashvili, On the energy levels of electrons in 2D carbon nanostructures. Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering (July 3-5, 2019), London, UK 1 (2019), 14-19.
[5] N. Khatiashvili, On one class of elliptic equations connected with the nonlinear waves. Trans. A. Razmadze Math. Inst. 173 (2019), no. 1, 61-70.
[6] N. Khatiashvili and N. Khatiashvili, On the quantum properties of 3D carbon nanostructures. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. 33 (2019), 39-42.
[7] N. Khatiashvili, O. Komur Avill anl L. nuicnava, Un the numerical solu ins of the axisymmetric turbulent-diffus n equation ? 1 Ma Mech. 18 2013), no. 1, 55-60.

Torricelli Point as a Maximizer

Giorgi Khimshiashvili

Institute of Fundamental and Interdisciplinary Mathematical Research, Ilia State University, Tbilisi, Georgia
e-mail: giorgi.khimshiashvili@iliauni.edu.ge

Classically, the Torricelli point of a triangle is defined as the unique point for which the sum of distances to the vertices of triangle is minimal. In other words, the Torricelli point is the unique minimizer of the function defined as the sum of distances to the vertices of triangle. The aim of this talk is to show that the Torricelli point is also the unique maximizer of another natural function on the interior of triangle.

Let us consider a triangle \triangle with vertices A, B, C such that each of its angles is less than $2 \pi / 3$. As is well known such a triangle possesses a uniquely defined Torricelli point T inside \triangle characterized by the property that the angles $A T B, B T C, C T A$ are all equal to $2 \pi / 3$. Introduce now a function f of point P inside \triangle defined as

$$
f(P)=\sin p \cdot \sin q \cdot \sin r,
$$

where p, q, r are the angles $A P B, B P C, C P A$ respectively. It is easy to see that f is a smooth positive function on the interior of \triangle which tends to zero as point P approaches the boundary of \triangle.

Our first main result is that the function f has a unique critical point inside \triangle which coincides with the Torricelli point of triangle \triangle and is a point of non-degenerate maximum of f. In other

 of these results to a ertain prok ,

More on Relations Between Crossed Modules of Different Algebras

Emzar Khmaladze ${ }^{1,2}$
${ }^{1}$ The University of Georgia, Tbilisi, Georgia
${ }^{2}$ Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mails: e.khmal@gmail.com, e.khmaladze@ug.edu.ge

Groups, associative algebras and Lie algebras are related by the well-known adjoint functors: the group algebra functor is left adjoint to the unit group functor, as well as the universal enveloping algebra functor is left adjoint to the Liezation functor. These classical facts have been recently extended to the respective categories of crossed modules in [2] and [3].

In the non-commutative framework, when Lie algebras are replaced by Leibniz algebras, the analogous objects to associative algebras are dialgebras, introduced and studied by J.-L. Loday [4]. There is an adjunction between the categories of Leibniz algebras and dialgebras, which is analogous and related to the one between the categories of Lie and associative algebras.

We present the construction of adjoint functors between the categories of crossed modules of dialgebras and Leibniz algebras. Moreover, we extend the well-known relations between the categories of Lie, Leibniz, associative algebras and dialgebras to the respective categories of crossed modules.

The results of this research are presented in the papers [1]-[3].

References

[1] J. M. Casas, R. F. Casado, E. Khmaladze and M. Ladra, More on crossed modules of Lie, Leibniz, associative and diassociative, J. Algebra and its Appl. 16 (2017), no. 06, 1750107.
[2] J. M. Casas, R. F. Casado, E. Khmaladze and M. Ladra, Universal enveloping crossed module of a Lie crossed module. Homology Homotopy Appl. 16 (2014), no. 2, 143-158.
[3] J. M. Casas, N. Inassaridze F. Khmolodenon man in intion between crossed modules of group. And algebras. J. Homotopy Relat Struct. 9 (20 :), no. 1, 223-237.
[4] J.-L. Loday, 1 algebras. I ; ayd el di zrads, 7-66, acture Notes in Math., 1763,
Springer, Ber $n, 2001$.

Influence of Chiral Asymmetry on Phase Structure of the Two-Color Quark Matter

Tamaz Khunjua ${ }^{1,2}$, Konstantin Klimenko ${ }^{3}$, Roman Zhokhov ${ }^{4}$
${ }^{1}$ The University of Georgia, Tbilisi, Georgia
${ }^{2}$ Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: t.khunjua@ug.edu.ge
${ }^{3}$ State Research Center of Russian Federation, Institute for High Energy Physics, NRC
"Kurchatov Institute", Protvino, Moscow Region, Russia
e-mail: kklim@ihep.ru
${ }^{4}$ Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN), Troitsk, Moscow, Russia
e-mail: zhokhovr@gmail.com

It is well known that quantum chromodynamics (QCD) is the theory of hot and dense strongly interacting matter.

And the great interest are properties and phase diagram of dense baryon (quark) matter, which may be realized in heavy-ion collision experiments or inside compact stars. However, at the corresponding values of temperature and baryon density, the QCD interaction constant is quite large. Therefore, using the usual perturbation method, it is impossible to obtain an adequate picture of the phenomena of dense matter. In this case different effective low-energy QCD-like models, among which are the well-known Nambu-Jona-Lasinio (NJL) type models [2], etc, can be used to describe the corresponding parts of the QCD phase diagram.

Dense baryonic matter, which can exist in neutron stars or be even observed in heavy-ion collision experiments, is characterized by not only μ_{B} chemical potential. In the real case there appears an additional isospin chemical potential μ_{I} in the system. Moreover, since nuclear matter is usually under the influence of extremely strong external magnetic fields, chiral asymmetry of the medium can also be observed. In the most general case this phenomenon is described by two chemical potentials, chiral μ_{5} and chiral isospin $\mu_{I 5}$. Thus, the phase structure of real dense quark (baryonic) matter should be described in terms of QCD with several chemical potentials.

In the present work, an attempt is performed using NJL-model to find out how the phenomenon of condensation of diquark pairs, which in the real 3 -color case corresponds to color superconductivity (CSC) phenomenon, can affect the duality between the CSB and charged PC phases. Moreover, it is also under the influence of strong magnetic field, leading to chiral asymmetry of quark medium. In our recent paper [1] the phase structure of the 2-color and 2-flavor massless NJL model was investigated in the mean-field approximation at three nonzero chemical potentials, $\mu_{B} \neq 0, \mu_{I} \neq 0$ and $\mu_{I 5} \neq 0$. In the ground state of the $N_{c}=2$ system under consideration there can be a condensation of σ particles, and in this case the CSB phase is realized. Finally, the condensation of baryonic colorless diquarks leads to the phase of quark matter with spontaneous breaking of baryonic $U(1)_{B}$ symmetry, and we call it the baryonic superfluid (BSF) phase. It is shown in the paper [1] that one more, diquark, channel of cuark intoractionc dual symmetry between CSB and charged PC ph omena at large μ_{B} Moreover in this case ther appear two additional dual symmetries of the $\left(, 3, \mu_{I}, \mu_{I 5}\right)-\mathrm{F},\{$ ajt $\mathrm{f}\langle\mathrm{m}$ el: between well as between the SF and che, 1,

In heavy-ion collisions due to large temperatures and non-trivial gluon configurations chiral imbalance μ_{5} may appear. Therefore, it would be interesting to clarify the situation with the dual symmetries of the phase diagram of this system in the most general case.

The main results of the work are as follows. It turns out that the full $\left(\mu_{B}, \mu_{I}, \mu_{I 5}, \mu_{5}\right)$-phase diagram of the model is interconnected by the dualities and possesses a very high symmetry. Chiral μ_{5} is the only chemical potential that keeps this symmetry intact but is not involved in it itself, it only deforms the whole phase diagram.

The phase diagram itself is studied numerically. One could see two interesting features of chiral μ_{5} imbalance, its chameleon nature and its property of being universal catalyzer. It is shown that it can catalyze every phenomena in the system. Chameleon nature signifies that chiral μ_{5} chemical potential can take a role of any chemical potential and have the same influence on the phase structure, being universal catalyzer is one of manifestations of chameleon properties, chiral chemical potential can take a role of isospin one and in equal degree catalyze charged PC, or it can mimic baryon one and catalyze diquark condensation.

References

[2] T. G. Khunjua, K. G. Klimenko and R. N. Zhokhov, The dual properties of chiral and isospin asymmetric dense quark matter formed of two-color quarks. Journal of High Energy Physics volume 2020, no. 148. Analogy with Supercond

The Consistent Criteria of Hypotheses Testing for Gamma ("G") Statistical Structure

Jemal Kiria ${ }^{1}$, Tengiz Kiria ${ }^{1}$, Zurab Zerakidze ${ }^{2}$
${ }^{1}$ Georgian Technical University, Tbilisi, Georgia
e-mails: jemal.kiria@gmail.com; kiria8@gmail.com
${ }^{2}$ Gori State University, Gori, Georgia
e-mail: zura.zerakidze@mail.ru

The density of Gamma ("G") low is determined by the equality

$$
f(x, \alpha, \theta)=x^{\alpha-1} e^{-x / \theta} \theta^{-\alpha} G^{-1}(\alpha), \quad x \geq 0,
$$

where $G(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t, \alpha>0, \theta>0$.
The probability measure μ corresponding to the Gamma ("G") density: $\mu(A)=\int_{A} f(x, \alpha, \theta) d x$ is called "G" measure.

Definition 1. A statistical structure $\left\{E, S, \mu_{h}, h \in H\right\}$ is called Gamma ("G") Statistical structure if each $\mu_{h}(h \in H)$ is " G " measure.

For each $h \in H$ we denote by $\bar{\mu}_{h}$ the completion of the measure μ_{h}, and by $\operatorname{dom}\left(\bar{\mu}_{h}\right)$ - the σ-algebra of all $\bar{\mu}_{h}$-measurable subsets of E. We denote $S_{1}=\bigcap_{h \in H} \operatorname{dom}\left(\bar{\mu}_{h}\right)$. Let H be the set oh hypotheses and let $B(H)$ be σ-algebra of subsets of H which contains all finite subsets of H.

Definition 2. We will say that the statistical structure $\left\{E, S_{1}, \bar{\mu}_{h}, h \in H\right\}$ admits a consistent criterion of hypotheses testing if there exists at least one measurable mapping $\delta:\left(E, S_{1}\right) \rightarrow$ $(H, B(H))$ such that $\bar{\mu}_{h}(\{x: \delta(x)=h\})=1 \forall h \in H$.
Definition 3. A statistical structure $\left\{E, S_{1}, \bar{\mu}_{h}, h \in H\right\}$ is called strongly separable if there exists a family of S_{1}-measurable sets $\left\{Z_{h}, h \in H\right\}$ such that the relations are fulfilled:
(1) $\mu_{h}\left(Z_{h}\right)=1 \quad \forall h \in H$;
(2) $Z_{h_{1}} \cap Z_{h_{2}}=\varnothing \quad \forall h_{1} \neq h_{2}, \quad h_{1}, h_{2} \in H$;
(3) $\bigcup_{h \in H} Z_{h}=E$.

Theorem. In order that the Gamma (" G ") orthogonal statistical structure $\left\{E, S_{1}, \bar{\mu}_{h}, h \in H\right\}$, card $H=c$, admitted a consistent criteria of hypotheses testing it is necessary and sufficient that this statistical structure be strongly separable.

References

[1] Z. Zerakidze and O. Purtukhia, The weakly consistent, strongly consistent and consistent estimates of the parameters. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math. 31 (2017), 151-154.
[2] Z. S. Zerakidze and O. G. Purtukhia, Consiste Ukraïn. Mat. Zh. 71 (2019), no. 4, 486-501; no. 4, 554-571

The Method of Almost Surjective Homomorphisms and the Relative Measurability of Functions

Aleks Kirtadze
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
e-mail: kirtadze2@yahoo.com

Some interconnections between the relative measurability of real-valued functions and certain classes of mappings and group homomorphisms with thick graphs will be given for solving certain versions of the general measure extension problem in its algebraic setting.

Acknowledgement
This work was supported Grant \# FR-18-6190.

Georgia (SRNSFG),

The Use of the Differentiation Elements in a Primary-Level Mathematics Lesson

Shalva Kirtadze

Department of Teaching Methods, Akaki Tsereteli State University, Kutaisi, Georgia
e-mail: shalva.kirtadze@atsu.edu.ge

The third generation of the National Curriculum primarily aims at implementing a studentoriented educational process, in which a teacher should plan the educational process where all the decisions regarding the selection of methods, strategies and teaching resources; classroom management; creation of an inclusive classroom environment; evaluation system and etc., are based on the needs of a student. With this respect, using the differentiation approach throughout the educational process is essential for a teacher.

This paper offers differentiation activity patterns for lower, medium and higher mathematical proficiency students in math classes. The principles of differentiation are distinctly represented. Despite different levels of ass nutuo, no mipurtant mat National Curriculur requirements are

On Numerical Solving of the Dirichlet Generalized Harmonic Problem for Regular n-Sided Pyramidal Domains by the Probabilistic Method

Nana Koblishvili, Murman Kublashvili, Zaza Tabagari, Mamuli Zakradze
Department of Computational Methods, Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
e-mails: nanakoblishvili@yahoo.com; mkublashvili@mail.ru; z.tabagari@hotmail.com; mamuliz@yahoo.com

The probabilistic method (PM) is proposed for numerical solving of the Dirichlet generalized harmonic problem for regular n -sided pyramidal domains. The term "generalized" indicates that a boundary function has a finite number of first kind discontinuity curves. In the considered case edges of the pyramid represent the mentioned curves. Application of the PM consists of following main stages:
(a) computer modelling of the Wiener process;
(b) construction of an algorithm for finding the intersection point of the trajectory of the simulated Wiener process and the surface of the pyramid;
(c) checking of a scheme and corresponding calculating program needed for numerical implementation and reliability of obtained results;
(d) finding of the probabilistic solution of generalized problems at any fixed points of the considered pyramid. The algorithm does not require approximation of a boundary function, which is main of its important properties.
 amples are considered.

Generalized Multilinear Sobolev Inequality in Grand Product Lebesgue Spaces Defined on Non-Homogeneous Spaces

Vakhtang Kokilashvili
Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: vakhtang.kokilashvili@tsu.ge

Necessary and sufficient condition governing the boundedness of the multilinear fractional integral operator $T_{\gamma, \mu}$ with measure μ from the grand product space $\prod_{j=1}^{m} \mathcal{L}^{p_{j}, \theta}(X, \mu)$ to grand Lebesgue space $L^{q), \theta q / p}(X, \mu)$ is established, where $\frac{1}{p}=\sum_{j=1}^{m} \frac{1}{p_{m}}, p<q$ and $\theta>0$. As a corollary we have a complete characterization of the multilinear Sobolev inequality in these spaces.

For such a characterization in the case of classical Lebesgue spaces we refer to [2] in the multilinear setting, and [1], [3] in the linear case.

The talk is based on the joint work with A. Meskhi.

Acknowledgement

The author was supported by the Shota Rustaveli National Science Foundation Grant (Project \# FR-18-2499).

References

[1] V. Kokilashvili, Weighted estimates for classical integral operators. Nonlinear analysis, function spaces and applications, Vol. 4 (Roudnice nad Labem, 1990), 86-103, Teubner-Texte Math., 119, Teubner, Leipzig, 1990.
[2] V. Kokilashvili, M. Mastyło and A. Meskhi, On the boundedness of multilinear fractional integral operators. J. coill. Anal. उU (2020), no. 1, 667-679.
[3] V. Kokilashvili and A

Fract. Calc. Appl. Anal. 4 (2001), no. 1

On the Low Dimensional Cohomologies of Biparabolic Subalgebras

Bakur Kotchlamazashvili ${ }^{1}$, Giorgi Rakviashvili ${ }^{2}$
${ }^{1}$ Faculty of Business, Technology and Education, Ilia State University, Tbilisi, Georgia
e-mail: bakur.kochlamazashvili.1@iliauni.edu.ge
${ }^{2}$ Institute of Fundamental and Interdisciplinary Mathematics Study, Ilia State University, Tbilisi, Georgia
e-mail: giorgi.rakviashvili@iliauni.edu.ge

It is proved, that the dimension of the center of a biparabolic subalgebra P of the prime Lie algebra so (N), i.e. the dimension of the zero regular cohomologies $H^{0}(P, P)$ is the number of partial nontrivial equal sums of the partition of $n=[N / 2]$

$$
\begin{equation*}
n=n_{1}+\cdots+n_{r}=m_{1}+\cdots+m_{s}, \tag{1}
\end{equation*}
$$

which corresponds to the biparabolic subalgebra P. Let us remark that similar result for the center of a biparabolic subalgebra of the prime Lie algebra $s l(n)$ was obtained by G. Rakviashvili and E. Kuljanishvili earlier.

