Overlap Gap Property: an Algorithmic Barrier to Optimizing Over Random Structures

David (Dato) Gamarnik

MIT (2005-Present)

Tbilisi State University (1986-1990)

September 1, 2022

XII INTERNATIONAL CONFERENCE OF THE GEORGIAN MATHEMATICAL UNION

 Survey paper with the same title in Proceedings of National Academy of Science (PNAS), 2021

 Erdös-Rényi random graph G(N, p). N nodes. Every edge present with probability p, i.i.d.

- Erdös-Rényi random graph G(N, p). N nodes. Every edge present with probability p, i.i.d.
- The largest clique (fully connected subgraph) is $\sim 2 \log_{\frac{1}{p}} N$.

- Erdös-Rényi random graph G(N, p). N nodes. Every edge present with probability p, i.i.d.
- The largest clique (fully connected subgraph) is $\sim 2 \log_{\frac{1}{2}} N$.
- A trivial greedy algorithm finds a clique of size $\sim \log_{\frac{1}{p}} N$ (half optimum).

- Erdös-Rényi random graph G(N, p). N nodes. Every edge present with probability p, i.i.d.
- The largest clique (fully connected subgraph) is $\sim 2 \log_{\frac{1}{2}} N$.
- A trivial greedy algorithm finds a clique of size $\sim \log_{\frac{1}{p}} N$ (half optimum).
- Karp [1976] Improve half-optimality?

- Erdös-Rényi random graph G(N, p). N nodes. Every edge present with probability p, i.i.d.
- The largest clique (fully connected subgraph) is $\sim 2 \log_{\frac{1}{2}} N$.
- A trivial greedy algorithm finds a clique of size $\sim \log_{\frac{1}{p}} N$ (half optimum).
- Karp [1976] Improve half-optimality?
- Still open. This is embarrassing...

• Sparse Erdös-Rényi graph $\mathbb{G}(N, d/N)$.

- Sparse Erdös-Rényi graph $\mathbb{G}(N, d/N)$.
- The largest independent set is $\sim 2(1 + o_d(1))\frac{\log d}{d}N$. Frieze [1990].

- Sparse Erdös-Rényi graph $\mathbb{G}(N, d/N)$.
- The largest independent set is $\sim 2(1 + o_d(1))\frac{\log d}{d}N$. Frieze [1990].
- A trivial greedy algorithm finds an independent set of size $\sim (1 + o_d(1)) \frac{\log d}{d} N$. (half optimum)

- Sparse Erdös-Rényi graph $\mathbb{G}(N, d/N)$.
- The largest independent set is $\sim 2(1 + o_d(1))\frac{\log d}{d}N$. Frieze [1990].
- A trivial greedy algorithm finds an independent set of size $\sim (1 + o_d(1)) \frac{\log d}{d} N$. (half optimum)
- Nothing better known.

Statistics-to-Computation gap

Statistics-to-Computation gap

Problems exhibiting a similar *statistics-to-computation* gap:

Random K-SAT Proper coloring of a random graphs MaxCut on random hypergraphs Ground state of a spin glass model Stochastic Block Model LDPC Codes **Planted Clique** Spiked Tensor problem Sparse Regression and Phase Retrieval Sparse Covariance Estimation problem Graph alignment Binary perceptron Mixture of Gaussians etc, etc.

What is the obstruction to algorithms?

What is the obstruction to algorithms?

 Change in the geometry of solutions at the onset of hardness, Overlap Gap Property (OGP)

What is the obstruction to algorithms?

- Change in the geometry of solutions at the onset of hardness, Overlap Gap Property (OGP)
- Originating in the theory of spin glass. Giorgio Parisi (Nobel Prize Physics 2021)

(a) Emerges in most models known to exhibit an apparent algorithmic hardness

- (a) Emerges in most models known to exhibit an apparent algorithmic hardness
- (b) Consistent with the hardness/tractability phase transition for many models analyzed to the day

- (a) Emerges in most models known to exhibit an apparent algorithmic hardness
- (b) Consistent with the hardness/tractability phase transition for many models analyzed to the day
- (c) Allows to mathematically rigorously rule out a large class of algorithms as potential contenders, specifically the algorithms which exhibit the input stability (noise insensitivity), such as **Boolean circuits** (this talk).

