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(Arguably) The Most Embarrassing Algorithmic Open
Problem in Random Structures

Erdös-Rényi random graph G(N,p). N nodes. Every edge
present with probability p, i.i.d.
The largest clique (fully connected subgraph) is ∼ 2 log 1

p
N.

A trivial greedy algorithm finds a clique of size ∼ log 1
p

N

(half optimum).
Karp [1976] Improve half-optimality?
Still open. This is embarrassing...
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Erdös-Rényi random graph G(N,p). N nodes. Every edge
present with probability p, i.i.d.
The largest clique (fully connected subgraph) is ∼ 2 log 1

p
N.

A trivial greedy algorithm finds a clique of size ∼ log 1
p

N

(half optimum).

Karp [1976] Improve half-optimality?
Still open. This is embarrassing...

3 / 34



(Arguably) The Most Embarrassing Algorithmic Open
Problem in Random Structures
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Sparse graphs – similar story

Sparse Erdös-Rényi graph G(N,d/N).
The largest independent set is ∼ 2(1 + od (1)) log d

d N.
Frieze [1990].
A trivial greedy algorithm finds an independent set of size
∼ (1 + od (1)) log d

d N. (half optimum)
Nothing better known.
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Sparse Erdös-Rényi graph G(N,d/N).
The largest independent set is ∼ 2(1 + od (1)) log d

d N.
Frieze [1990].
A trivial greedy algorithm finds an independent set of size
∼ (1 + od (1)) log d

d N. (half optimum)

Nothing better known.

4 / 34



Sparse graphs – similar story
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Statistics-to-Computation gap

Problems exhibiting a similar statistics-to-computation gap:

Random K-SAT
Proper coloring of a random graphs
MaxCut on random hypergraphs
Ground state of a spin glass model
Stochastic Block Model
LDPC Codes
Planted Clique
Spiked Tensor problem
Sparse Regression and Phase Retrieval
Sparse Covariance Estimation problem
Graph alignment
Binary perceptron
Mixture of Gaussians
etc, etc.
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What is the obstruction to algorithms?

Change in the geometry of solutions at the onset of
hardness, Overlap Gap Property (OGP)
Originating in the theory of spin glass. Giorgio Parisi
(Nobel Prize Physics 2021)
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Overlap Gap Property (OGP)→ Algorithmic Lower
Bounds

(a) Emerges in most models known to exhibit an apparent
algorithmic hardness

(b) Consistent with the hardness/tractability phase transition
for many models analyzed to the day

(c) Allows to mathematically rigorously rule out a large class
of algorithms as potential contenders, specifically the
algorithms which exhibit the input stability (noise
insensitivity), such as Boolean circuits (this talk).
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Overlap Gap Property (OGP)→ Algorithmic Lower
Bounds

Theorem (Informal, G, Jagannath & Wein [2022])
If polynomial size Boolean circuit C with depth pn finds better
than half-optimum ind set in G(n,d/n), then its depth is at least

pn ≥ Ω

(
log n

log log n

)
.

Half-optimum ind sets can be found by depth O(1) circuits.
State of the art o(log n/ log log n), Rossman [2010], Li,
Razborov & Rossman [2017], (though for the decision not
the search problem).
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Overlap Gap Property (OGP)→ Algorithmic Lower
Bounds

Theorem (Informal, G, Jagannath & Wein [2022])

If Boolean circuit C with a constant depth O(1) finds better than
half-optimum ind set in G(n,d/n), then its size is at least

exp
(

nΘ(1)
)

State of the art lower bound is exp
(

logΘ(1) n
)

, Rossman
[2010].
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OGP for Independent Sets

Theorem (G & Sudan [2014])

Fix 1
2 + 1

2
√

2
< α < 1. There exists 0 ≤ ν1 < ν2 < 1 such that

with prob 1− exp (−Ω(n)) for every two α-optimum independent
sets I, J in G(n,d/n)

|I ∩ J|
OPT ∈ [0, ν1] ∪ [ν2,1].

Intersection of every two large enough ind sets is either ”small”
or ”large” (gap in overlaps)
This was used to rule out local (Factor of IID) algorithms.
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OGP for Independent Sets
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Landscape of the OGP

OPT

Ind sets  

Size
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Landscape of the OGP

OPT

Ind sets  

Size

X0 X1 X2 X3 X4
Xi Xj
Y (⌧1)
Y (⌧2)
Y (⌧3)
Y (⌧4)

⌫1 < ⌫2

Formulas for Hypothesis Testing Module January 7, 2022 3 / 3
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Comparison with clustering

Note: OGP is stronger than clustering!
15 / 34



References on OGP based results

� G, Jagannath & Wein [2022] Boolean circuits (this talk)
� G, Jagannath & Wein [2020] Low degree polynomials,

Langevin dynamics
� G & Jagannath [2020] AMP algorithms
� Coja-Oghlan, Haqshenas & Hetterich [2017] Random Walk

(WAKLSAT)
� G & Sudan [2017] Survey Propagation algorithms
� Farhi, G & Gutmann [2017] Quantum (QAOA) algorithms
� G, Kizildag, Perkins & Xu [In progress] Kim-Roche

algorithm for Binary perceptron
� Rahman & Virag [2017], Wein [2020]
� Bresler & Huang [2021],Huang & Sellke [2021]
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Ensemble Overlap Gap Property (e-OGP)

Generate independent copies G, G̃ d
= G(n,d/n).