Suppose we have the partition, similar to (1), for a biparabolic subalgebra Q of the prime Lie algebra $s l(n)$. It is proved, that the dimension of the first regular cohomologies $H^{1}(Q, Q)$, i.e. the dimension of the outer derivations of Q is equal to

Shape Differentiability of Semilinear Equilibrium-Constrained Optimization

Victor A. Kovtunenko ${ }^{1,2}$
${ }^{1}$ Institute for Mathematics and Scientific Computing, Karl-Franzens University of Graz, NAWI Graz, Graz, Austria
${ }^{2}$ Lavrent'ev Institute of Hydrodynamics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
e-mail: victor.kovtunenko@uni-graz.at

A class of semilinear optimization problems linked to variational inequalities is studied with respect to its shape differentiability. One typical example stemming from quasi-brittle fracture describes an elastic body with a Barenblatt cohesive crack under the inequality condition of nonpenetration at the crack faces. The other conceptual model is described by a generalized Stokes-Brinkman-Forchheimer's equation under divergence-free and mixed boundary conditions. Based on the Lagrange multiplier approach and using suitable regularization, an analytical formula for the shape derivative is derived from the Delfour-Zolesio theorem. The explicit expression contains both primal and adjoint states and is useful for finding descent direction of a gradient algorithm to identify an optimal shape, e.g., from boundary measurement data.

Acknowledgement

The authors thank the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (advanced Grant \# 668998 OCLOC) for partial support.

References

[1] F. Cakoni and V. A. Kovtunenko, Topological optimality condition for the identification of the center of an inhomogeneity. Inverse Problems 34 (2018), no. 3, 035009, 16 pp.
[2] J. R. G. Granada, J. Gwinner and V. A. Kovtunenko, On the shape differentiability of objectives: a lagrangian approach and the Brinkman problem. Axioms 7 (2018), no. 4, 76.
[3] J. R. G. Granada and V. A. Kovtunenko, A shape derivative for optimal control of the nonlinear Brinkman-Forchheimer equation. J. Appl. Numer. Optim. 3 (2021), 243-261.
[4] H. Itou, S. Hirano, M. Kimura, V. A. Kovtunenko and A. M. Khludnev (Eds.), In Mathematical Analysis of Continuum Mechanics and Industrial Applications III: Proceedings of the International Conference CoMFoS18, Mathematics for Industry 34, Springer, Singapore, 2020.
[5] V. A. Kovtunenko and K. Kunisch, High precision identification of an object: optimality-conditions-based concept of imaging. SIAM J. Control Optim. 52 (2014), no. 1, 773-796.
[6] V. A. Kovtunenko and K. O cusa, nнape unerentainily or Lagrangians and pplication to Stokes problem. SIAM J. C itrol Optim 3ं (), WI. N684.

On Convergence of Variation of Normed Sum of Chain Dependent Sequence

Zurab Kvatadze ${ }^{1}$, Beqnu Parjiani ${ }^{1}$, Tsiala Kvatadze ${ }^{2}$
${ }^{1}$ Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
e-mails: zurakvatadze@yahoo.com; beqnufarjiani@yahoo.com
${ }^{2}$ IB middle years program (MYP), European school, Tbilisi, Georgia
e-mail: ttkvatadze@gmail.com

On the probabilistic space (Ω, F, P) there is discussed a two-component narrow-sense stationary sequence $\left\{\xi_{n}, Y_{n}\right\}_{n \geq 1}$. The control sequence $\left\{\xi_{n}\right\}_{n \geq 1}$ is finite, stationary, ergodic Markov chain with one class of ergodic (is possible to be included the cyclic sub-classes). $\left\{Y_{n}\right\}_{n \geq 1}$ is a chain- dependent sequence [1].

In the certain conditions is shown the convergence of

$$
S_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(Y_{i}-E Y_{1}\right)
$$

by variation of sum distribution to normal distribution

$$
\operatorname{Var}\left(P_{S_{n}}, \Phi_{R_{0}+T_{\mu}}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

R_{0} and T_{μ} covariation matrixes are defined by Y_{1} value and chain characteristics. The rate of this convergence is determined to be

$$
\operatorname{Var}\left(P_{S_{n}}, \Phi_{R_{0}+T_{\mu}}\right) \leq c \frac{(\ln n)^{k / 2}}{\sqrt{n}}
$$

The order of estimation is similar to

$$
U_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(E\left(Y_{i} \mid \xi_{i}\right)-E Y_{1}\right)
$$

sum to $\Phi_{T_{\mu}}$ distribution of convergence rate by Levi-Prokhorov metric [2]

$$
L_{\Pi}\left(P_{U_{n}}, \Phi_{T_{\mu}}\right) \leq O\left(\frac{\ln n}{\sqrt{n}}\right)
$$

References

[1] Z. A. Kvatadze and T. L. Shervashidze, On limit theorems for conditionally independent random variables controlled by a finite Markov chain. Probability theory and mathematical statistics (Kyoto, 1986), 250-258, Lecture Notes in Math 1000 Gmximoon Domin 1000
[2] S. Kh. Sirazhdinov and Sh. K. Forma v, Limit Theorem for vur vifom Vect s Connected in a Markov Chain. (Russian Fan, Tashk t) 12 1

Stability of Spectral Characteristics of Boundary Value Problems for 2×2 Dirac Type Systems

Anton A. Lunyov
Facebook, Inc., Menlo Park, USA
e-mail: a.a.lunyov@gmail.com

Boundary value problems associated in $L^{2}\left([0,1] ; \mathbb{C}^{2}\right)$ with the following 2×2 Dirac type equation

$$
L_{U}(Q) y=-i B^{-1} y^{\prime}+Q(x) y=\lambda y, \quad B=\left(\begin{array}{cc}
b_{1} & 0 \tag{1}\\
0 & b_{2}
\end{array}\right), \quad b_{1}<0<b_{2}, \quad y=\operatorname{col}\left(y_{1}, y_{2}\right),
$$

with a potential matrix $Q \in L^{p}\left([0,1] ; \mathbb{C}^{2 \times 2}\right), p \geq 1$, and subject to the regular boundary conditions $U y:=\left\{U_{1}, U_{2}\right\} y=0$ has been investigated in numerous papers. If $b_{2}=-b_{1}=1$ this equation is equivalent to one dimensional Dirac equation.

In this talk we present recent results concerning the stability property under the perturbation $Q \rightarrow \widetilde{Q}$ of different spectral characteristics of the corresponding operator $L_{U}(Q)$. Our approach to the spectral stability relies on the existence of the triangular transformation operators for system (1) with $Q \in L^{1}$, which was established by us in [1]. The starting point of our investigation is the local Lipshitz property of the mapping $Q \rightarrow K_{Q}^{ \pm}$, where $K_{Q}^{ \pm}$are the kernels of transformation operators for system (1):

$$
\left\|K_{Q}^{ \pm}-K_{\widetilde{Q}}^{ \pm}\right\|_{X_{\infty, p}^{2}}^{2}+\left\|K_{Q}^{ \pm}-K_{\widetilde{Q}}^{ \pm}\right\|_{X_{1, p}^{2}} \leq C \cdot\|Q-\widetilde{Q}\|_{p}, \quad\|Q\|_{p},\|\widetilde{Q}\|_{p} \leq r, \quad p \in[1, \infty]
$$

It is new even for $\widetilde{Q}=0$. Here $X_{\infty, p}^{2}, X_{1, p}^{2}$ are the special Banach spaces naturally arising in such problems. We also obtain similar estimates for Fourier transforms of $K_{Q}^{ \pm}$.

Assuming boundary conditions to be strictly regular, let $\Lambda_{Q}=\left\{\lambda_{Q, n}\right\}_{n \in \mathbb{Z}}$ be the spectrum of $L_{U}(Q)$. It happens that the mapping $Q \rightarrow \Lambda_{Q}-\Lambda_{0}$ sends $L^{p}\left([0,1] ; \mathbb{C}^{2 \times 2}\right)$ into the weighted space $\ell^{p}\left(\left\{(1+|n|)^{p-2}\right\}\right)$ as well as into $\ell^{p^{\prime}}, p^{\prime}=p /(p-1)$. One of our main results is the Lipshitz property of this mapping on compact sets in $L^{p}\left([0,1] ; \mathbb{C}^{2 \times 2}\right), p \in[1,2]$. The proof of the inclusion into the weighted space $\ell^{p}\left(\left\{(1+|n|)^{p-2}\right\}\right)$ involves as an important ingredient inequality that generalizes classical Hardy-Littlewood inequality for Fourier coefficients. Similar result is proved for the eigenfunctions of $L_{U}(Q)$ using the deep Carleson-Hunt theorem for "maximal" Fourier transform. Certain modifications of these spectral stability results are also proved for balls in $L^{p}\left([0,1] ; \mathbb{C}^{2 \times 2}\right), p \in(1,2]$.

The talk is based on joint preprint [2] with Mark M. Malamud.

References

[1] A. A. Lunyov and M. M. Malamud, On the Riesz basis property of root vectors system for 2×2 Dirac type operators. J. Math. Anal. Appl. 441 (2016), no. 1, 57-103.
[2] A. A. Lunyov and M. M. Malamud, Stability spectral cnaracterıstıcs and Bari basis property of boundary value problems for 2×2 Dirac https://arxiv.org/abs/2012.11170.

On Angular Limits of Cauchy Type Integral

Ioseb D. Machavariani

Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia
e-mail: ioseb.machavariani@inbox.ru

1. Definitions

Let $\Gamma: \zeta=\zeta(t), t \in[a, b]$, be a rectifiable Jordan curve on the complex plane E_{2} (which is identified with the set of finite complex numbers). The expression

$$
\mathcal{K}_{\Gamma}(F, z)=\int_{\Gamma} \frac{F(\zeta)}{\zeta-z} d \zeta, \quad z \notin \Gamma, \quad F \in L(\Gamma)
$$

where $L(\Gamma)$ is a space of summable functions on Γ, is called a Cauchy type integral.
For each $z \in E_{2}$ and real value α we denote by $\mu_{\Gamma}(z, \alpha)$ the number of points where the half-line $\zeta=z+\rho e^{i \alpha}, \rho>0, \alpha \in[0,2 \pi]$, meets the curve Γ and define (see [4]):

$$
R_{\Gamma}(z)=\int_{0}^{2 \pi} \mu_{\Gamma}(z, \alpha) d \alpha
$$

2. Result

Theorem 2.1. The angular boundary values of a Cauchy type integral $\mathcal{K}_{\Gamma}(F, z)$ exists for every $F \in L(\Gamma)$ almost everywhere on the curve Γ if and only if for Γ the following condition is satisfied:
(K) for almost every points ζ of the curve Γ we have

$$
R_{\Gamma}(\zeta)<+\infty
$$

See [5] for several proofs of this theorem and related results.
In [1] A.-P. Calderon proved that that a singular operator $\mathcal{K}_{\Gamma}(F, \zeta)$ is bounded in the space $L_{2}(\Gamma)$ if the curve Γ satisfies the Lipschitz condition. In [2] it was formulated without proving a theorem asserting that there exist angular boundary values of a Cauchy type integral $\mathcal{K}_{\Gamma}(F, z)$ almost everywhere on rectifiable Jordan curves for all summable functions on the curve Γ and that the operator $\mathcal{K}_{\Gamma}(F, \zeta), \zeta \in \Gamma$, is bounded in spaces $L_{p}(\Gamma), p>1$, when Γ is a smooth curve. In [3] G. David proved that for the boundedness (continuity) of a singular operator $\mathcal{K}_{\Gamma}(F, \zeta)$ in spaces $L_{p}(\Gamma), p>1$, it is necessary and sufficient that the curve Γ satisfy the condition

$$
\begin{equation*}
\sup _{r>0} r^{-1} \operatorname{mes}\{\eta ; \eta \in \Gamma, \quad|\eta-\zeta|<r\}<C \tag{1}
\end{equation*}
$$

for all $\zeta \in \Gamma$, where the constant C depends on the curve Γ.
In [4] it was given an example of a rectifiable Jordan curve for which $R_{\Gamma}(\zeta)=+\infty$ almost everywhere on the curve. In [5] J. Kral proved that th at one point at least is the set of the first category is

Note that Lipschitz curves and the more smooth

It is not difficult to construct examples of curves for which smoothness is violated only at one point $\zeta \in \Gamma$ (at which $R_{\Gamma}(\zeta)=+\infty$) and on this curve find a function $F \in C(\Gamma)$, such that $\mathcal{K}_{\Gamma}(F, \zeta) \notin L(\Gamma)$.

Note that we have also

$$
\operatorname{mes}\{\eta ; \eta \in \Gamma,|\eta-\zeta|<r\}<C R_{\Gamma}(\zeta) r
$$

Summarizing the above argumentation and taking into account Theorem 2.1 and [4], [5], it turns out that the proofs of the works [1]-[3] have some gaps. As for smooth curves and Lipschitz curves and, moreover, for curves satisfying the condition (1), a singular integral may not exist at all for every $F \in C(\Gamma)$ and therefore it is meaningless to consider the boundedness of the operator $\mathcal{K}_{\Gamma}(F, \zeta)$ in spaces $L_{p}(\Gamma), p>1$.

References

[1] A.-P. Calderón, Cauchy integrals on Lipschitz curves and related operators. Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 4, 1324-1327.
[2] A. P. Calderon, C. P. Calderon, E. Fabes, M. Jodeit and N. M. Rivière, Applications of the Cauchy integral on Lipschitz curves. Bull. Amer. Math. Soc. 84 (1978), no. 2, 287-290.
[3] G. David, Opórateurs intégraux singuliers sur certaines courbes du plan complexe. (French) [Singular integral operators over certain curves in the complex plane] Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 157-189.
[4] J. Král, Non-tangential limits of the logarithmic potential. Czechoslovak Math. J. 14(89) (1964), 455-482.
[5] J. Král, Smooth functions with infinite cyclic variation. (Czech) Časopis Pěst. Mat. 93 (1968), 178-185.
[6] I. D. Machavariani, Aecessary a
with a Cauchy kerne 2021 (to al

Evaluation of Profit from Illegal Copies of Intellectual Property

Dali Magrakvelidze

Department of Computational Mathematics, Georgian Technical University
Tbilisi, Georgia
e-mail: dali.magraqvelidze@gmail.com

Consider simple model of illegal distribution firm and denote number of copies with x. Suppose there is an ability of arrest with probability $\pi(x)$, in which case an owner of the firm must pay a fine F. Probability $\pi(x)$ is an increasing function of x. The firm's expected profit can be represented as follows [1]: $[1-\pi(x)] p x-\pi(x) F$. The first term of the equation is the expected profit, and the second term is the expected cost. The manufacturer wants to maximize his expected profit, which means that he will equal the marginal (expected) profit to the marginal (expected) cost. Assume that there is no barrier for entry into production, so firms continue to enter production until expected profits are reduced to zero; it follows that:

$$
\begin{equation*}
[1-\pi(x)] p x-\pi(x) F=0 \tag{1}
\end{equation*}
$$

It is strange, but as it turns out, the level of production does not depend on the size of the fine F. Consider the problem of such maximization: $\max _{x}[1-\pi(x)] p x-\pi(x) F=0$ has the following condition of the first order:

$$
[1-\pi(x)] p-p x \pi^{\prime}(x) F-\pi^{\prime}(x) F=0
$$

After transformation of this equation we get:

$$
\begin{equation*}
\frac{p}{p x+F}=\frac{\pi^{\prime}(x)}{1-\pi(x)} . \tag{2}
\end{equation*}
$$

The zero-profit condition (1) can be written as follows:

$$
\begin{equation*}
\frac{p}{p x+F}=\frac{\pi(x)}{x} . \tag{3}
\end{equation*}
$$

The combination of equations (2) and (3) gives us:

$$
x=\frac{\pi(x)[1-\pi(x)]}{\pi^{\prime}(x)} .
$$

This shows, that equilibrium level of production does not depend on the size of the fine. These two conditions - profit maximization and zero profit from free entry - can be used to determine the optimal level x^{*} of the average distributor's "production". The form of $\pi(x)$ function finally is determined by firm operating level. Because the firm's operating level is x^{*}, from equation (3) we can define p^{*} :

$$
p^{*}=\frac{\pi\left(x^{*}\right)}{\left[1-\pi\left(x^{*}\right)\right]} F .
$$

This means that although x^{*} does not depend on the size of F, the price will still depend on F. In fact, it is directly proportional to F. The more fines the payer has to pay if its illegal action is exposed, the price of intellectual property will be higher.