Theorem (Informal, G, Jagannath & Wein [2022])

If polynomial size Boolean circuit C with depth p_n finds better than half-optimum ind set in $\mathbb{G}(n, d/n)$, then its depth is at least

$$p_n \geq \Omega\left(\frac{\log n}{\log\log n}\right)$$

Theorem (Informal, G, Jagannath & Wein [2022])

If polynomial size Boolean circuit C with depth p_n finds better than half-optimum ind set in $\mathbb{G}(n, d/n)$, then its depth is at least

$$p_n \ge \Omega\left(\frac{\log n}{\log\log n}\right)$$

• Half-optimum ind sets can be found by depth O(1) circuits.

Theorem (Informal, G, Jagannath & Wein [2022])

If polynomial size Boolean circuit C with depth p_n finds better than half-optimum ind set in $\mathbb{G}(n, d/n)$, then its depth is at least

$$p_n \ge \Omega\left(\frac{\log n}{\log\log n}\right)$$

- Half-optimum ind sets can be found by depth O(1) circuits.
- State of the art o(log n/ log log n), Rossman [2010], Li, Razborov & Rossman [2017], (though for the decision not the search problem).

Theorem (Informal, G, Jagannath & Wein [2022])

If Boolean circuit C with a constant depth O(1) finds better than half-optimum ind set in $\mathbb{G}(n, d/n)$, then its size is at least

 $\exp\left(n^{\Theta(1)}\right)$

Theorem (Informal, G, Jagannath & Wein [2022])

If Boolean circuit C with a constant depth O(1) finds better than half-optimum ind set in $\mathbb{G}(n, d/n)$, then its size is at least

 $\exp\left(n^{\Theta(1)}\right)$

• State of the art lower bound is $\exp(\log^{\Theta(1)} n)$, Rossman [2010].

Theorem (G & Sudan [2014])

Fix $\frac{1}{2} + \frac{1}{2\sqrt{2}} < \alpha < 1$. There exists $0 \le \nu_1 < \nu_2 < 1$ such that with prob $1 - \exp(-\Omega(n))$ for every two α -optimum independent sets I, J in $\mathbb{G}(n, d/n)$

$$\frac{|I \cap J|}{\mathcal{OPT}} \in [0, \nu_1] \cup [\nu_2, 1].$$

Theorem (G & Sudan [2014])

Fix $\frac{1}{2} + \frac{1}{2\sqrt{2}} < \alpha < 1$. There exists $0 \le \nu_1 < \nu_2 < 1$ such that with prob $1 - \exp(-\Omega(n))$ for every two α -optimum independent sets I, J in $\mathbb{G}(n, d/n)$

$$\frac{|I \cap J|}{\mathcal{OPT}} \in [0, \nu_1] \cup [\nu_2, 1].$$

Intersection of every two large enough ind sets is either "small" or "large" (gap in overlaps)

Theorem (G & Sudan [2014])

Fix $\frac{1}{2} + \frac{1}{2\sqrt{2}} < \alpha < 1$. There exists $0 \le \nu_1 < \nu_2 < 1$ such that with prob $1 - \exp(-\Omega(n))$ for every two α -optimum independent sets I, J in $\mathbb{G}(n, d/n)$

$$\frac{|I \cap J|}{\mathcal{OPT}} \in [0, \nu_1] \cup [\nu_2, 1].$$

Intersection of every two large enough ind sets is either "small" or "large" (gap in overlaps) This was used to rule out local (Factor of IID) algorithms.

Landscape of the OGP

Landscape of the OGP

Landscape of the OGP

Comparison with clustering

Note: OGP is stronger than clustering!
References on OGP based results

References on OGP based results

- G, Jagannath & Wein [2022] Boolean circuits (this talk)
- G, Jagannath & Wein [2020] Low degree polynomials, Langevin dynamics
- ◊ G & Jagannath [2020] AMP algorithms
- Coja-Oghlan, Haqshenas & Hetterich [2017] Random Walk (WAKLSAT)
- G & Sudan [2017] Survey Propagation algorithms
- Farhi, G & Gutmann [2017] Quantum (QAOA) algorithms
- G, Kizildag, Perkins & Xu [In progress] Kim-Roche algorithm for Binary perceptron
- A Rahman & Virag [2017], Wein [2020]
- Bresler & Huang [2021], Huang & Sellke [2021]

• Generate independent copies $\mathbb{G}, \tilde{\mathbb{G}} \stackrel{d}{=} \mathbb{G}(n, d/n).$

- Generate independent copies $\mathbb{G}, \tilde{\mathbb{G}} \stackrel{d}{=} \mathbb{G}(n, d/n)$.
- Generate an arbitrary order on ⁿ₂ and interpolate
 G₀ = G, G₁, G₂, ..., G_{ⁿ₂} = G̃.