Generate an arbitrary order on
(n

2

)
and interpolate

G0 = G,G1,G2, . . . ,G(n
2)

= G̃.

Theorem

Fix 1
2 + 1

2
√

2
< α < 1. For all large enough d, there exists

0 ≤ ν1 < 1/2 < ν2 < 1 such that with prob 1− exp (−Ω(n)) for
every 0 ≤ t ≤

(n
2

)
and every α-optimum independent sets I0 in

G0 and It in Gt

|I0 ∩ It |
OPT ∈ [0, ν1] ∪ [ν2,1].

Furthermore, when t =
(n

2

)
only ∈ [0, ν1] is possible.
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e-OGP for Independent Sets

G0 G1 G2 Gt G n(n�1)
2

.
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Ensemble-multi- Overlap Gap Property (e-m-OGP)

Generate an arbitrary total order on
(n

2

)
pairs

e(1), . . . ,e(n(n − 1)/2).

Gt
d
= G(n,d/n), t ≤ TnO(1), where Gt+1 is obtained from

Gt by resampling edge e(1 + t mod
(n

2

)
).

Theorem (Wein 2020)

For every ε > 0, K ≥ 1 + 5/ε2 and d large enough the following
holds with probability at least 1− exp(−Ω(n)): there does not
exist a sequence of times t1, . . . , tK with 0 ≤ tk ≤ T and
1/2 + ε-optimal ind sets sets I1, . . . , IK ⊂ [n] in Gt1 , . . . ,GtK such
that

|Ik \ (∪1≤`<k I`)| ∈
[
ε

4
log d

d
n,
ε

2
log d

d
n
]
, 2 ≤ k ≤ K .
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e-OGP – obstruction to stable (noise-insensitive) algs

Theorem (Meta-theorem)

Suppose an algorithm A : G→ {0,1}n is stable: a ”small”
change in input G results in a small change on the output A(G).
Then A cannot overcome the e-OGP barrier.

Proof by picture:
^
_
¬

G (n, d/n)

x1 x2 xn
y1 y2 y n(n�1)

2
pn

A(G0) A(G1) A(Gt) A(Gt+1) A(G n(n�1)
2

)
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e-OGP – obstruction to stable (noise-insensitive) algs

Theorem (Meta-theorem)

Suppose an algorithm A : G→ {0,1}n is stable: a ”small”
change in input G results in a small change on the output A(G).
Then A cannot overcome the e-OGP barrier.

Proof by picture:
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Boolean circuits. Background

Boolean circuit C – a mapping {0,1}(n
2) → {0,1}n encoded

by a directed graph with logical gates ¬,∨,∧
Size s(n)– number of gates. Depth p(n) – length of the
longest path
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Background: Circuit lower bounds

Poly-size Boolean circuits for computing the n-PARITY
function has depth Θ(log n/ log log n). Hastad [1986].
Hastad’s Switching Lemma
A lot of research on circuit depth for Decision version
(single output node) of optimization problems (CLIQUE).
Lynch [1986], Beame [1990], Rossman [2010], Li,
Razborov & Rossman [2017]
Poly-size Circuits computing cliques of size k(n) require
depth

Ω
(

log n/(k2(n) log log n)
)

= o (log n/ log log n)

Rossman [2010],
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Main result: circuit lower bound

Let C(s(n),p(n), α) be the class of size s(n) Boolean circuits
with depth p(n) which produce factor α-OPT independent set
given a graph as an input.

Theorem (Circuit depth lower bound. G, Jagannath & Wein
[2022])

Let α ∈ (1/2,1), ε > 0 and

p(n) ≤ log n
(1 + ε) log log n

.

Then for every C ∈ C(s(n),p(n), α) and all large enough n

s(n) ≥ n(log n)
ε
3
.

In particular, the size is super-polynomial.
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Stability (noise insensitivity) of circuits: LMN Theorem

Theorem (Linial-Mansour-Nisan’ (LMN) Theorem, [1993])

For every circuit C with size s(N) and depth p(N) under the
i.i.d. uniform distribution on {0,1}N , the sum of Fourier
coefficients associated with monomials of order

DN , (log s(N))O(p(N))
(

That is (log Size)O(Depth)
)

is o(1).

From O’Donnell ”Analysis of Boolean Functions”
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Stability (noise insensitivity) of circuits:
Linial-Mansour-Nissan’s Theorem

Informally, on {0,1}N , the circuit C can be approximated by an
N variable polynomial of degree (log Size)O(Depth).