References

[1] H. R. Varian, Intermediate Microeconomics:A Inc., 1993.

On the Extension of Calderón-Zygmund Inequality

Dali Makharadze

Department of Mathematics, Batumi Shota Rustaveli State University
Batumi, Georgia
e-mail: dali.makharadze@bsu.edu.ge

The goal of our talk is to present the results concerning the behavior of the solution of the Poisson equation

$$
\Delta u(x)=f(x) \text { a.e. } x \in \Omega,
$$

where Ω is a bounded Lipschitz domain in $R^{n}, n \geq 3$ and f belongs to the weighted grand Lorentz space. The latter one is defined as the set of all measurable functions f and weight w defined on Ω, for which the norm

$$
\|f\|_{L_{w}^{p, s, \theta}}=\sup _{0<\varepsilon<p-1} \varepsilon^{\frac{\theta}{p-1}}\|f\|_{L_{w}^{p-\varepsilon, s}}
$$

is finite, w $\subset 1<p<\infty, 1 \leq s<\infty$.

On Gaussian Random Variables in Stochastic Scheduling Problems

Badri Mamporia ${ }^{1}$, Vaja Tarieladze ${ }^{1}$, Nodari Vakhania ${ }^{2}$
${ }^{1}$ Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia e-mails: badrimamporia@yahoo.com; v.tarieladze@gtu.ge
${ }^{2}$ Centro de Investigacion en Ciencias, UAEMor Cuernavaca, Mexico
e-mail: nodari@uaem.mxv.

In stochastic scheduling we offer to use Gaussian and symmetrically truncated independent Gaussian random variables.

We plan to discuss their role in finding the mean optimal and almost surely optimal makespan in one-machine case.

Acknowledgement

The authors were supported by the Shota Rustaveli National Science Foundation Grant \# DI-181429: "Application of Probabilistic Methods in Discrete Optimization and Scheduling Problems".

References

[1] B. Mamporia, On stochastic scheduling problem. 2021 (to appear).
[2] B. Mamporia, V. Tarieladze and A. Chakhvadze, On symmetrically truncated normal distributions. (Georgian) XI Annual International Meeting of the Georgian Mechanical Union, August 27-29, 2020, Batumi, Georoia. 2020
 orgian Math. J. 25 (2018), no.

Weighted Extrapolation and Boundedness in Generalized Grand Morrey Spaces, and Applications to Partial Differential Equations

Alexander Meskhi ${ }^{1,2}$
${ }^{1}$ Kutaisi Internatioinal University, Kutaisi, Georgia
${ }^{2}$ Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: alexander.meskhi@kiu.edu.ge

Weighted extrapolation and one-weight inequalities for operators of Harmonic Analysis under the Muckenhoupt condition on weights are derived in generalized grand Morrey spaces $\|f\|_{L_{w}^{p, r, \varphi \varphi(\cdot)}(X)}$. The operators and spaces under consideration are defined on quasi-metric measure spaces. One-weight norm estimates for commutators of singular integrals defined on domains in \mathbb{R}^{n} are applied to study regularity properties of solutions of second order partial differential equations with discontinuous coefficients in generalized grand Morrey spaces under the Muckenhoupt condition on weights. For these results in the classical weighted grand Morrey spaces we refer to [1].

The investigation was carried out jointly with V. Kokilashvili and M. A. Ragusa.

Acknowledgment

The author was supported by the Shota Rustaveli National Science Foundation Grant (Project \# DI-18-118).

References

[1] V. Kokilashvili, A. Meskhi and M. A and applications to partial different Appl. 30 (2019), no. 1, 67-92.

On Teaching the Composition of Functions

Rusudan Meskhia
Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: rusudan.meskhia@tsu.ge

The paper deals with problems of teaching the composition of functions. The main attention is paid to general properties of composition of functions, establishing the range of definition and set of values, finding the inverse function of composition of functions, graphic methods of solving some equations with iteration of functions. We think that the examples oiven are interesting and important for studying this su ct anl ulnerr solution shows many considerable roperties of composition of functions.

Brief Preliminary Overview of the Aims and Methods of the PhD Thesis "Formalism and Applications of Georgian Language Processing by Machine Learning Methods"

Beso Mikaberidze
Scientific-Educational Center for Cultural Protection and Technological Development of Georgian State Languages, Georgian Technical University, Tbilisi, Georgia

e-mail: gllc.ge@gmail.com

Within framework of doctoral program "Informatics" of Georgian Technical University doctoral thesis "Formalism and Applications of Georgian Language Processing by Machine Learning Methods" (Doctoral Student - B. Mikaberidze, Supervisor - K. Pkhakadze, Director of the ScientificEducational Center for Georgian Language Technology of the Georgian technical University) was launched in 2020. The doctoral thesis is mainly based on the Pkhakadze's Logical Grammar of the Georgian Language [1], which were developed within framework of FR/362/4-105/12 project "Foundations of Logical Grammar of Georgian Language and Its Application in Information Technology" (Supervisor K. Pkhakadze, project were funded by Shota Rustaveli Georgian National Scientific Foundation) and, also, it is mainly based on the Georgian Intellectual Web-Corpus, which, in turn, were developed within the framework of AR/122/4-105/14 project "One More Step Towards Georgian Talking Self-Developing Intellectual Corpus" (Supervisor K. Pkhakadze, project were funded by Shota Rustaveli Georgian National Scientific Foundation) [3]. In addition, the doctoral thesis is aimed to develop the formalism of processing Georgian language by machine learning methods and highlight the advantages of the applied aspects of this formalism, that makes this study closely related to the long-term project "Technological Alphabet of the Georgian Language" [2], which was launched in 2012 and which is aimed to the complete technology support of the Georgian language. Thus, at the presentation, we will briefly review the basic visions, aims, and methods of the doctoral thesis.

References

[1] K. Pkhakadze, On the linguistic relation and logical declension in the Georgian language. Scientific-Educational Journal "Georgian language and Logic", 2005, no. 1, 19-77.
[2] K. Pkhakadze, The technological alphabet of the Georgian language - one of the main Georgian challenges of the XXI century. Proceedings of the Parliamentary Conference "Georgian Language - Challenges of the 21st Century", 2013, 98-105.
[3] K. Pkhakadze, M. Chikvinidze, C Chichua D Kurtcl-holio D Malidze, The Georgian Intellectual Web-Cor s: Aims, Methods Recommondation Additiona Publication of the Journal "Georgian Lang

Neumann Type Boundary-Transmission Problem for Composed Elastic Structures

Maia Mrevlishvili
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
e-mail: m_mrevlishvili@yahoo.com

We investigate a boundary-transmission problem for a two-layered elastic anisotropic structure when in different adjacent components of the composed body different refined models of elasticity theory are considered. In particular, we analyse the case when we have the generalized thermo-electro-magneto elasticity model (GTEME model) in one region of the composed body and the generalized thermo-elasticity model (GTE model) in another adjacent region. Both models are associated with Green-Lindsay's model [1], [2].

This type of mechanical problem mathematically is described by systems of partial differential equations with appropriate boundary-transmission conditions. In the GTEME model part we have six dimensional unknown physical field (three components of the displacement vector, electric potential function, magnetic potential function, and temperature distribution function), while in the GTE model part we have four dimensional unknown physical field (three components of the displacement vector and temperature distribution function).

The diversity in dimensions of the interacting physical fields complicates mathematical formulation and analysis of the corresponding boundary-transmission problems.

On the interface surface of the two-layered structure we consider the transmission conditions for the mechanical and thermal characteristics together with the Dirichlet type boundary conditions for the electric and magnetic potentials, while on the exterior boundary of the layered body the Neumann type conditions are prescribed.

Using the potential method and the theory of pseudodifferential equations we investigate existence and uniqueness of solutions to the boundary-transmission problem in appropriate SobolevSlobodetski function spaces.

Acknowledgement

This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSF) (Grant \# FS-18-126).

References

[1] T. Buchukuri, O. Chkadua and D. Natroshvili, Mathematical problems of generalized thermo-

[2] A. E. Green and K. A. indsay, Th T O cit J.

On Lyapunov Dimension of Nonlinear Dynamic Systems

Vitali Muladze

Faculty of Business, Technology and Education, Ilia State University, Tbilisi, Georgia
e-mail: vitali.muladze.1@iliauni.edu.ge

Suppose we have generalized Henon map of 6th degree:

$$
\begin{align*}
& x \longmapsto 1-a_{1} x^{2}-a_{2} x^{4}-a_{3} x^{6}+b y, \\
& y \longmapsto b x, \tag{1}
\end{align*}
$$

where $a_{1}, a_{2}, a_{3}>0, b \in(0,1)$.
It is proved that under certain restrictions Lyapunov dimension of dynamical system (1), over the bounded invariant set K involving stationary points is equal to

$$
\begin{equation*}
\operatorname{dim}_{L} K=1+\frac{1}{1-\ln b^{2} / \ln a_{1}\left(x_{-}\right)}, \tag{2}
\end{equation*}
$$

where $a_{1}\left(x_{-}\right)$corresponds to singular value of the map F at stationary point x_{-}.
Let us remark, that formula (2) for the generalized Henon map of degree 4, under certain restrictions was obtained by G. Rakviashvili earlier (unpublished), and for Henon map of degree 2 was proved in [2].

References

[1] J. Bovy, Lyapunov Exponents and Strange Attractors in Discrete and Continuous Dynamical Systems. Theoretica Phys. Project, Catholic Univ. Leuven, Flanders, Belgium, Tech. Rep 9 (2004), 1-19.
[2] G. Leonov, Strange attracto (2008), no. 1, 49-96.

Bounded Invertibility of the Sturm-Liouville Operator with Negative Parameter

Madi Muratbekov ${ }^{1}$, Mussakan Muratbekov ${ }^{2}$
${ }^{1}$ Center of Information Technologies, Kazakh University of Economics, Finance and International Trade, Nur-Sultan, Kazakhstan
e-mail: mmuratbekov@kuef.kz
${ }^{2}$ Department of Mathematics, M. Kh. Dulati Taraz State University, Taraz, Kazakhstan
e-mail: musahan_m@mail.ru

The Sturm-Liouville operator $L=-\frac{d^{2}}{d x^{2}}+q(x), x \in R$ is one of the main operators of modern quantum mechanics and theoretical physics. It is known that many fundamental results have been obtained for the Sturm-Liouville operator L. Among them, for example, are questions about the existence of a resolvent, separability (coercive estimate), various weight estimates, estimates of intermediate derivatives of functions from the domain of definition of an operator, estimates of eigenvalues and singular numbers (s-numbers). At present, there are various generalizations of the above results for elliptic operators.

For general differential operators, the solution of such problem as a whole is far from complete. In particular, as far as we know, there was no result until now showing the existence of the resolvent and coercivity, as well as the discreteness of the spectrum of a hyperbolic type operator in an infinite domain with increasing and oscillating coefficients.

It is easy to see that the study of some classes of differential operators of hyperbolic type defined in the space $L_{2}\left(R^{2}\right)$, using the Fourier method, can be reduced to the study of the Sturm-Liouville operator with a negative parameter:

$$
L_{t}=-\frac{d^{2}}{d x^{2}}+\left(-t^{2}+i t b(x)+q(x)\right)
$$

where t is a parameter $(-\infty<t<\infty), i^{2}=-1$.
Hence, it is easy to see that we get $-t^{2} \rightarrow-\infty$ when $|t| \rightarrow \infty$ for the operator L_{t}. Consequently, a completely different situation arises here compared to the Sturm-Liouville operator

$$
L=-\frac{d^{2}}{d x^{2}}+q(x)
$$

and in particular, the methods worked out for the Sturm-Liouville operator L turn out to be little adapted when studying the Sturm-Liouville operator L_{t} with a negative parameter. All these issues indicate the relevance and novelty of this research.

This research is devoted to study the existence of the resolvent of the Sturm-Liouville operator with a negative parameter.

References

[1] M. O. Otelbaev, Estimates of the Spectrum of the Sturm-Liouville Operator. Gylym, 1990.
 Adjointness. Academi 1975.

Spectral Analysis of One Three-Dimensional Biharmonic Operator

Eldar Mustafayev ${ }^{1}$, Shemsiyye Muradova ${ }^{1,2}$
${ }^{1}$ Department of Mechanics and Mathematics, Baku State University, Baku, Azerbaijan e-mail:dosent59@gmail.com
${ }^{2}$ Azerbaijan National Academy of Sciences, Institute of Mathematics and Mechanics Baku, Azerbaijan
e-mail: mshams01@yahoo.com

Consider the differential expression

$$
l(u)=\Delta^{2} u+\sum_{k=1}^{3} \alpha_{k} \cdot \delta\left(x-x^{(k)}\right) u
$$

where Δ - three-dimensional Laplace operator, $\delta(x)$ - Dirac function, $x^{(k)} \in \mathbb{R}^{3}, k=1,2,3$ - are arbitrary fixed points, $\alpha_{k} \in \mathbb{R}=(-\infty ;+\infty), k=1,2,3$.

In $L_{2}\left(\mathbb{R}^{3}\right)$ we define the operator

$$
A=\Delta^{2}+\sum_{k=1}^{3} \alpha_{k} \cdot \delta\left(x-x^{(k)}\right)
$$

with domain $D(A)=\left\{u \in W_{2}^{2}\left(\mathbb{R}^{3}\right): l(u) \in L_{2}\left(\mathbb{R}^{3}\right)\right\}$.
In [1], the self-adjointness of the operator A in the space $L_{2}\left(\mathbb{R}^{3}\right)$ was proved.
Theorem. The largest number of different negative eigenvalues of the operator A is three. The number of eigenvalues is equal to the number of negative numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$. In particular, if $\alpha_{1} \geq 0, \alpha_{2} \geq 0, \alpha_{3} \geq 0$, then the operator A has no eigenvalues.

References

[1] M. I. Neǐman-zade and A. A. spaces of multipliers. (Russi Math. Notes 66 (1999), no.

On Clark-Ocone-Type Formulas for Nonsmooth Functionals

Ekaterine Namgalauri ${ }^{1}$, Omar Purtukhia ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, Ivane Javakhishvili Tbilisi State University
Tbilisi, Georgia
${ }^{2}$ Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mails: ekanamgalauri96@gmail.com; o.purtukhia@gmail.com

As is known, the famous Clark formula (1970) is the inverse statement of the following important property of the Ito stochastic integral: if ψ is square-integrable $\Im_{t}^{W}:=\sigma\left\{W_{s}: 0 \leq s \leq t\right\}$-adapted random process, then process $M_{t}=\int_{0}^{t} \psi(s, \omega) d W_{s}(\omega)$ is a martingale with respect to the filtration $\left\{\Im_{t}^{W}\right\}_{t \geq 0}$. When the functional F belongs to the Hilbert space $D_{2,1}$ (where $D_{2,1}$ denotes the space of square integrable functionals having the first order stochastic derivative) Ocone [2] proved that the integrand in the Clark representation is $E\left[D_{t} F \mid \Im_{t}^{W}\right]$ (where $D_{t} F$ denotes the stochastic (Malliavin) derivative of F). Subsequently, the formula obtained by Ocone was called the ClarkOcone formula.