- Generate independent copies $\mathbb{G}, \tilde{\mathbb{G}} \stackrel{d}{=} \mathbb{G}(n, d/n).$
- Generate an arbitrary order on $\binom{n}{2}$ and interpolate $\mathbb{G}_0 = \mathbb{G}, \mathbb{G}_1, \mathbb{G}_2, \dots, \mathbb{G}_{\binom{n}{2}} = \tilde{\mathbb{G}}.$

Theorem

Fix $\frac{1}{2} + \frac{1}{2\sqrt{2}} < \alpha < 1$. For all large enough *d*, there exists $0 \le \nu_1 < 1/2 < \nu_2 < 1$ such that with prob $1 - \exp(-\Omega(n))$ for every $0 \le t \le {n \choose 2}$ and every α -optimum independent sets I_0 in \mathbb{G}_0 and I_t in \mathbb{G}_t

$$\frac{|I_0 \cap I_t|}{\mathcal{OPT}} \in [0, \nu_1] \cup [\nu_2, 1].$$

Furthermore, when $t = \binom{n}{2}$ only $\in [0, \nu_1]$ is possible.

- Generate independent copies $\mathbb{G}, \tilde{\mathbb{G}} \stackrel{d}{=} \mathbb{G}(n, d/n).$
- Generate an arbitrary order on $\binom{n}{2}$ and interpolate $\mathbb{G}_0 = \mathbb{G}, \mathbb{G}_1, \mathbb{G}_2, \dots, \mathbb{G}_{\binom{n}{2}} = \tilde{\mathbb{G}}.$

Theorem

Fix $\frac{1}{2} + \frac{1}{2\sqrt{2}} < \alpha < 1$. For all large enough *d*, there exists $0 \le \nu_1 < 1/2 < \nu_2 < 1$ such that with prob $1 - \exp(-\Omega(n))$ for every $0 \le t \le {n \choose 2}$ and every α -optimum independent sets I_0 in \mathbb{G}_0 and I_t in \mathbb{G}_t

$$\frac{|I_0 \cap I_t|}{\mathcal{OPT}} \in [0, \nu_1] \cup [\nu_2, 1].$$

Furthermore, when $t = \binom{n}{2}$ only $\in [0, \nu_1]$ is possible.

• Generate an arbitrary total order on $\binom{n}{2}$ pairs $e(1), \ldots, e(n(n-1)/2)$.

- Generate an arbitrary total order on $\binom{n}{2}$ pairs $e(1), \ldots, e(n(n-1)/2)$.
- $\mathbb{G}_t \stackrel{d}{=} \mathbb{G}(n, d/n), t \leq Tn^{O(1)}$, where G_{t+1} is obtained from \mathbb{G}_t by resampling edge $e(1 + t \mod \binom{n}{2})$.

- Generate an arbitrary total order on $\binom{n}{2}$ pairs $e(1), \ldots, e(n(n-1)/2)$.
- $\mathbb{G}_t \stackrel{d}{=} \mathbb{G}(n, d/n), t \leq Tn^{O(1)}$, where G_{t+1} is obtained from \mathbb{G}_t by resampling edge $e(1 + t \mod \binom{n}{2})$.

Theorem (Wein 2020)

For every $\epsilon > 0$, $K \ge 1 + 5/\epsilon^2$ and d large enough the following holds with probability at least $1 - \exp(-\Omega(n))$: there does not exist a sequence of times t_1, \ldots, t_K with $0 \le t_k \le T$ and $1/2 + \epsilon$ -optimal ind sets sets $l_1, \ldots, l_K \subset [n]$ in $\mathbb{G}_{t_1}, \ldots, \mathbb{G}_{t_K}$ such that

$$|I_k \setminus (\cup_{1 \le \ell < k} I_\ell)| \in \left[\frac{\epsilon}{4} \frac{\log d}{d} n, \frac{\epsilon}{2} \frac{\log d}{d} n\right], \qquad 2 \le k \le K.$$

e-OGP – obstruction to stable (noise-insensitive) algs

e-OGP - obstruction to stable (noise-insensitive) algs

Theorem (Meta-theorem)

Suppose an algorithm $\mathcal{A} : G \to \{0,1\}^n$ is stable: a "small" change in input G results in a small change on the output $\mathcal{A}(G)$. Then \mathcal{A} cannot overcome the e-OGP barrier.

e-OGP - obstruction to stable (noise-insensitive) algs

Theorem (Meta-theorem)

Suppose an algorithm $\mathcal{A} : G \to \{0,1\}^n$ is stable: a "small" change in input G results in a small change on the output $\mathcal{A}(G)$. Then \mathcal{A} cannot overcome the e-OGP barrier.