Say, size s(N) = Nα, depth p(N) = β log N/(log log N). Then

(log Size)O(Depth) ≈ (log N)β log N/(log log N) = exp(β log N) = Nβ.

When β < 1 is small the ”relevant” degree is sublinear in N.
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Stability (noise insensitivity) of circuits:
Linial-Mansour-Nissan’s Theorem

Recall an interpolated sequence G0,G1, . . . ,G n(n−1)
2

of

G(n,d/n) graphs.
A circuit C produces a sequence of solutions
It = C(Gt ), t = 0,1, . . . ,

(n
2

)
.

We use LMN and a large deviations estimate to show that

n−1‖It − It+1‖22 ≤ (ν2 − ν1)2,

for all t with probability at least exp(−δDn) with controlled δ.

30 / 34



Stability (noise insensitivity) of circuits:
Linial-Mansour-Nissan’s Theorem

Recall an interpolated sequence G0,G1, . . . ,G n(n−1)
2

of

G(n,d/n) graphs.

A circuit C produces a sequence of solutions
It = C(Gt ), t = 0,1, . . . ,

(n
2

)
.

We use LMN and a large deviations estimate to show that

n−1‖It − It+1‖22 ≤ (ν2 − ν1)2,

for all t with probability at least exp(−δDn) with controlled δ.

30 / 34



Stability (noise insensitivity) of circuits:
Linial-Mansour-Nissan’s Theorem

Recall an interpolated sequence G0,G1, . . . ,G n(n−1)
2

of

G(n,d/n) graphs.
A circuit C produces a sequence of solutions
It = C(Gt ), t = 0,1, . . . ,

(n
2

)
.

We use LMN and a large deviations estimate to show that

n−1‖It − It+1‖22 ≤ (ν2 − ν1)2,

for all t with probability at least exp(−δDn) with controlled δ.

30 / 34



Stability (noise insensitivity) of circuits:
Linial-Mansour-Nissan’s Theorem

Recall an interpolated sequence G0,G1, . . . ,G n(n−1)
2

of

G(n,d/n) graphs.
A circuit C produces a sequence of solutions
It = C(Gt ), t = 0,1, . . . ,

(n
2

)
.

We use LMN and a large deviations estimate to show that

n−1‖It − It+1‖22 ≤ (ν2 − ν1)2,

for all t with probability at least exp(−δDn) with controlled δ.

30 / 34



Stability (noise insensitivity) of circuits:
Linial-Mansour-Nissan’s Theorem

By the e-OGP, this can only happen on the ”exception”
event with probability exp(−Θ(n)).
Thus exp(−δDn) ≤ exp(−Θ(n)).
Since p(n) = log n

(1+ε) log log n we obtain

exp

(
−δ(log s(n))

log n
(1+ε) log log n

)
≤ exp (−Ω(n))

=⇒
s(n) ≥ n(log n)Ω(1)
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Small set avoidance

Large deviation lower bound is based on the following lemma

Lemma (Small Set Avoidance Lemma G, Jagannath & Wein
[2020])

Let E be any subset of edges in {0,1}n. Let e be the fraction of
the edges in E. Consider a random walk Zt ,0 ≤ t ≤ T in
{0,1}n with Z0 chosen u.a.r. The walk never crosses the set E
with probability at least 2−Te.

32 / 34



Small set avoidance

Large deviation lower bound is based on the following lemma

Lemma (Small Set Avoidance Lemma G, Jagannath & Wein
[2020])

Let E be any subset of edges in {0,1}n. Let e be the fraction of
the edges in E. Consider a random walk Zt ,0 ≤ t ≤ T in
{0,1}n with Z0 chosen u.a.r. The walk never crosses the set E
with probability at least 2−Te.

32 / 34



Small set avoidance

Large deviation lower bound is based on the following lemma

Lemma (Small Set Avoidance Lemma G, Jagannath & Wein
[2020])

Let E be any subset of edges in {0,1}n. Let e be the fraction of
the edges in E. Consider a random walk Zt ,0 ≤ t ≤ T in
{0,1}n with Z0 chosen u.a.r. The walk never crosses the set E
with probability at least 2−Te.

32 / 34



OGP→ spin glass hardness

A very similar method shows failure of Boolean circuits in
finding ground states of spin glass models
https://arxiv.org/pdf/2109.01342.pdf and is likely to be
applicable for all models exhibiting OGP.

33 / 34



OGP→ spin glass hardness

A very similar method shows failure of Boolean circuits in
finding ground states of spin glass models
https://arxiv.org/pdf/2109.01342.pdf and is likely to be
applicable for all models exhibiting OGP.

33 / 34



Open questions

Challenges with applying this to other combinatorial
optimization problems

Cliques on G(n,1/2). The e-OGP occurs but with
probability 1− exp(−Θ(log2 n)). This is too weak for
obtaining circuit lower bounds.
Decision vs search lower bounds.
Are there (evidently) hard problems not exhibiting OGP in
the way we have defined it?
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