It has turned out that the requirement of smoothness of functional can be weakened by the requirement of smoothness only of its conditional mathematical expectation. We (with Prof. O. Glonti, see [1]) generalized the Clark-Ocone formula in case, when functional is not stochastically smooth, but its conditional mathematical expectation is stochastically differentiable and established the method of finding of integrand. Here we consider functionals that did not satisfy even these weakened conditions. Such functionals include, for example, the Lebesgue means of stochastically nonsmooth square integrable processes.
Theorem. If $f(t, x)$ is a deterministic, measurable, bounded function then the following stochastic integral representation is fulfilled

$$
\int_{0}^{T} f\left(t, W_{t}\right) d t=\int_{0}^{T} E\left[f\left(t, W_{t}\right)\right] d t+\int_{0}^{T}\left\{\int_{t}^{T}\left[\int_{-\infty}^{\infty} f(s, y) \frac{y-W_{t}}{s-t} \varphi\left(\frac{y-W_{t}}{\sqrt{s-t}}\right) d y\right] d s\right\} d W_{t}
$$

where φ is the density function of the standard normal distribution.
Remark. It should be noted that the result of theorem is especially interesting for stochastically non-smooth $f\left(t, W_{t}\right)$, although it is also useful for smooth $f\left(t, W_{t}\right)$.

References

[1] O. A. Glonti and O. G. Purtukhia, On an integral representation of a Brownian functional. (Russian) Teor. Veroyatn. Primen. 61 (2016), no. 1, 158-164; translation in Theory Probab. Appl. 61 (2017), no. 1, 133-139.
[2] D. Ocone, Mallia sion processes. S

Generalized Multi-Field Mixed Dynamical Problems for Composed Elastic Structures

David Natroshvili
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
e-mail: natrosh@hotmail.com

We investigate multi-field mixed dynamical problems for complex multi-layer elastic anisotropic structures containing interfacial cracks when in different adjacent components of the composed body different refined models of elasticity theory are considered. In particular, we analyse the case when we have the generalized thermo-electro-magneto elasticity model (GTEME model) in one region of the composed body and the generalized thermo-elasticity model (GTE model) in another adjacent region. Both models are associated with Green-Lindsay's model [1], [2]. This type of mechanical problem mathematically is described by systems of partial differential equations with appropriate boundary-transmission and initial conditions. In the GTEME model part we have six dimensional unknown physical field (three components of the displacement vector, electric potential function, magnetic potential function, and temperature distribution function), while in the GTE model part we have four dimensional unknown physical field (three components of the displacement vector and temperature distribution function). The diversity in dimensions of the interacting physical fields complicates mathematical formulation and analysis of the corresponding initial-boundarytransmission problems. We apply the Laplace transform technique, the potential method and the theory of pseudodifferential equations to prove uniqueness and existence theorems of solutions to different type basic and mixed initial-boundary-transmission problems in appropriate Sobolev spaces. We analyse the smoothness properties of solutions and establish asymptotic behaviour of the first derivatives near the exceptional curves (the crack edges and curves where different boundary conditions collide). It is shown that smoothness of solutions and stress singularity exponents at the exceptional curves essentially depend on the material parameters of the composed body. Moreover, we describe an efficient algorithm for evaluating the stress singularity exponents.

This is a joint work with Tengiz Buchukuri and Otar Chkadua.

Acknowledgment

This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSF) (Grant \# FR-18-126).

References

[1] T. Buchukuri, O. Chkadua and D. Natroshvili, Mathematical problems of generalized thermo-electro-magneto-elasticity avy. vitin. Di,jJet. Equ. Matn. Phys. 68 (20 '), 1-166.
[2] A. E. Green and K. A. L. dsay, Ther1 ' ? ? y. I ftc 12 (1972), n 1, 1-7.

$g s$-Essential Submodules

Celil Nebiyev

Department of Mathematics, Ondokuz Mayıs University, Kurupelit-Atakum/Samsun, Turkey
e-mail: cnebiyev@omu.edu.tr

In this work, every ring has unity and every module is unital left module. Let M be an R module and N be a submodule of M. If $L=0$ for every $L<_{g} M$ with $N \cap L=0$, then N is called a g-small essential (briefly, $g s$-essential) submodule of M and denoted by $N \unlhd_{g s} M$. In this work, some properties of these submodules are investigated.

Key words. essential submodules, small submodules, g-small submodules, s-essential submodules.
2020 Mathematics Subject Classification. 16D10, 16D80.

Results

Proposition 1. Let M be an R-module. Then every essential submodule of M is gs-essential submodule of M.

Proposition 2. Let M be an R-module. Then every gs-essential submodule of M is s-essential submodule of M.
Lemma 1. Let $f: M \rightarrow N$ be an R-module homomorphism. If $K \unlhd_{g s} N$, then $f^{-1}(K) \unlhd_{g s} M$.
Proposition 3. Let M be an R-module and $K \leq N \leq M$. If $N / K \unlhd_{g s} M / K$, then $N \unlhd_{g s} M$.
Lemma 2. Let M be an R-module, $N_{1} \leq L_{1} \leq M$ and $N_{2} \leq L_{2} \leq M$. If $N_{1} \unlhd_{g s} L_{1}$ and $N_{2} \unlhd_{g s} L_{2}$, then $N_{1} \cap N_{2} \unlhd_{g s} L_{1} \cap L_{2}$.
Proposition 4. Let M be an R-module and $N_{1}, N_{2} \leq M$. If $N_{1} \unlhd_{g s} M$ and $N_{2} \unlhd_{g s} M$, then $N_{1} \cap N_{2} \unlhd_{g s} M$.
Proposition 5. Let M be an R-module and $N, T \leq M$. If $N \unlhd_{g s} M$, then $N \cap T \unlhd_{g s} T$.
Proposition 6. Let M be an R-module and $K \leq L \leq M$. If $K \unlhd_{g s} M$, then $K \unlhd_{g s} L \unlhd_{g s} M$.

References

[1] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.
[2] B. Koşar, C. Nebiyev and A. Pekin, A generalization of g-supplemented modules. Miskolc Math. Notes 20 (2019), no. 1, 345-352.
[3] B. Koşar, C. Nebiyev and N. Sökmez, g-supplemented modules. Translation of Ukraïn. Mat. Zh. 67 (2015), no. 6, 861-864; Ukrainian Math. J. 67 (2015), no. 6, 975-980.
[4] R. Wisbauer, Foundations of Module and Ring Theory. A Handbook for Study and Research. Revised and translated from the 10ee Commend Applications, 3. Gordon and Breach Sc
[5] D. X. Zhou and X. R. Z Bull. Math. 35 (2011)

On $\oplus-e$-Supplemented Modules
Celil Nebiyev ${ }^{1}$, Hasan Hüseyin Ökten ${ }^{2}$
${ }^{1}$ Department of Mathematics, Ondokuz Mayıs University
Kurupelit-Atakum/Samsun, Turkey
e-mail: cnebiyev@omu.edu.tr
${ }^{2}$ Technical Sciences Vocational School, Amasya University, Amasya, Turkey
e-mail: hokten@gmail.com

In this work, every ring has unity and every module is unital left module. Let M be an R module. If every essential submodule of M has a supplement that is a direct summand of M, then M is called a $\oplus-e$-supplemented module (see also [2]). In this work, some properties of these modules are investigated.

Key words. essential submodules, small submodules, supplemented modules, \oplus-supplemented modules.

2010 Mathematics Subject Classification: 16D10, 16D80.

Acknowledgment

This research was in part supported by grants from Ondokuz Mayis University (Project \# PYO.EGF.1901.19.002).

Results

Lemma. Let $M=M_{1} \oplus M_{2}$. If M_{1} and M_{2} are $\oplus-e$-supplemented, then M is also $\oplus-e-$ supplemented.

Corollary 1. The finite direct sum of $\oplus-e$-supplemented modules is $\oplus-e$-supplemented.
Corollary 2. Let M be $a \oplus-e$-supplemented module. Then $M^{(\Lambda)}$ is $\oplus-e$-supplemented for every finite index set Λ.

Proposition. Let M be $a \oplus-e$-supplemented module. If every e-supplement submodule in M is a direct summand of M, then every direct summand of M is $\oplus-e$-supplemented.

References

[1] A. Harmancı, D. Keskin and P. F. Smith, On \oplus-supplemented modules. Acta Math. Hungar. 83 (1999), no. 1-2, 161-169.
[2] C. Nebiyev and H. H. Ökten, $\oplus-e$-supplemented modules. Presented in 9th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2020), August 25-28, 2020, 2020.
[3] C. Nebiyev, H. H. Ökten an A. Pekin,
Math. 120 (2018), no. 2, 25
257 . Math. 120 (2018), no. 2, 25 257.

A Concrete Quantum Channel

Narayanan Namboodiri Memana Neelakantan
Department of Mathematics, Cochin University of Science and Technology, Kochi, India
e-mail: mnnadri@gmail.com

Construction and testing of pre-conditioners of Toeplitz/block Toeplitz matrices have been done in [6] using Korovkin's classic theorem of approximations. Later the map implementing preconditioner discussed in [4] was observed to be a Completely Positive Map and strucure lead to an abstract formulation and Korovkin-type theorems in a non commutative setting. Now, interestingly enough [7, Lemma 2.1, p. 311] the properties listed are of an abstract quantum channel. In this short lecture this view point is discussed by computing related quantities such Kraus representation, Channel capacity and fidelity of the quantum channel induced by the above 'Pre Conditioner.

Acknowledgment

The author is thank full to KSCSTE, Government Of Kerala for extending financial support by awarding Emeritus Scientist Fellowship.

References

[1] E. B. Davies, Quantum Theory of Open Systems. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976.
[2] M. Hayashi, Quantum Information. An Introduction. Translated from the 2003 Japanese original. Springer-Verlag, Berlin, 2006.
[3] A. S. Holevo, Quantum Systems, Channels, Information. A Mathematical Introduction. Texts and Monographs in Theoretical Physics, De Gruyter, Germany, 2019.
[4] K. Kumar, M. N. N. Namboodiri and S. Serra-Capizzano, Preconditioners and Korovkintype theorems for infinite-dimensional bounded linear operators via completely positive maps. Studia Math. 218 (2013), no. 2, 95-118.
[5] M. N. N. Namboodiri, Developments in noncommutative Korovkin-type theorems. RIMS Kôkyûroku Series 1737 (2011), 91-104.
[6] S. Serra Capizzano, A Korovkin-based approximation of multilevel Toeplitz matrices (with rectangular unstructured blocks) via multilevel trigonometric matrix spaces. SIAM J. Numer. Anal. 36 (1999), no. 6, 1831-1857.
[7] S. Serra Capizzano, A Korovkin-type theory for finite Toeplitz operators via matrix algebras. Numer. Math. 82 (1999), no. 1, 117-142.
[8] Ch. Shao and H. Xiang, Quantum circulant preconditioner for a linear system of equations. Phys. Rev. A 98 (2018) 060291
[9] M. M. Wilde, Fro Classical Thery. arXiv 106.1445v8[quant-ph]; https://arxiv.or

Preliminary Overview of the Aims and Methods of the Doctoral Thesis "Georgian-Mathematical Automatic Multilingual Semantic Translator"

Nodar Okroshiashvili
Scientific-Educational Center for Cultural Protection and Technological Development of Georgian State Languages, Georgian Technical University, Tbilisi, Georgia

e-mail: gllc.ge@gmail.com

Within the framework of the doctoral program "Informatics" of the Georgian Technical University, doctoral thesis "Georgian-Mathematical Automatic Multilingual Semantic Translator" (Doctoral Student - N. Okroshiashvili, Supervisor - K. Pkhakadze, Director of the Scientific-Educational Center for Georgian Language Technology of the Georgian technical University) was launched in 2019. The doctoral thesis is mainly based on the Pkhkadze's translation methodology developed within the framework of the two-year FR/362/4-105/12 project "Foundations of Logical Grammar of Georgian Language and Its Application in Information Technology" (project supervisor K. Pkhakadze, project was funded by Shota Rustaveli Georgian National Scientific Foundation) [1], [3], which is a sub-project of the long-term project "Technological Alphabet of Georgian Language" [2] of the Center for the Georgian Language Technology of the Georgian Technical University. At the same time, the doctoral thesis is aimed to build the first experimental versions of the Georgianmathematical multilingual semantic translators, that makes this research as an important part of the long-term project "Georgian Language Technological Alphabet", which was launched in 2012 and which is aimed to the complete technology support of the Georgian language [4]. Thus, considering all of above, at the presentation the aims and methods of doctoral thesis will be reviewed in detailed.

References

[1] K. Pkhakadze, On the linguistic relation and logical declension in the Georgian language. Scientific-Educational Journal "Georgian Language and Logic", no. 1, Universali, 2005, 1977.
[2] K. Pkhakadze, The technological alphabet of the Georgian language - one of the main Georgian challenges of the XXI century. Proceedings of the Parliamentary Conference "Georgian Language - Challenges of the 21st Century", 2013, 98-105.
[3] K. Pkhakadze, M. Chikvinidze, G. Chichua, D. Kurtskhalia, I. Beriashvili and S. Malidze, The Georgian Intellectual Web-Corpus: Aims, Methods, Recommendation. Additional Publication of the Journal "Georgian Language and Logic", 2017, 4-320.
[4] K. Pkhakadze, M. Chikvinidze Chinhern murchev and
 of the Georgian National Aca my of Scie $\}, 1,2 \geqslant 13,-42$.

$s Q_{1}$-Degrees of Computably Enumerable Sets

Roland Omanadze

Department of Mathematics, Ivane Javakhishvili Tbilisi State University
Tbilisi, Georgia
e-mail: roland.omanadze@tsu.ge

We say that a set A is $s Q_{1}$-reducible to a set B (in symbols: $A \leqslant_{s Q_{1}} B$), if there exist computable functions f and g such that, the following three conditions are satisfied:
(i) $(\forall x)\left(x \in A \Longleftrightarrow W_{f(x)} \subseteq B\right)$,
(ii) $(\forall x)(\forall y)\left(y \in W_{f(x)} \Longrightarrow y \leq g(x)\right)$,
(iii) $(\forall x)(\forall y)\left(x \neq y \Longrightarrow W_{f(x)} \cap W_{f(y)}=\varnothing\right)$.

This relation generates the $s Q_{1}$-degrees.
Our notation and terminology are standard, and can be found e.g., in [1], [2].
In this talk we will present the following results.
Theorem 1. Given any c.e. $s Q_{1}$-degree a such that $o_{s Q_{1}}<_{s Q_{1}} a<_{s Q_{1}} o_{s Q_{1}}^{\prime}$, there exist infinitely many pairwise sQ-incomparable c.e. sQ-degrees $\left\{c_{i}\right\}_{i \in \omega}$ such that

$$
(\forall i)\left(A<_{s Q_{1}} C_{i}<_{s Q_{1}} B\right) .
$$

Theorem 2. If A is a maximal set and B is a non-maximal hyperhypersimple set, then either $\left.A\right|_{s Q_{1}} B$, or there exist a non-maximal hyperhypersimple set C and a maximal set D such that

$$
A<_{s Q_{1}} D<_{s Q_{1}} C<_{s Q_{1}} B .
$$

Corollary. There exist infinite collections of $s Q_{1}$-degrees $\left\{a_{i}\right\}_{i \in \omega}$ and $\left\{b_{i}\right\}_{i \in \omega}$ such that for every i, j
(1) $a_{i}<_{s Q_{1}} a_{i+1}, b_{j+1}<_{s Q_{1}} b_{j}$, and $a_{i}<_{s Q_{1}} b_{j}$;
(2) every c.e. set in a_{i} is a maximal set;
(3) every c.e. set in b_{j} is a non-maximal hyperhypersimple set.