Proof by picture:

Boolean circuits. Background

Boolean circuits. Background

- Boolean circuit *C* a mapping {0, 1}⁽ⁿ⁾₂ → {0, 1}ⁿ encoded by a directed graph with logical gates ¬, ∨, ∧
- Size s(n)- number of gates. Depth p(n) length of the longest path

Poly-size Boolean circuits for computing the *n*-PARITY function has depth ⊖(log n/ log log n). Hastad [1986].
 Hastad's Switching Lemma

- Poly-size Boolean circuits for computing the *n*-PARITY function has depth ⊖(log n/ log log n). Hastad [1986].
 Hastad's Switching Lemma
- A lot of research on circuit depth for *Decision version* (single output node) of optimization problems (CLIQUE). Lynch [1986], Beame [1990], Rossman [2010], Li, Razborov & Rossman [2017]

- Poly-size Boolean circuits for computing the *n*-PARITY function has depth Θ(log *n*/ log log *n*). Hastad [1986].
 Hastad's Switching Lemma
- A lot of research on circuit depth for *Decision version* (single output node) of optimization problems (CLIQUE). Lynch [1986], Beame [1990], Rossman [2010], Li, Razborov & Rossman [2017]
- Poly-size Circuits computing cliques of size k(n) require depth

$$\Omega\left(\log n/(k^2(n)\log\log n)\right) = o\left(\log n/\log\log n\right)$$

Rossman [2010],

- Poly-size Boolean circuits for computing the *n*-PARITY function has depth Θ(log *n*/ log log *n*). Hastad [1986].
 Hastad's Switching Lemma
- A lot of research on circuit depth for *Decision version* (single output node) of optimization problems (CLIQUE). Lynch [1986], Beame [1990], Rossman [2010], Li, Razborov & Rossman [2017]
- Poly-size Circuits computing cliques of size k(n) require depth

$$\Omega\left(\log n/(k^2(n)\log\log n)\right) = o\left(\log n/\log\log n\right)$$

Rossman [2010],

Main result: circuit lower bound

Main result: circuit lower bound

Let $C(s(n), p(n), \alpha)$ be the class of size s(n) Boolean circuits with depth p(n) which produce factor α -OPT independent set given a graph as an input.

Main result: circuit lower bound

Let $C(s(n), p(n), \alpha)$ be the class of size s(n) Boolean circuits with depth p(n) which produce factor α -OPT independent set given a graph as an input.

Theorem (Circuit depth lower bound. G, Jagannath & Wein [2022])

Let $\alpha \in (1/2, 1), \epsilon > 0$ and

$$p(n) \leq rac{\log n}{(1+\epsilon)\log\log n}$$

Then for every $C \in C(s(n), p(n), \alpha)$ and all large enough n

$$s(n) \ge n^{(\log n)^{\frac{1}{3}}}$$

In particular, the size is super-polynomial.

Stability (noise insensitivity) of circuits: LMN Theorem

Stability (noise insensitivity) of circuits: LMN Theorem

Theorem (Linial-Mansour-Nisan' (LMN) Theorem, [1993])

For every circuit C with size s(N) and depth p(N) under the *i.i.d.* uniform distribution on $\{0,1\}^N$, the sum of Fourier coefficients associated with monomials of order

$$D_N \triangleq (\log s(N))^{O(p(N))}$$
 (That is $(\log \text{Size})^{O(\text{Depth})}$

is o(1).

Stability (noise insensitivity) of circuits: LMN Theorem

Theorem (Linial-Mansour-Nisan' (LMN) Theorem, [1993])

For every circuit *C* with size s(N) and depth p(N) under the *i.i.d.* uniform distribution on $\{0,1\}^N$, the sum of Fourier coefficients associated with monomials of order

$$D_N \triangleq (\log s(N))^{O(p(N))}$$
 (That is $(\log \text{Size})^{O(\text{Depth})}$)

is o(1).

From O'Donnell "Analysis of Boolean Functions"

28/34

Stability (noise insensitivity) of circuits: Linial-Mansour-Nissan's Theorem

Informally, on $\{0, 1\}^N$, the circuit *C* can be approximated by an *N* variable polynomial of degree $(\log \text{Size})^{O(\text{Depth})}$.

Stability (noise insensitivity) of circuits: Linial-Mansour-Nissan's Theorem

Informally, on $\{0, 1\}^N$, the circuit *C* can be approximated by an *N* variable polynomial of degree $(\log \text{Size})^{O(\text{Depth})}$.