References

[1] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967.
[2] R. I. Soare, Recursiy Luvirorwou new umu deyıtes. A pluay of Cor putable Functions and Computably Genera d Sets. Pe Paỉ in air Dil Logic. S cinger-Verlag, Berlin, 1987.

On Sjölin-Soria-Antonov Type Extrapolation for Locally Compact Groups and a.e. Convergence of Vilenkin-Fourier Series

Giorgi Oniani

School of Computer Science and Mathematics, Kutaisi International University
Kutaisi, Georgia
e-mail: giorgi.oniani@kiu.edu.ge

Sjölin-Soria-Antonov type extrapolation theorem for locally compact σ-compact non-discrete Hausdorff groups is proved. Applying this result it is shown that the Fourier series with respect to the Vilenkin orthonormal systems on the Vilenkin groups of bounded type converge almost everywhere for functions from the class $L \log ^{+} L \log ^{+} \log ^{+} \log ^{+} L$.

The results of the talk have been published in [1].

References

[1] G. Oniani, On Sjölin-Sor groups and a.e. convergence of Vilenkin-1 urier series

Maximal Regularity of Second-Order Differential Equations and its Applications

Kordan Ospanov, Myrzagali Ospanov

Faculty of Mechanics and Mathematics, L. N. Gumilyov Eurasian National University Nur-Sultan, Kazakhstan
e-mails: kordan.ospanov@gmail.com; myrzan66@mail.ru

We study the following differential equation:

$$
\begin{equation*}
-s(x)\left(\rho(x) y^{\prime}\right)^{\prime}+r(x) y^{\prime}+q(x) y=f(x), \tag{1}
\end{equation*}
$$

where $x \in R=(-\infty,+\infty)$ and $f \in L_{p}=L_{p}(R), 1<p<+\infty$. We assume that s, ρ, and r are continuously differentiable functions, and q is a continuous function.

Let $l y=-s\left(\rho y^{\prime}\right)^{\prime}+r y^{\prime}+q y$ is the operator with $D(l)=C_{0}^{(2)}(R)$. By L we denote the closure of l in L_{p}. The function $y \in D(L)$ such that $L y=f$ is called the solution of equation (1).

The purpose of this work is to find some conditions for the coefficients s, ρ, r and q such that for any $f \in L_{p}$ there exists a unique solution y of the equation (1) and the following estimate holds:

$$
\begin{equation*}
\left\|-s(x)\left(\rho(x) y^{\prime}\right)^{\prime}\right\|_{p}+\left\|r y^{\prime}\right\|_{p}+\|(1+|q|) y\|_{p} \leq C\|f\|_{p} \tag{1}
\end{equation*}
$$

where $\|\cdot\|_{p}$ is the norm in L_{p}.
Here we assume that s and ρ are positive, and they can go to zero at infinity. The function r grows rapidly and does not obey the function q. These functions can fluctuate quickly. Further, using inequality (2), we give criteria for the compactness of the resolvent L^{-1} and the operator $m(x) \frac{d}{d x} L^{-1}$, where m is an unbounded function. We have obtained some important estimates for the Kolmogorov widths of the sets of solutions and their derivatives.

The equation (1) and its multidimensional generalizations with unbounded coefficients have used in stochastic analysis, biology and financial mathematics (see, for example, [1], [2]). For this reason, interest in these equations has considerably grown in recent years. A number of researches were devoted to the case that the coefficient r are controlled by q. Without the dominating potential q, the case that r growth at most as $|x| \ln (1+|x|)$ were considered by Lunardi and Vespri (1997), Metafune (2001), Prüss, Rhandi and Schnaubelt (2006), Hieber and others (2009).

Acknowledgement

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant \# AP08856281: "Nonlinear elliptic equations with unbounded coefficients").

References

[1] V. I. Bogachev, N. V. Krylov, M. Röckner and S. V. Shaposhnikov, Fokker-Planck-Kolmogorov Equations. Mathematical Surveys and Monographs, 207. American Mathematical Society, Providen
[2] G. E. Uhlenbeck 36 (1930), 823-8
nd L. S. O

On the Approximate Solution Using the Collocation Method of the Singular Integral Equation Containing the Fixed Singularity

Archil Papukashvili ${ }^{1,2,3}$, Meri Sharikadze ${ }^{1}$, Zurab Vashakidze ${ }^{2}$

${ }^{1}$ Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ School of Science and Technology, The University of Georgia, Tbilisi, Georgia
${ }^{3}$ Business and Technology University, Tbilisi, Georgia
e-mails: archil.papukashvili@tsu.ge; meri.sharikadze@tsu.ge; z.vashakidze@ug.edu.ge

Anti-plane problems of the elasticity theory, composed for the orthotropic plane, weakened by cracks, when a crack reaches the interface, are reduced to the following integral equation containing a fixed singularity to the unknown characteristic function of the crack disclosure

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{1}{t-x}-\frac{a}{t+x}\right) \rho(t) \mathrm{d} t=2 \pi f(x), \quad x \in[0,1] \tag{1}
\end{equation*}
$$

where the unknown function $\rho(t) \in H^{*}([0,1])$, the parameter dependent on the elasticity constants of the materials $a \in[0,1]$, the right-hand side $f(x) \in H_{\mu}[0,1], 0<\mu \leq 1$ (see: [2], [3]). The range of singularity of the solution at the point $t=0$ is also dependent on the elasticity constants of the materials $\alpha \in(0,1)$. However at the point, $t=1$ The range of singularity of the solution is constant, namely, $\beta=\frac{1}{2}$. The equation (1) is solved by the collocation method, in particular, the method of discrete singularities [1]. The corresponding algorithms are designed and implemented. The results of numerical computations are presented.

References

[1] I. K. Lifanov, Numerical solution of singular Hilbert integral equations with a strong singularity. (Russian) Optimal computation methods and their application, No. 7 (Russian), 38-45, 162, Penz. Politekhn. Inst., Penza, 1985.
[2] A. Papukashvili, Antiplane problems of theory of elasticity for piecewise-homogeneous orthotropic plane slackened with cracks. Bull. Georgian Acad. Sci. 169 (2004), no. 2, 267-270.
[3] A. Papukashvili, T. Da lem of elasticity theory Bull. Georgian Natl.

The Exactness of an Algorithm for a Nonlinear Static Beam Equation

Jemal Peradze

Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: j_peradze@yahoo.com

We consider a Kirchhoff type nonlinear beam equation [1]-[3]

$$
\begin{equation*}
u^{\mathrm{lv}}(x)-a\left(\int_{0}^{L}\left(u^{\prime}(\xi)\right)^{2} d \xi\right) u^{\prime \prime}(x)=f(x), \quad 0<x<L \tag{1}
\end{equation*}
$$

with the conditions

$$
\begin{equation*}
u(0)=u(L)=0, \quad u^{\prime \prime}(0)=u^{\prime \prime}(L)=0 \tag{2}
\end{equation*}
$$

Here $a(\lambda) \geq$ const $>0,0 \leq \lambda<\infty$, and $f(x), 0<x<L$, are the known functions, $u(x)$, $0 \leq x \leq L$, is the function we want to define and L is some constant. An approximate solution of problem (1), (2) is written in the form of a finite series

$$
u_{n}(x)=\sum_{i=1}^{n} u_{n i} \sin \frac{i \pi x}{L},
$$

where the coefficients $u_{n i}$ are defined by the Galerkin method from the system whose vector form is as follows

$$
\begin{equation*}
\varphi\left(u_{n}\right)=\mathbf{0} \tag{3}
\end{equation*}
$$

Here $\boldsymbol{\varphi}\left(\boldsymbol{u}_{n}\right)=\left(\varphi_{i}\left(\boldsymbol{u}_{n}\right)\right)_{i=1}^{n}, \boldsymbol{u}_{n}=\left(u_{n i}\right)_{i=1}^{n}, \mathbf{0}$ is the n-dimensional zero vector,

$$
\varphi_{i}\left(\boldsymbol{u}_{n}\right)=\left[\left(\frac{i \pi}{L}\right)^{4}+\left(\frac{i \pi}{L}\right)^{2} a\left(\frac{L}{2} \sum_{j=1}^{n}\left(\frac{j \pi}{L}\right)^{2} u_{n j}^{2}\right)\right] u_{n i}-\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{i \pi x}{L} d x
$$

$i=1,2, \ldots, n$. To solve nonlinear system (3) we apply the Newton iteration process $\boldsymbol{u}_{n, k+1}=$ $\boldsymbol{u}_{n, k}-J^{-1}\left(\boldsymbol{u}_{n, k}\right) \boldsymbol{\varphi}\left(\boldsymbol{u}_{n, k}\right), k=0,1, \ldots$, where $\boldsymbol{u}_{n, k}=\left(u_{n i, k}\right)_{i=1}^{n}$ is k-th iteration approximation of \boldsymbol{u}_{n} and $J\left(\boldsymbol{u}_{n, k}\right)=\left(\frac{\partial \varphi_{i}\left(\boldsymbol{u}_{n, k}\right)}{\partial u_{n j, k}}\right)_{i, j=1}^{n}$ is the Jacobi matrix.

A theorem on the total error of the algorithm is proved.

References

[1] G. Berikelashvili, A. Papukashvili and J. Peradze, Iterative solution of a nonlinear static beam equation. (Russian) Ukraïn. Mat. Zh. 72 (2020), no. 8, 1024-1033; translation in Ukrainian Math. J. 72 (2021), no. 8, 1185-1196.
[2] A. Dang Quang and N. T. Huong, Existence results and iterative methods for solving a nonlocal fourth order boundary value nroblem Lournal of Mathomotical Applications XIV (2016), no. 2, 63-78.
[3] J. Peradze, A numeri 2009, Art. ID 81826

Logic, Language, Artificial Intelligence and Objectives of Protecting the State Languages of Georgia from Danger of Digital Extinction

Konstantine Pkhakadze
Scientific-Educational Center for Cultural Protection and Technological Development of Georgian State Languages, Georgian Technical University, Tbilisi, Georgia

e-mail: gllc.ge@gmail.com

At the presentation we will briefly present the research aims of the interdisciplinary scientific field of logic, language and artificial intelligence [2], [3]. At the same time, on the basis of the here mentioned, we will prove the direct connection of this interdisciplinary scientific field with problems of creation the technological alphabets of different natural languages, in other words, with problems of creation the computer systems, which will have almost complete knowledge of the different natural languages [1].

Taking into account the necessity of creation of the technological alphabets of the Georgian and Abkhazian languages equipped with the translation skills, at the presentation we will prove the necessity of rapid development of the interdisciplinary scientific field of logic, language and artificial intelligence in Georgia and, also, we will prove that for this purpose there is a obligatory needing of establishment "Research Institute for Cultural Defense and Technological Development of Georgian State Languages" with this conditional name [4]. - All this is conditioned with aims and obligations of the Georgian state to protect Georgian and Abkhazian languages from danger of digital extinction [1], [4].

References

[1] K. Pkhakadze, The technological alphabet of the Georgian language - the one of the most important Georgian challenge of the XXI century. The Works of The Parliament Conference "The Georgian Language - The Challenge of The 21st Century", 2013, 98-105.
[2] K. Pkhakadze, A brief targeted - thematic overview of the undergraduate course in natural language processing. Journal "Georgian Logic and Language", 2019-2021, no. 12 - no. 14, 107-136.
[3] K. Pkhakadze, M. Chikvinidze, G. Chichua, D. Kurtskhalia, I. Beriashvili and Sh. Malidze, The Georgian Intellectual web-corpus: aims, methods, recommendation. Journal "Georgian Language and Logic", 2017, 4-320.
[4] K. Pkhakadze, M. Chikvinidze, G. Chichua, Sh. Malidze, D. Kurtskhalia, C. Demurchev and N. Oqroshiashvili, In the Eymon ruages - aims and problems of complete t hnology sunnort facmorian Whazian la guages. Bull. Georgian Nat. Acad. Sci. 1

Computer Modeling of Political Conflicts in Case of Variable Demographic Factors of Sides and Variable Parameters of Models

George Pochkhua
Department of Applied Mathematics, Sokhumi State University, Tbilisi, Georgia
e-mail: gia.pochkhua@gmail.com

In this work are given the computer modeling of four nonlinear mathematical models of conflict resolution through economic cooperation between two politically opposed sides: conflict resolution model in case of the process of economic cooperation free from political pressure; conflict resolution model in case of political pressure on the both sides interfere with the process of economic cooperation; conflict resolution model in case of the government of both sides encourage the process of economic cooperation; conflict resolution model in case of the government of the first side interferes, and government of the second promotes cooperation [1]-[3].

Computer modeling is performed in Matlab software environment for exponential and trigonometric functions of variables coefficients, when the derivatives of the coefficients are significant functions. Computer simulations have established and graphically shown the relationships between the coefficients of the variable demographic factor, aggression, cooperation, coercion to aggression and cooperation, as well as their factor coefficients and the conflict resolution period at different interval for model consideration.

In all four cases considered, the initial conditions are taken as different numbers of the citizens of the first and second sides at the initial moment of time, as well as the different numbers of the citizens of the sides who are wishing or already being in economic cooperation.

References

[1] T. Chilachava and G. Pochkhua, Research of the nonlinear dynamic system describing mathematical model of settlement of the conflicts by means of economic cooperation. Proceedings Book of 8th International Conference on Applied Analysis and Mathematical Modeling, ICAAMM 2019, pp. 183-187, Istanbul, Turkey, 2019.
[2] T. Chilachava and G. Pochkhua, Conflict resolution models and resource minimization problems. Applications of mathematics and informatics in natural sciences and engineering, 47-59, Springer Proc. Math. Stat., 334, Springer, Cham, 2020.
[3] T. Chilachava and s vcinnua, ivianematical and computer mode ; of settlements of political conflicts and roblems of $\left.\begin{array}{c}\text { rent } \\ (2020) \text {, no }\end{array}\right)$ Internatio al Journal of Modeling and Optimization 1

On the Duality Principle on Polish Groups

Nino Rusiashvili
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
e-mail: nino.rusiashvili@gmail.com

Let P be sentence formulated only by using the notion of Haar null sets, meagre sets and purely set-theoretical notions. We say that the duality principle between the measure and category is valid with respect to the sentence P if the sentence P is equivalent to the sentence P^{*} obtained from the sentence P by interchanging in it the notions of the above small sets.

Theorem. Let P be a sentence defined by:
For every two Polish groups G_{1} and G_{2} and for every Haar null set $Y \subset G_{1}$ we have $(\forall X)\left(X \subseteq G_{2} \Longrightarrow Y \times X\right)$ is Haar null in $G_{1} \times G_{2}$.

Then the duality principle between the measure and category is valid with respect to the sentence P.

Acknowledgment

This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG), Grant \# FR-18-6190.

References

 Sci. Technol. 5 (2013

Extended Eigenoperators of the Differentiation Operator: Hypercyclicty, Supercyclicity, Hypercyclic and Supercyclic Subspaces

Fernando León Saavedra
Department of Mathematics, University of Cadiz, Cádiz, Spain
e-mail: fernando.leon@uca.es

Let D be the differentiation operator on the sapce of entire functions $H(\mathbb{D})$ endowed with the compact-open topology. A continuous linear operator X is and extended eigenoperator of D if $X \neq 0$ and $D X=\lambda X D$. We characterize when X is hypercyclic, supercyclic and it has a hypercyclic (sup J~ne) numpacu.