Say, size $s(N) = N^{\alpha}$, depth $p(N) = \beta \log N / (\log \log N)$. Then

$$(\log \text{Size})^{\mathcal{O}(\text{Depth})} \approx (\log N)^{\beta \log N/(\log \log N)} = \exp(\beta \log N) = N^{\beta}.$$

When $\beta < 1$ is small the "relevant" degree is sublinear in *N*.

Stability (noise insensitivity) of circuits: Linial-Mansour-Nissan's Theorem
• Recall an interpolated sequence $\mathbb{G}_0, \mathbb{G}_1, \dots, \mathbb{G}_{\frac{n(n-1)}{2}}$ of $\mathbb{G}(n, d/n)$ graphs.

- Recall an interpolated sequence $\mathbb{G}_0, \mathbb{G}_1, \dots, \mathbb{G}_{\frac{n(n-1)}{2}}$ of $\mathbb{G}(n, d/n)$ graphs.
- A circuit *C* produces a sequence of solutions $I_t = C(G_t), t = 0, 1, \dots, {n \choose 2}.$

- Recall an interpolated sequence $\mathbb{G}_0, \mathbb{G}_1, \dots, \mathbb{G}_{\frac{n(n-1)}{2}}$ of $\mathbb{G}(n, d/n)$ graphs.
- A circuit *C* produces a sequence of solutions $I_t = C(G_t), t = 0, 1, ..., {n \choose 2}.$
- We use LMN and a large deviations estimate to show that

$$n^{-1} \|I_t - I_{t+1}\|_2^2 \leq (\nu_2 - \nu_1)^2$$

for all *t* with probability at least $exp(-\delta D_n)$ with controlled δ .

 By the e-OGP, this can only happen on the "exception" event with probability exp(-Θ(n)).

- By the e-OGP, this can only happen on the "exception" event with probability exp(-Θ(n)).
- Thus $\exp(-\delta D_n) \leq \exp(-\Theta(n))$.

 By the e-OGP, this can only happen on the "exception" event with probability exp(-Θ(n)).

• Thus
$$\exp(-\delta D_n) \leq \exp(-\Theta(n))$$
.

• Since
$$p(n) = \frac{\log n}{(1+\epsilon) \log \log n}$$
 we obtain

 By the e-OGP, this can only happen on the "exception" event with probability exp(-Θ(n)).

• Thus
$$\exp(-\delta D_n) \leq \exp(-\Theta(n))$$
.

• Since
$$p(n) = \frac{\log n}{(1+\epsilon) \log \log n}$$
 we obtain

$$\exp\left(-\delta(\log s(n))^{\frac{\log n}{(1+\epsilon)\log\log n}}\right) \le \exp\left(-\Omega(n)\right)$$
$$\implies$$
$$s(n) \ge n^{(\log n)^{\Omega(1)}} \square$$

Small set avoidance

Small set avoidance

Large deviation lower bound is based on the following lemma

Large deviation lower bound is based on the following lemma

Lemma (Small Set Avoidance Lemma G, Jagannath & Wein [2020])

Let *E* be any subset of edges in $\{0,1\}^n$. Let *e* be the fraction of the edges in *E*. Consider a random walk $Z_t, 0 \le t \le T$ in $\{0,1\}^n$ with Z_0 chosen u.a.r. The walk never crosses the set *E* with probability at least 2^{-Te} .

$\text{OGP} \rightarrow \text{spin glass hardness}$

A very similar method shows failure of Boolean circuits in finding ground states of spin glass models https://arxiv.org/pdf/2109.01342.pdf and is likely to be applicable for all models exhibiting OGP.

Challenges with applying this to other combinatorial optimization problems

Challenges with applying this to other combinatorial optimization problems

• Cliques on $\mathbb{G}(n, 1/2)$. The e-OGP occurs but with probability $1 - \exp(-\Theta(\log^2 n))$. This is too weak for obtaining circuit lower bounds.

Challenges with applying this to other combinatorial optimization problems

- Cliques on G(n, 1/2). The e-OGP occurs but with probability 1 - exp(-Θ(log² n)). This is too weak for obtaining circuit lower bounds.
- Decision vs search lower bounds.

Challenges with applying this to other combinatorial optimization problems

- Cliques on G(n, 1/2). The e-OGP occurs but with probability 1 - exp(-Θ(log² n)). This is too weak for obtaining circuit lower bounds.
- Decision vs search lower bounds.
- Are there (evidently) hard problems not exhibiting OGP in the way we have defined it?