Joint work wh I. Bensai $\}$

On the Number of Integer Non-Negative Solutions of Some Diophantine Equations

Eteri Samsonadze

Department of General Mathematics, Ivane Javakhishvili Tbilisi State University Tbilisi, Georgia

e-mail: eteri.samsonadze@outlook.com

Applying the elements of combinatorics and properties of the Kronecker function, the number $P(b)$ of integer non-negative solutions of a linear Diophantine equation $\sum_{i=1}^{n} a_{i} x_{i}=b$ with natural coefficients is represented via $P(r), P(r+M), \ldots, P(r+(s-1) M)$ in the case where $s \neq 0$. Here M is the least common multiple of the numbers $a_{1}, a_{2}, \ldots, a_{n} ; r$ is the remainder of b modulo M and

$$
s=\left[n-\frac{\sum_{i=1}^{n} a_{i}+r}{M}\right] .
$$

Note that s takes quite small values in some particular cases. For that reason in these cases the finding $P(b)$ by our method is simpler than finding it by the well-known standard methods.

Also, the recurrent formulas are derived to calculate $P(b)$, for any non-negative integer b, which, in particular, are used in finding $P(r), P(r+M), \ldots, P(r+(s-1) M)$. For the case where $s=0$ and $a_{1}, a_{2}, \ldots, a_{n}$ are coprime, the explicit formula for $P(b)$ is proved:

$$
P(b)=\frac{M^{n-1}}{a_{1} a_{2} \cdots a_{n}} C_{\left[\frac{b}{M}\right]+n-1}^{n-1} .
$$

Moreover, the problem of finding the number $P^{\prime}(b)$ of integer non-negative solutions of a nonlinear Diophantine equation $\sum_{i=1}^{m} x_{i}^{n}=b$ with even degree $n=2^{k} l$, where $k, l, b \in \mathbf{N}$ and $m \geq 2$ is considered.

It is proved that if $m<2^{k+1}$ and $s \in \mathbf{N}$, then

$$
P^{\prime}\left(\sum_{i=1}^{m} x_{i}^{n}=b\right)=P^{\prime}\left(\sum_{i=1}^{m} x_{i}^{n}=b \cdot\left(2^{s}\right)^{n}\right) .
$$

This formula in particular implies that if there is at least one natural number which can not be written in the form $\sum_{i=1}^{m} x_{i}^{n}$ with $m<2^{k+1}$, then there are infinitely many naturals with this property. Another consequence of the above-mentioned formula is that if $m<2^{k+1}$, then the equation $\sum_{i=1}^{m} x_{i}^{n}=\left(2^{s}\right)^{n}(s \in \mathbf{N})$ does not have a solution $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ with natural $x_{1}, x_{2}, \ldots, x_{m}$.

It is also proved that

$$
P^{\prime}\left(\sum_{i=1}^{m} x_{i}^{n}=b\right)=0
$$

if $m<2^{k+2}-1, k \geqslant 2$ and $r>m$ where r ic tho romosindorn $G\left(2^{k}\right) \geqslant 4 \cdot 2^{k}-1$ for $k \geqslant 2$, natural numbers (i.e. all natur in the form $\sum_{i=1}^{m} x_{i}^{2^{k}}$.

vhich almost all can be written

The Importance of Basic Algorithmic Structures in the Process of Teaching Algorithms

Tsitsino Sarajishvili
Department of Computer Sciences, Batumi Shota Rustaveli State University Batumi, Georgia
e-mail: tsitsino.sarajishvili@bsu.edu.ge

The presented paper refers to the pedagogical and methodological experience accumulated over the years with students in the field of teaching informatics, in particular algorithms. As it is known, the teaching of informatics includes information, algorithm, and computer. All three of these components are important and require special attention.

In this article, we will discuss some issues of teaching algorithms. In particular, teaching the basics of algorithmization to students who have not yet learned to program. By teaching them the basics of algorithmization, they should be given the basis for programming.

In this regard, the student needs to develop an algorithmic approach to solving the posed problem. Students must realize that the algorithm is a language understandable to man, subject to certain principles. The student should be able to determine the way to solve the task and, in general, write the algorithm in such a way that it is easy for the user to program it, i.e. to write in any programming language.

For novice programmers, the essence of the algorithm is most evident in the algorithm recorded through the block diagram. Block diagrams can be programmed with less effort in this or that programming language. In this regard, special attention is paid to giving a structural face to the algorithm.

The paper provides relevant examples that illustrate the importance of a structural approach to building an algorithm. Particular attention is paid to the methods that are necessary to build a proper algorithm. It would be more convenient to translate any such algorithms into a programming language.

References

[1] J. Bullinaria, M. Escardo and M. Kerber, Data Structures and Algorithms. University of Birmingham, UK, 2019.
[2] T. H. Cormen, Introduction to Algorithms, 2009.
[3] G. T. Heineman, Algorithmad Aractical Guide, 2015.
[4] A. Levitin, The Design nd Analysi], A Bitl| 11.

On the Generalized Lifeguard Problem

Natia Sazandrishvili
Ilia State University, Tbilisi, Georgia
e-mail: natia.sazandrishvili.1@iliauni.edu.ge

To solve this main problem we use reconcept of the T-rescue range of lifeguard which consists of the points H_{+}in which lifeguard can reach from $A(0, a)$ within time T. Let us denote by $B(A, T)$ the boundary of $R(A, T)$ which consists of the points which lifeguard can reach from $A(0,-a)$ along a minimal time path exactly in time T. A closely related notion is the T-rescuer's area of swimmer, $L_{T}(B)$, consisting of all points in H_{-}from which point $B(0, b)$ can be reached within time T. obviously, this set is the union of t-levels of minimal rescue time for $0<t<T$.

Knowledge of these sets makes the situation more visual and may be used in planning safe beach structures. To determine them we use the analogy between the optimal path of lifeguard and refraction of light, which enables us to use the concept of refraction wavefront from geometric optics. Since both settings are based on the refraction formula the followino reculta and thoir nroofs are mathematically rigorous. The crucial oservation is that the boundary $B(a, T)$ of $R, T)$ coincides with refraction wavefront with co ficient whic kit be line segn nt.

About One Method, Providing Necessary and Sufficient Conditions for Equivalence of Linearly Connected Two Gaussian Measures in the Hilbert Space

Albert Shatashvili, Tamara Fomina-Shatashvili, Ibrahim Didmanidze, Elena Papazova
Batumi Shota Rustaveli State University, Batumi, Georgia
e-mails: shahidurrehman1982@gmail.com; imran.javaid@bzu.edu.pk

The paper considers two Gaussian processes that are solutions to different linear evolutionary differential equations in Hilbert space, excited by the same Gaussian process. In terms of the linear operators of the equations themselves and the characteristics of a given exciting Gaussian process, the Hilbert-Schmidt operator is constructed in an explicit form, which is the main criterion of Yu. L. Daletsky [1], which provides a necessary and sufficient condition for the equivalence of probability measures generated by Gaussian processes that are solutions of the considered linear evolutionary differential equations, since the exciting process itself is Gaussian, and the equation is linear.

Therefore, the measures generated by the solutions of these equations are also Gaussian. Applying now to these two Gaussian measures the theorem of Yu. L. Daletsky for this case, using our calculated Hilbert-Schmidt operator, we prove a theorem on the equivalence of Gaussian measures generated by solutions of the linear evolutionary differential equations under consideration and in explicit form in terms of the known coefficients of differential equations and in explicit form and in terms of known coefficients of differential equations the density Radon-Nikodim.

References

[1] Yu. L. Daletskiǐ and S. V. Fomin, M onal Spaces. (Russian) Nauka, Moscc

The Adhesive Contact Problems for a Piecewise-Homogeneous Plate

Nugzar Shavlakadze ${ }^{1,2}$

${ }^{1}$ Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Georgian Technical University, Tbilisi, Georgia
e-mail: nusha1961@yahoo.com

A piecewise-homogeneous elastic orthotropic plate, reinforced with a finite inclusion $\left(E_{1}, \nu_{1}, h_{1}(x)\right)$ of the wedge-shaped, which meets the interface at a right angle and is loaded with tangential $\tau_{0}(x)$ and normal $p_{0}(x)$ forces is considered. The contact between the plate and inclusion is realized by a thin glue layer with width h_{0} and Lame's constants λ, μ_{0}. The contact conditions has the form

$$
u_{1}(x)-u_{2}(x, 0)=k_{0} \tau(x), \quad v_{1}(x)-v_{2}(x, 0)=-m_{0} p(x), \quad 0<x<1,
$$

where $u_{2}(x, y), v_{2}(x, y)$ are displacement components of the plate points, $u_{1}(x), v_{1}(x)$ displacements of the inclusion points along the contact line. $k_{0}:=h_{0} / \mu_{0}, m_{0}:=h_{0} /\left(\lambda_{0}+2 \mu_{0}\right)$. According to the equilibrium equation of inclusion elements and Hooke's law we have:

$$
\begin{gathered}
\frac{d u_{1}(x)}{d x}=\frac{1}{E(x)} \int_{0}^{x}\left[\tau(t)-\tau_{0}(t)\right] d t, \quad E(x)=\frac{E_{1}(x) h_{1}(x)}{1-\nu_{1}^{2}}, \\
\frac{d^{2}}{d x^{2}} D(x) \frac{d^{2} v_{1}(x)}{d x^{2}}=p_{0}(x)-p(x), \quad D(x)=\frac{E_{1}(x) h_{1}^{3}(x)}{1-\nu_{1}^{2}}, \quad 0<x<1
\end{gathered}
$$

and the equilibrium condition of the inclusion has the form

$$
\int_{0}^{1}\left[\tau(t)-\tau_{0}(t)\right] d t=0, \quad \int_{0}^{1}\left[p(t)-p_{0}(t)\right] d t=0, \quad \int_{0}^{1} t\left[p(t)-p_{0}(t)\right] d t=0 .
$$

By using methods of the theory of analytic function, the problem is reduced to a singular integrodifferential equations on a finite interval. Using an integral transformation a Riemann problem is obtained, the solution of which is presented in explicit form Thetanontiol $\sim(n)$ nond normal $p(x)$ contact stresses along the contact lir are determined and the asymptotic behavior of he contact stresses in the neighborhood of sing or points is

On the Duffin-Schaeffer Conjecture

Levan Sulakvelidze ${ }^{1,2}$
${ }^{1}$ School of Science and Technology, The University of Georgia, Tbilisi, Georgia
${ }^{2}$ Schools of Business and Technology, Caucasus University, Tbilisi, Georgia
e-mail:Levan.sulakvelidze@gmail.com

In this talk we discuss about the Duffin-Schaeffer conjecture. It is a conjecture proposed by R. J. Duffin and A. C. Shaefer in 1941. It states that if $f: N \rightarrow R^{+}$is a real valued function, then for all real α, inequality

$$
\left|\alpha-\frac{p}{q}\right|<\frac{f(q)}{q}
$$

has infinitely many solutions in co-prime integers p, q with $q>0$ if and only if

$$
\sum_{q=1}^{\infty} f(q) \frac{\varphi(q)}{q}=\infty
$$

where $\varphi(q)$ is the Euler function.
In 2019, the Duffin-Schaeffer conjecture was proved by Dimitris Koukoulupulos and James Maynard.

References

 192 (2020), no. 1, 251-30
Convergence and Summability of the One- and Two-Dimensional Vilenkin-Fourier Series in the Martingale Hardy Spaces

George Tephnadze

School of Informatics, Engineering and Mathematics, The University of Georgia Tbilisi, Georgia
e-mail: g.tephnadze@ug.edu.ge

Unlike the classical theory of Fourier series which deals with decomposition of a function into sinusoidal waves, the Vilenkin (Walsh) functions are rectangular waves. Such waves have already been used frequently in theory of signal transmission, multiplexing, filtering, image enhancement, codic theory, digital signal processing, pattern recognition.

This lecture is devoted to review theory of martingale Hardy spaces. We derive necessary and sufficient conditions for the modulus of continuity such that partial sums with respect to one- and two-dimensional Vilenkin-Fourier series converge in norm. Moreover, we also present some strong convergence theorems of partial sums of the one- and two-dimensional Vilenkin systems.

References

[1] I. Blahota, K. Nagy, L.-E. Persson and G. Tephnadze, A sharp boundedness result for restricted maximal operators of Vilenkin-Fourier series on martingale Hardy spaces. Georgian Math. J. 26 (2019), no. 3, 351-360.
[2] N. Memić, I. Simon and G. Tephnadze, Strong convergence of two-dimensional VilenkinFourier series. Math. Nachr. 289 (2016), no. 4, 485-500.
[3] L.-E. Persson, F. Schipp, G. Tephnadze and F. Weisz, An analogy of the Carleson-Hunt theorem with respect to Vilenkin systems. J. Fourier Anal. Appl. (to appear).
[4] L. E. Persson, G. Tephnadze and P. Wall, On an approximation of 2-dimensional WalshFourier series in martingale Hardy spaces. Ann. Funct. Anal. 9 (2018), no. 1, 137-150.
[5] G. Tephnadze, Strong convergence of two-dimensional Walsh-Fourier series. Ukrainian Math. J. 65 (2013), no. 6, 914-927.
[6] G. Tephnadze, On the partial sums of Vilenkin-Fourier series. (Russian) Izv. Nats. Akad. Nauk Armenii Mat. 49 (2014), no. 1, 60-72; translation in J. Contemp. Math. Anal. 49 (2014), no. 1, 23-32.
[7] G. Tephnadze, On the partial sums of Walsh-Fourier series. Colloq. Math. 141 (2015), no. 2, 227-242.
[8] G. Tephnadze, A note on the strong summability of two-dimensional Walsh-Fourier series. Georgian Math. J. 28 (2021), no. 3, 477-482.
[9] G. Tephnadze, The one-dimensional mar agale Hardv spaces and partial sums and Fejé means with respect to Walsh system. Men

On Some Versions of Sylvester's Problem

Tengiz Tetunashvili ${ }^{1,2}$

${ }^{1}$ Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
e-mails: tengiztetunashvili@gmail.com, t.tetunashvili@gtu.ge

In the talk two versions of Sylvester's well-known problem (see [1]-[3]) for the Euclidean plane are considered. Also, several variants of this problem for higher-dimensional Euclidean spaces are presented. One problem related to the original version of Sylvester's problem is posed. A solution of this problem is obtained as one of the consequences of the following statement:

Theorem. Let $n \geq 5$ be an arbitrary, fixed natural number and a and b be any two fixed positive real numbers. There exists a subset S of the Euclidean plane α, such that $\operatorname{card}(S)=n$ and for every straight line $L_{U, V}$ passing through arbitrary two distinct points U and V of S there exists a point $W_{L_{U, V}}$ of S such that the Euclidean $d\left(W_{L_{U, V}}, L_{U, V}\right)$ distance between $\left\{W_{L_{U, V}}\right\}$ and $L_{U, V}$ satisfies the following inequality: $d\left(W_{L_{U, V}}, L_{U, V}\right)<a$. Also, for any straight line $L \subset \alpha$ there exists a point Z_{L} of S such that the Euclidean $d\left(Z_{L}, L\right)$ distance between $\left\{Z_{L}\right\}$ and L satisfies the following inequality: $d\left(Z_{L}, L\right)>b$.

References

[1] H. Hadwiger and H. Debrunner, Combinatorial Geometry in the Plane. Translated by Victor Klee. With a new chapter and other additional material supplied by the translator Holt, Rinehart and Winston, New York, 1964.

[3] J. J. Sylvester, Q estion 1185 T \circ ○r T (1893), p.

Unification in τ-Logic

Lali Tibua ${ }^{1,2}$
${ }^{1}$ Georgian National University, Tbilisi, Georgia
${ }^{2}$ Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: ltibua@gmail.com

Unification is a process to identify two expressions by replacing variables of each expression by other expressions. More specifically, if we have two terms s and t, the aim is to find a substitution σ (mapping from variables to terms), such that $s \sigma$ and $t \sigma$ are identical terms. In this case, we say the substitution is an unifier of s and t.

In this talk we discuss unification problem in τ-logic [1, 2, 3]. In particular, we define notions of substitution, unifier, and most general unifier. We construct a sound and complete algorithm, which takes as an input s and t terms of τ-logic and returns a substitution σ such that $s \sigma=t \sigma$. We proved that, the algorithm always terminates and computed σ is a most general unifier for s and t.

References

[1] C. L. Chang and R. C. T. Lee, Symbolic Logic and Mechanical Theorem Proving. Computer Science and Applied Mathematics. Academic Press, New York-London, 1973.
[2] Kh. Rukhaia, Description of the formula mathematical τ theory with substitution operators. (Russian) In Studies in Mathematical Logic and Theory of Algorithm of I. Vekua Institute of Applied Mathematics, pp. 58-74. 198.5
[3] Sh. S. Pkhakadze, Some uestions of ${ }^{2}$ a ${ }^{T}$ pr. San) Izdat. Ibilis. Univ., Tbilisi, 1977.

Boundary-Transmission Problems of the Thermo-Piezo-Electricity Theory without Energy Dissipation

Anika Toloraia
Sokhumi State University, Tbilisi, Georgia
e-mail: anikatoloraia@gmail.com

In the paper, we study Dirichlet, Neumann and mixed type interaction problems of pseudooscillations between thermo-elastic and thermo-piezo-elastic bodies. The model under consideration is based on the Green-Haghdi theory of thermo-piezo-electricity without energy dissipation (see [2]). This theory permits propagation of thermal waves only with finite speed.

Using the potential theory and boundary integral equations method, we prove existence and uniqueness of solutions, and analyze their smoothness (in the direction see [1]).

References

[1] T. Buchukuri, O. Chkadua and D. Natroshvili, Mixed and crack type problems of the thermopiezoelectricity theory without energy dissipation. Mem. Differ. Equ. Math. Phys. 74 (2018), 39-78.
[2] D. Ieşan, Thermopier Math. Phys. Eng. Sc electricity tho Aher Aroc. R Soc. Lond. Ser. A

On Quaternion Polynomial Equations

Nino Tophuridze

Sokhumi State University, Tbilisi, Georgia
e-mail: ntophuridze@sou.edu.ge

The structure of the root set of quaternion polynomial equations, in particular their algebraic and topological characteristics, is investigated. It is proved that a non-commutative determinantbased resultant [2] provides a method for excluding one of the unknowns from a system of equations consisting of two two-known quaternion polynomials.

References

[1] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants. Reprint of the 1994 edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc.,
[2] X. Zhao and Y. Zhang, (2019), no. 5, 1304-1311.

Comparative Analysis of Some Classical and Modern Stochastic Models

Lela Trapaidze
Faculty of Informatics and Control Systems, Georgian Technical University
Tbilisi, Georgia
e-mail: lelatrapaidze1@gmail.com

Structural control of complex systems is a problem of a strategic nature in terms of content, and its solution requires the development of appropriate, specific methods and tools.

Carrying out structural control means ensuring the maintenance of the existing structure of a controlled object - its elements, including connections and their modes of operation. Otherwise it is a compensation for structural disturbances (change of the system structure as a result of the failure of its elements).

Stochastic service models play a crucial role in the structural control of a complex technical system. These models describe structural control processes (namely diagnostics, redundancy control and maintenance). On the other hand, as systems become more complex, new types of models need to be built and explored. A comparative analysis of classical models of stochastic services and modern types of models is important in this regard.

The present paper discusses the relationship between the classical problem of structural control of a complex technical system and the nroblom of modomernit. which is an important component of overa system optimization. There is the nroblem state ient, the solution of which will be reduced to th

Mixed Boundary Value Problems for the Laplace Equation

Tornike Tsertsvadze
Department of Mathematics, Georgian Technical University, Tbilisi, Georgia
e-mail: tsertsvadze.tornike@yahoo.com

We consider a new approaches to investigate mixed boundary value problems for the Laplace equation in the case of three-dimensional bounded domain $\Omega \subset \mathbb{R}^{3}$, when the smooth boundary surface $\partial \Omega=S$ is divided into two disjoint parts, S_{D} and S_{N}, where the Dirichlet and Neumann type boundary conditions are prescribed respectively. With the help of the theory of pseudodifferential equations the uniqueness and existence theorems are proved for mixed boundary value problems and the solutions are represented by a linear combination of single and double layers potentials.

This type of mixed boundary value problems are studied in the scientific literature by using the potential methods (see, e.g., [1], [2]). In contrast to the existing approaches, our alternative approach has two essential advantages, on the one hand, it does not require extension of the given boundary data to the whole surface and, on the other hand, the representation of a solution doesn't contain the Steklov-Poincaré type operator, which contains the inverse operator of the single layer boundary operator, which is not available explicitly in general for arbitrary surface.

We reduce the mixed BVP under consideration to the boundary integral (pseudodifferential) equations generated by the limiting values of he single and double layer potentials and show the invertibility of the corresponding pseudodifferential operator in appropriate Bessel potential and Sobolev-Slobodetski spaces. This fact will play a crucial role in the process of construction of efficient algorithms for numerical solutions of the mixed BVPs.

References

[1] D. G. Natroshvili, O. O. Chkadua and E. M. Shargorodskiǐ, Mixed problems for homogeneous anisotropic elastic media. (Russian) Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 39 (1990), 133-181.
[2] E. P. Stephan, Boundary integ, 1 equations , da e problems i \mathbf{R}^{3}. Math. Nachr. 134 (1987), 21-53.

Right Units and Idempotent Elements of a Complete Semigroups of a Binary Relations Defined by Semilattices of unions $\Sigma_{3}(X, 7)$

Nino Tsinaridze

Department of Mathematics, Batumi Shota Rustaveli State University Batumi, Georgia
e-mail: n.tsinaridze@bsu.edu.ge
In this article, we study the right units and the idempotent of the complete semigroup of binary relations defined by X-semilattice unions.

Let

$$
D=\left\{\breve{D}, Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}, Z_{6}\right\}
$$

be some X-semilattice of unions and

$$
C(D)=\left\{P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}
$$

be the family of sets of pairwise nonintersecting subsets of the set X (the set \varnothing can be repeat several time). If φ is a mapping of the semilattice D on the family of sets $C(D)$ which satisfies the condition

$$
\varphi=\left(\begin{array}{ccccccc}
\breve{D} & Z_{1} & Z_{2} & Z_{3} & Z_{4} & Z_{5} & Z_{6} \\
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{6}
\end{array}\right)
$$

Then formal equalities of a given semilattice has a form:

$$
\left\{\begin{array}{l}
\breve{D}=P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6}, \\
Z_{1}=P_{0} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{\xi} \cup P_{6}, \\
Z_{2}=P_{0} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6}, \\
Z_{3}=P_{0} \cup P_{2} \cup P_{4} \cup P_{5} \cup P_{6} \\
Z_{4}=P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{5} \cup P_{6}, \\
Z_{5}=P_{0} \cup P_{4} \cup P_{6}, \\
Z_{6}=P_{0}
\end{array}\right.
$$

where P_{0}, P_{5}, P_{6} are the completeness sources and $P_{1}, P_{2}, P_{3}, P_{4}$ are basic sources.

References

[1] Ya. Diasamidze and Sh. Makharadze, Complete Semigroups of Binary Relations. Kriter, Turkey, 2013.
[2] Ya. Diasamidze, Right units in the binary relation semigroups. Proc. A. Razmadze Math. Inst. 128 (2002), 17-36.

Logical-Probabilistic Methods of Structural Analysis of Multifunctional Elements

Sergo Tsiramua
IT Department, School of Science and Technology, University of Georgia
Tbilisi, Georgia
e-mail: s.tsiramua@ug.edu.ge

One of the most efficient way to increase reliability of complex systems, is creating them based on interchangeable multifunctional elements (MFE). To achieve this goal, it is important to evaluate the structural criteria of MFEs based on weight, importance and contribution in system reliability.

Evaluation of these criteria are managed by logical-probability methods based on computer modeling. For calculating weight of each functional recourse (x_{i} structural element) we use orthogonalization algorithm, which will transform the logical function $y\left(x_{1}, x_{2} \ldots x_{n}\right)$ of the condition of working ability into orthogonal disjunctive normal form (ODNF). ODNF gives probability model of weight evaluation of MFE. To calculate the contribution of each function we use recurrent algorithm (tabular method) which transforms logical function into probability function. The contribution of each functional resource in the reliability of the system is calculated by multiplying the probability of flawless work by its importance.

Every criteria of the role and importance of the functional recourse in the reliability of the system have different sensitivity and informational load. For example, $g\left(x_{i}\right)$ weight of x_{i} structural element in the system $y\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ depends on the location of this element in the system structure. $M\left(x_{i}\right)$ importance of x_{i} element in the reliability of the system depends not only on the location but also on the reliability of every other element (except the reliability of current x_{i} element). $W\left(x_{i}\right)$ contribution in the $y\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ system reliability depends on location of this element as well as workability condition and reliability of every other element including x_{i} element.

Definition of role and importance of every functional resource (structural element), helps us to find week points in the structure of the system, calculation of level of multifunctionality of the elements, finding optimal reserves, creation of the interchangeability strategy, in the formation of demand for reliability characteristics and etc.

References

[1] I. A. Riabinin and G. N. Cherkesov, Logical-Probability Methods of Researching of Reliability of Complex Systems. (Russian) Radio and Connection, 1981.
[2] S. Tsiramua, Logical-probability model of reliability of complex systems based on multifunctional elements. X International Conference of the Georgian Mathematicians Union, Book of Abstracts, Batumi, Georgia, 2019.
[3] S. Tsiramua, System Reliability: Organizo onal Design of Hiahly Reliahle Human-Machin Systems Based on Multi-Functional Oper tors. (Rus), A A Publishing 2017.

A Generalization of the Canonical Commutative Relation in the Quantum Fréchet-Hilbert Space

Soso Tsotniashvili ${ }^{1}$, David Zarnadze ${ }^{2}$
${ }^{1}$ Department of Mathematics, Gori State Teaching University, Gori, Georgia
e-mail: stsotniashvili@gmail.com
${ }^{2}$ Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Tbilisi, Georgia

e-mail: zarnadzedavid@yahoo.com

For a particle moving in \mathbb{R}, let quantum Hilbert space be $L^{2}(\mathbb{R})$. Let $X(\psi)(x)=x \psi(x)$ be position operator and

$$
P(\psi)(x)=-i h d / d x(\psi)(x)
$$

be momentum operator in quantum mechanics, where i is complex number and h is Plank's constant.

It is well-known that the position and momentum operators do not commute, but satisfy the relation $X P-P X=i h I$, where I is identity operator. This relation is known as the canonical commutation relation. These operators are unbounded essentially selfadjoint operators in the space $L^{2}(\mathbb{R})$ and are called operators of observable physical quantities.

In [1], these notions of position and momentum operator in the quantum Frechet-Hilbert space $L_{\text {loc }}^{2}(\mathbb{R})$ are generalized. The considered of the space $L_{\text {loc }}^{2}(\mathbb{R})$ instead of the space $L^{2}(\mathbb{R})$ essentially extend the space of states, which is achieved by weakening the topology of the space $L^{2}(\mathbb{R})$. The symmetry but not selfadjointness of extension of momentum operator P in the Fréchet-Hilbert space $L_{l o c}^{2}(\mathbb{R})$ is proved. The selfadjointness of the extension of position operator and continuity in this space is proved, because the Theorem Hellinger-Teoplitz is generalized for Fréchet-Hilbert spaces [2]. More detailed, properties of Fréchet-Hilbert spaces that is represent as strict projective limit of the sequence of Hilbert spaces, is given in [3].

In this article the canonical commutation relations between this operators in the Fréchet-Hilbert space $L_{l o c}^{2}(\mathbb{R})$ are generalized. As well the canonical commutation relations between extensions of creation and annihilation operators in the Fréchet-Hilbert space $L_{l o c}^{2}(\mathbb{R})$ are also generalized.

References

[1] S. Tsotniashvili, On the extension of selfadjoint operators from Hilbert spaces to FréchetHilbert spaces. Bull. Georgian Acad. Sci. 153 (1996), no. 3, 338-341.
[2] S. Tsotniashvili and D. Zarnadze, Selfadjoint operators and generalized central algorithms in Fréchet spaces. Georgian Math. J. 13 (2006), no. 2, 363-382.
[3] D. N. Zarnadze, So
Hilbert spaces. (Russian) Izv. Ross. At d. Nauk Se Mo 1001-1020 Acad. Sci. Izv. Mo

Convergence and Summability Fejér and T Means with Respect to the One-dimensional Vilenkin-Fourier Series in Martingale Hardy Spaces

Giorgi Tutberidze
School of Informatics, Engineering and Mathematics, The University of Georgia Tbilisi, Georgia
e-mail: g.tutberidze@ug.edu.ge

Unlike the classical theory of Fourier series which deals with decomposition of a function into sinusoidal waves, the Vilenkin (Walsh) functions are rectangular waves. Such waves have already been used frequently in theory of signal transmission, multiplexing, filtering, image enhancement, codic theory, digital signal processing, pattern recognition.

This presentation is devoted to review theory of martingale Hardy spaces. In particular we discuss some new (H_{p}, L_{p}) type inequalities of maximal operators of T means with respect to the Vilenkin systems with monotone coefficients. We show that these inequalities are the best possible in a special sense. We also apply these inequalities to prove strong convergence theorems of such T means. Moreover, we derive necessary and sufficient conditions for the modulus of continuity such that partial sums with respect to the one-dimensional Vilenkin-Fourier series converge in norm.

References

[1] D. Lukkassen, L. E. Persson, G. Tephnadze and G. Tutberidze, Some inequalities related to strong convergence of Riesz logarithmic means. J. Inequal. Appl. 2020, Paper No. 79, 17 pp.
[2] L.-E. Persson, G. Tephnadze and G. Tutberidze, On the boundedness of subsequences of Vilenkin-Fejér means on the martingale Hardy spaces. Oper. Matrices 14 (2020), no. 1, 283-294.
[3] L.-E. Persson, G. Tephnadze, G. Tutberidze and P. Wall, Strong summability result of Vilinkin-Fejér means on bounded Vilinkin groups. Ukr. Math. J. 73 (2021), no. 4, 544-555.
[4] G. Tephnadze and G. Tutberidze, A note on the maximal operators of the Nörlund logarithmic means of Vilenkin-Fourier series. Trans. A. Razmadze Math. Inst. 174 (2020), no. 1, 107112.
[5] G. Tutberidze, A note on the strong convergence of partial sums with respect to Vilenkin system. Izv. Nats. Akad. Nauk Armenii Mat. 54 (2019), no. 6, 81-87. A note on the strong convergence of partial sums with respect to Vilenkin system, J. Contemp. Math. Anal., 54, 6, (2019), 319-324; J. Contemp. Math. Anal., Armen. Acad. Sci. 54 (2019), no. 6, 365-370.
[6] G. Tutberidze, Maximal operators of T means with respect to the Vilenkin system. Nonlinear Stud. 27 (2020), no. 4, 1157-1167.
[7] G. Tutberidze, Modulus of continuity and boundedness of subsequences of Vilenkin-Fejer means in the martingale Hardy spaces. Georgian Math. J. (to appear).
[8] G. Tutberidze, Sharp type ineque ales of maximal operators of means with respect systems with monotone coefficie

About the Concept of Orbital Quantum Mechanics

Duglas Ugulava, David Zarnadze

Muskhelishvili Institute of Computational Mathematics of
the Georgian Technical University, Tbilisi, Georgia
e-mails: duglasugu@yahoo.com; zarnadzedavid@yahoo.com

The von Neiman's mathematical model of quantum mechanics based on the theory of quantum Hilbert space H and the unbounded self-adjoint operators operating in it has long since ceased to be sufficient; in many cases do not provide the possibility for the necessary observations and calculations. Therefore, the basic concepts are represented by the methods of the theory of generalized function, in which the Frćhet spaces and their strong conjugates occupy an essential place [2]. Therefore, it was necessary to develop computational methods in the Fréchet space.

The elements ψ of quantum Hilbert space H are called states. As well the Hamiltonian of the quantum harmonic oscillator, the impulse, location, creation, annihilation and numerical operator are described by unbounded self-adjoint operators in quantum Hilbert space. These operators $A: H \rightarrow H$ are observable quantities. Each of the considered operator A create n-finite orbits $\operatorname{orb}_{n}(A, \psi)=\left\{\psi, A \psi, \ldots, A^{n} \psi\right\}[3]$ and orbits $\operatorname{orb}(A, \psi)=\left\{\psi, A \psi, \ldots, A^{n} \psi, \ldots\right\}$. The space of n orbits $\operatorname{orb}_{n}(A, \psi)$ (resp. orb (A, ψ)) of the elements ψ of the quantum Hilbert space is denoted by $D\left(A^{n}\right)$ (resp. $D\left(A^{\infty}\right)$) and is called the Hilbert space of n-orbits (resp. the space of all orbits). These operators also form n-finite orbital operators $A_{n}: D\left(A^{n}\right) \rightarrow D\left(A^{n}\right)$ [3] and the orbital operator $A^{\infty}: D\left(A^{\infty}\right) \rightarrow D\left(A^{\infty}\right)[1] . D\left(A^{\infty}\right)$ is a well-known space and after the introduction of orbital operator A^{∞}, it acquired new content. We have generalized the theory of self-adjoint operators in Fréchet spaces and proved that the operator \mathcal{H}^{∞} for Hamiltonian \mathcal{H} of the quantum harmonic oscillator is topological homomorphism onto the Fréchet space $D\left(\mathcal{H}^{\infty}\right)$.

We consider the equation $\mathcal{H} u=f$ containing the operator \mathcal{H} in the space $D\left(\mathcal{H}^{n}\right)$ (resp. in the space $\left.D\left(\mathcal{H}^{\infty}\right)\right)$ that has the form $\mathcal{H}_{n}(\operatorname{orb}(\mathcal{H}, u))=\operatorname{orb}_{n}(\mathcal{H}, f)\left(\operatorname{resp} . \quad \mathcal{H}^{\infty}(\operatorname{orb}(\mathcal{H}, u))\right.$ $=\operatorname{orb}(\mathcal{H}, f))$. For the obtained equations, a linear spline central algorithm is constructed in the Hilbert space $D\left(\mathcal{H}^{n}\right)$ (resp. in the Fréchet space $D\left(\mathcal{H}^{\infty}\right)$. The mathematical model of orbital quantum mechanics significantly expands classical quantum mechanics.

References

[1] S. Tsotniashvili and D. Zarnadze, Selfadjoint operators and generalized central algorithms in Frechet spaces. Georgian Math. J. 13 (2006), no. 2, 363-382.
[2] D. N. Zarnadze, Representations of the topology of spaces of basic and generalized functions. (Russian) Generalized functions and their applications in mathematical physics (Moscow, 1980), pp. 250-255, Akad. Nauk SSSR, Vychisl. Tsentr, Moscow, 1981.
[3] D. N. Zarnadze, D. K. Ugulava, M. D. Kublashvili and P. Tsereteli, On calculation of the inverse of multidimensional hormonionand South Caucasus Computing and Technolo: Workshon SCCTW' 2016 (OAt 4-7, 2016 CERN Indico. New report. Atlas, 2016.

The Satisfaction of Boundary Conditions on the Surfaces and an Extension of Complex Analysis for Some Nonlinear DEs

Tamaz S. Vashakmadze ${ }^{1,2}$
${ }^{1}$ Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{2}$ Department of Mathematics, Ivane Javakhishvili Tbilisi State University Tbilisi, Georgia
e-mail: tamazvashakmadze@gmail.com

The basic problem of satisfaction of boundary conditions is considered when the generalized stress vector is given on the surfaces of elastic plates and shells. This problem has so far remained open for both refined theories in a wide sense and hierarchic type models. In the linear case, it was formulated by Vekua for hierarchic models too. In the nonlinear case, bending and compressionexpansion processes do not split and in this context the exact structure is presented for the system of differential equations of von Kármán-Mindlin-Reisner type, constructed without using a variety of ad hoc assumptions since one of the two relations of this system in the classical form is the compatibility condition, but not the equilibrium equation. In this paper, a unity mathematical theory is elaborated in both linear and nonlinear cases for anisotropic inhomogeneous elastic thin-walled structures. The theory approximately satisfies the corresponding system of partial differential equations and the boundary conditions on the face of surfaces of such structures. The problem is investigated and solved for hierarchic models too. The obtained results broaden the sphere of applications of complex analysis methods. The classical theory of finding a general solution of partial differential equations of complex analysis (which in the linear case was thoroughly developed in the works of Goursat, Weyl, Walsh, Bergman, Kolosov, Muskhelishvili, Bers, Vekua and sufficient many others) is extended to the solution of basic nonlinear differential equations containing the nonlinear summand: a composition of Laplace and Monge-Ampère operators [1].

References

[1] T. Vashakmadze, On the theory and practice of thin-wallod struature Gairm Math. J. 28 (2021), no. 3, 483-498.

Novelties in the New National Curriculum for Mathematics and Ways to Overcome Them

Teimuraz Vepkhvadze
Department of Mathematics, Ivane Javakhishvili Tbilis State University
Tbilisi, Georgia
e-mail: t-vepkhvadze@hotmail.com

Teaching of mathematics in secondary schools in Georgia takes places according to the new national study plan. The standard update process is currently underway. The novelty is that each mandatory topic is accompanied by essential questions and enduring understandings. In the present

A Class of the Extended Multi-Index Bessel-Maitland Functions and it's Properties

Vijay Kumar Vyas
Sur University College, Sur Sultanate of Oman, United Arab Emirates
e-mail: vmathsvyas@gmail.com

Here, we present the extended multi-index Bessel-Maitland function (EMBMF) defined using the extended beta function and investigate its several properties including, integral representation, derivatives, beta transform and Mellin transform. The relationships of the said function (EMBMF) with the Leguerre polynomial and Whittakar function respectively, are also elaborated. Further, image formulas for the extended multi-index Bessel Maitland function are also investigated usino fractional calculus operators. All the derived results, eneranze pientitul well-known results and can be used to derive a number of pertinent results in t e theory of ,

On the Existence of Group Terms in Some Protomodular Varieties of Universal Algebras

Dali Zangurashvili

Department of Algebra, Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: dali.zangurashvili@tsu.ge

The notion of a protomodular category was introduced by Bourn [1] as an abstract setting where certain properties of groups remain valid. There is a syntactical characterization of protomodular varieties (Bourn and Janelidze [2]). It requires the existence of a term θ of an arbitrarily high arity ($n+1$), binary terms α_{i} and 0 -ary terms $e_{i}(i=1,2, \ldots, n)$ that satisfy certain identities (these terms are called protomodular).

The aim of the present work is to give protomodular analogs of the well-known criterion for the existence of a group term (i.e. a binary term that satisfies the group identities for some unary and 0 -ary terms) in the algebraic theory of a variety (recall that this criterion asserts that the latter theory contains a group term if and only if it contains an associative Mal'cev term and a 0 -ary term). To this end the notions of a consociative term, a consociative protomodular algebra, and of a right-cancellable protomodular algebra are introduced. Moreover, for a protomodular variety \mathbb{V}, a certain functor from the category of consociative \mathbb{V}-algebras with $e_{1}=e_{2}=\cdots=e_{n}$ to the category of groups is constructed. Also the translation group functor from the category of right-cancellable \mathbb{V}-algebras to the category of groups is constructed.

It is proved that, for an arbitrary variety \mathbb{V} of universal algebras, the following conditions are equivalent:
(i) the algebraic theory of \mathbb{V} contains a group term;
(ii) the algebraic theory of \mathbb{V} contains protomodular terms θ, α_{i}, and $e_{i}(i=1,2, \ldots, n)$ such that θ is consociative and the identities $e_{1}=e_{2}=\cdots=e_{n}$ are satisfied;
(iii) the algebraic theory of \mathbb{V} contains protomodular terms with respect to which all \mathbb{V}-algebras are right-cancellable.

The consociative algebras with $e_{1}=e_{2}=\cdots=e_{n}$ (resp. the right-cancellable algebras) from the simplest protomodular varieties \mathbb{V}_{n} are characterized as groups with additional structures. The right-cancellable algebras from such varieties are also characterized as sets with principal group actions.

The results of this work are presented in the papers [3] and [4].

References

[1] D. Bourn, Normalization equivalence, kernel equivalence and affine categories. Category theory (Como, 1990), 43-62, Lecture Notes in Math., 1488, Springer, Berlin, 1991.
[2] D. Bourn and G. Janelidze, Characterization of protomodular varieties of universal algebras. Theory Appl. Categ. 11 (2003), no. 6, 143-147.
[3] D. Zangurashvili, Associativity-like conditions on protomodular aloebras Alaphra IIninercalic 81 (2020), no. 1, Paper No. 1, 12 pp.
[4] D. Zangurashvili, Right-cancellable protom lular algeb]; ;

Indey DRAFT

Alossaimi M., 50
Abdymanapov A., 39
Abokwara A., 40
Abu-Falahah I., 42
Abylayeva A., 41
Adamadze D., 43
Adeishvili V., 44
Akhalaia G., 45
Aleksidze L., 46
Aliashvili T., 47, 48
Alshibaia Ph., 51
Altynbek S., 39
Amaglobeli M., 13
Amiridze N., 52, 53
Archvadze N., 54
Aslanova N., 55
Atteya M. J., 56
Attia N., 57

Babilua P., 58
Baghaturia G., 59
Bakuradze M., 60
Bakuridze M., 61
Baladze V., 62
Barlybayev A., 39
Benkhaldoun N., 63
Beriashvili M., 64
Beriashvili Sh, 65
Beridze A., 62
Berikashvili V., 66
Beszhanova A., 67
Bishara A. M. F., 70
Bishara Merihan H. A. L., 68
Bishara Merium H. A. L., 69
Bokayev N., 74
Bokelavadze T., 71
Bolotashvili G., 72, 73
Buadze T., 75
Buchukuri T., 76, 77

Carbonaro A., 14
Chelidze G., 79
Chichua G., 81
Chikvinidze M., 81
Chilachava T., 82, 83
Chinwendu E. M., 40
Chkadua O., 76
Chobanyan S., 61
Chutkerashvili A., 52
Curto R. E., 84
Davitashvili T., 85
de Cristoforis M. L., 15
Dedabrishvili M., 86
Deisadze M., 87
Demurchev K., 81, 88
Di Nola A., 90, 91
Diakvnishvili A., 89
Didmanidze I., 166
Dragičević O., 14
Drygaś P., 92
Duduchava R., 77, 93
Dumbadze F., 95
Dundua B., 52
Dzadzamia M., 96
Dzagnidze O., 97
Elbakidze Kh., 99
Elerdashvili E., 98
Eliauri L., 46
Fomina-Shatashvili T., 166
Gagoshidze M., 100
Gegenava N., 101
Geladze G., 102
Giorgadze V., 75
Giorgashvili L., 103
Giorgobiani G., 66
Gogishvili G., 104
Gokadze I., 44

Gol'dshtein V., 16
Grafakos L., 17
Grigolia R., 90, 91
Gulua D., 105, 106
Gurgenidze D., 107
Guseynov Ye., 18
Hamadneh T., 42
Hasan A. A. M., 108
Ibrahimova S., 109
Imerlishvili G., 110
Imran M., 111
Jabbarov I., 109
Janashia Ph., 112
Jangveladze T., 113
Javaid I., 111
Jikidze L., 98
Jintcharadze E., 114
Kachiashvili K., 115
Kakulia N., 82
Kalybay A., 116
Karapetyants A., 15
Kasrashvili T., 117
Kemoklidze T., 118
Kereselidze N., 119
Khachidze M., 120
Khalifa M. B. H., 57, 121
Khatiashvili N., 122
Khimshiashvili G., 123
Khmaladze E., 124
Khukhua L., 83
Khunjua T., 125
Kipiani G., 107
Kiria J., 127
Kiria T., 127
Kirtadze A., 128
Kirtadze Sh., 78, 129
Klimenko K., 125
Koblishvili N., 130
Kokilashvili V., 131
Kopaliani T., 43
Kotchlamazashvili B., 132
Kovač V., 14
Kovtunenko V. A., 133
Krymski S., 19
Kublashvili M., 130
Kurtskhalia D., 81

Kutsia $\therefore, 52,53$ D OLI
Kvarats
Kvatadze Ts., 134
Kvatadze Z., 134
Levitin M., 19
Liparteliani R., 90
Lunyov A. A., 135
Machavariani I. D., 136
Magrakvelidze D., 138
Makatsaria G., 45
Makharadze D., 139
Malamud M., 135
Malidze Sh., 81
Mamporia B., 140
Manjavidze N., 45
Mastyło M., 20
Mdzinarishvili L., 62
Meladze H., 85
Menteshashvili M., 59
Meskhi A., 110
Meskhi M., 141
Meskhia R., 142
Miasnikov A., 13
Mikaberidze B., 81, 143
Mikhailov S. E., 22
Mishura Y., 121
Mitrea D., 23, 24
Mityushev V., 25
Mrevlishvili M., 144
Muladze V., 145
Muradova Sh., 147
Muratbekov MAdi, 146
Muratbekov Madi, 39
Muratbekov Mussakan, 146
Murusidze I., 48
Mustafayev E., 147
Nadaraya E., 58
Namgalauri E., 148
Natroshvili D., 76, 149
Nebiyev C., 150, 151
Neelakantan N. N. M., 152
Nikoleishvili M., 79
Obaidat M., 42
Obgadze T., 107
Oinarob R., 22, 116
Oinarov R., 41

Okroshiashvili N., 153
Ökten H. H., 151
Omanadze R., 154
Oniani G., 155
Ospanov K., 156
Ospanov M., 156
Papazova E., 166
Papukashvili A., 157
Parjiani B., 134
Parnovski L., 19
Patsatsia M., 58, 59
Peradze J., 158
Phkhovelishvili M., 54
Pkhakadze K., 81, 159
Pochkhua G., 160
Polterovich I., 19
Purtukhia O., 148
Rabinovich V., 26
Rafeiro H., 27
Rakviashvili G., 48, 132
Rehman Sh., 111
Rogava J., 106
Rukhaia M., 70
Rusiashvili N., 161
Saavedra F. L., 162
Samsonadze E., 163
Sarajishvili T., 114
Sarajishvili Ts., 164
Sazandrishvili N., 165
Seilbekov B., 41
Shargorodsky E., 28
Sharia T., 28
Sharikadze M., 157
Shatashvili A., 166
Shavlakadze N., 167
Sher D., 19
Škreb K., 14
Skvortsov V., 29
Spitkovsky I. M., 30
Steinbach O., 31
Sulakvelidze L., 168
Tabagari Z., 130
Taher R. B., 63
Takidze M., 96
Tarieladze V., 61, 79, 140
Temirkhanova A., 67

Tephnadze G., 169
Tetunashvili T., 170
Tevdoradze M., 102
Tibua L., 171
Tikhonov S., 32
Toloraia A., 172
Tophuridze N., 173
Trapaidze L., 174
Tsertsvadze K., 33
Tsertsvadze T., 175
Tsinaridze N., 176
Tsiramua S., 177
Tsivtsivadze I., 97
Tsotniashvili S., 178
Tsutskiridze V., 98
Turmanidze L., 96
Tutberidze G., 179
Ugulava D., 180
Vakhania N., 140
Vashakidze Z., 157
Vashakmadze T. S., 181
Vepkhvadze T., 182
Vitale G., 91
Vyas V. K., 183
Wang X., 34
Weder R., 35
Xue Q., 36
Yagub Aliyev Y., 49
Zakradze M., 130
Zangurashvili D., 184
Zarnadze D., 178, 180
Zazashvili Sh., 103
Zerakidze Z., 46, 127
Zhokhov R., 125
Zili M., 121
Zubkov A., 21

