Equations and First-order Sentences in Random Groups

GMU, Batumi, 2022

Olga Kharlampovich CUNY, Graduate Center & Hunter College Joint work with R. Sklinos

GMU, Batumi, 2022 Equations and First-order Sentences in Random Groups

Random groups provide a rigorous way to tackle such questions as

"What does a typical (finitely generated) group look like?" or

"What is the behavior of an element of a group when nothing particular happens?" We review the results

A (1) > A (2) > A (2) >

Gromov in 87: A typical group is hyperbolic. Suppose $G = \langle x_1, \dots, x_n | R \rangle$.

Cayley graph

G is (<u>Gromov</u>) <u>hyperbolic</u> if Cay(G) is hyperbolic, i.e. all geodesic triangles are thin

GMU, Batumi, 2022 Equations and First-order Sentences in Random Groups

Definition (Few-relator model)

We fix $n \ge 2$. Let $\mathcal{G}_{k,\ell}$ be the following set of group presentations:

$$\{\langle \boldsymbol{e}_1,\ldots,\boldsymbol{e}_n \mid r_1,\ldots,r_k \rangle : r_i \text{ reduced } \& |r_i| \leq \ell\}$$

We say that property *P*, which is a property of presentations, happens almost surely in the few-relator model if the ratio of presentations in $\mathcal{G}_{k,\ell}$ which have property *P* over $|\mathcal{G}_{k,\ell}|$ goes to 1 as ℓ goes to infinity.

Gromov stated and Olshanskii proved that a random group in the few-relator model is almost surely hyperbolic.

・ロ・・ (日・・ (日・・ 日・)

Definition (Gromov's density model)

We fix $n \ge 2$. Let $\mathbb{F}_n := \langle e_1, \ldots, e_n \rangle$ be a free group of rank *n*. Let S_ℓ be the set of reduced words on e_1, \ldots, e_n of length ℓ . Let $0 \le d \le 1$. Then a random set of relators of density *d* at length ℓ is a subset of S_ℓ that consists of $(2n - 1)^{d\ell}$ -many elements picked randomly (uniformly and independently) among all elements of S_ℓ .

A group $G := \langle e_1, \ldots, e_n | \mathcal{R} \rangle$ is called random of density *d* at length *l* if *R* is a random set of relators of density *d* at length ℓ .

A random group of density *d* almost surely satisfies some property of presentations *P*, if the probability of occurrence of *P* tends to 1 as ℓ goes to infinity.

・ロット 小田 マ トロマ

Theorem (Gromov, Ollivier)

Let G be a random group of density d.

- If d < 1/2. Then G is infinite torsion-free hyperbolic.
- if d > 1/2. Then G is either trivial or \mathbb{Z}_2 .

GMU, Batumi, 2022 Equations and First-order Sentences in Random Groups

Theorem (Gromov, Ollivier)

Let Γ_{ℓ} be a random group of density d < 1/2 at length ℓ . Every reduced diagram D over Γ_{ℓ} almost surely satisfies

 $\partial D > \ell (1-2d)|D|$

where ∂D is the boundary length of D and |D| is the number of its faces.

GMU, Batumi, 2022 Equations and First-order Sentences in Random Groups

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

van Kampen diagrams and abstract vKd

Van Kampen diagrams are a visual way to represent how all equalities holding in a group are derived from combinations of relators.

A local to global. For each $\alpha > 0 \exists K(\alpha) > 1$ and $\alpha' > 0$ s.t. for a group given by relations of length ℓ If $|\partial D| \ge \alpha \ell |D|$ for reduced vKd with at most $K(\alpha)$ faces, Then $|\partial D| \ge \alpha' \ell |D|$ for any reduced vKd.

Probabilities. Let *D* be a reduced avKd, then either $\partial D > \ell(1-2d)|D|$ or $Pr(D \text{ is fulfillable}) \leq (2n-1)^{-\ell(1/2-d)/2}$.

Let

$$G = \langle X \mid R \rangle$$
 (*)

be a group presentation where $R \subseteq F(X)$ is a set of freely reduced and cyclically reduced words in the free group F(X) such that R is symmetrized, that is, closed under taking cyclic permutations and inverses.

A nontrivial freely reduced word u in F(X) is called a piece with respect to (+) if there exist two distinct elements r_1, r_2 in R that have u as maximal common initial segment.

Note that if $G = \langle X \mid S \rangle$ is a group presentation where the set of defining relators S is not symmetrized, we can always take the symmetrized closure R of S, where R consists of all cyclic permutations of elements of S and S⁻¹. Then R is symmetrized and $G = \langle X \mid R \rangle$ is also a presentation of G.

Let $0 < \lambda < 1$. Presentation (*) as above is said to satisfy the $C'(\lambda)$ small cancellation condition if whenever u is a piece with respect to (*) and u is a subword of some $r \in R$, then $|u| < \lambda |d|$. Here |v| is the length of a word v.

GMU, Batumi, 2022 Equations and First-order Sentences in Random Groups

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Theorem (Gromov)

Let $\alpha > 0$ and $d < \alpha/2$, then WOP a random set of relators at density d satisfies $C'(\alpha)$.

Theorem (Callegari-Walker)

Let d < 1/2. Then a random group at length ℓ contains a surface group with probability $1 - O(e^{-\ell})$.

(日)

Tarski in 1946 asked whether the first-order theories (true sentences) of nonabelian free groups of different ranks are the same. This question was answered in the positive in 2006, by Sela and Kharlampovich-Myasnikov.

Algebraic geometry in a free group was developed (Baumslag, Remeslennikov, Miasnikov, Kh, and later Amaglobeli, Danijarova etc)

Conjecture[J. Knight]

Let σ be a first-order sentence in the language of groups. Then σ is true in a nonabelian free group if and only if it is almost surely true in "the random group". (She, actually, means random one relator group.)

Main results

Let F_n be a free group of rank n and Γ_{ℓ} a random group with relations of length ℓ . Let $V(\bar{x}) = 1$ be a system of equations.

Figure: free solution of $V(\bar{x}) = 1$ in Γ_{ℓ}

・ロ・・ (日・・ (日・・ 日・)

Theorem (Kh-Sklinos)

Let the density d < 1/16, then $Pr(\exists h \text{ non} - free) \rightarrow 0$ as $\ell \rightarrow \infty$.

Theorem (Kh-Sklinos)

Let the density d < 1/16 and σ be a $\forall \exists$ -sentence. Then $Pr(F_n \models \sigma \text{ while } \Gamma_\ell \models \neg \sigma) \rightarrow 0 \text{ as } \ell \rightarrow \infty.$

Ideas Local to global: Shortening argument. Strebel classification of geodesic triangles in small cancellation groups; Single layer configuration of geodesics in C'(1/8) groups.

GMU, Batumi, 2022 Equations and First-order Sentences in Random Groups

Local to global for equations

Definition

Let $G := \langle g_1, g_2, \dots, g_m \rangle$ be a finitely generated group. Let $h : G \to H$ be a morphism to a finitely generated group H. Then the length of h, denoted |h|, is the sum $|h(g_1)| + |h(g_2)| + \ldots + |h(g_m)|$.

Theorem

We fix d < 1/16 and a system of equations $V(\bar{x}) = 1$. Let $(\Gamma_i)_{i < \omega}$ be a sequence of random groups of density d at length i and $(h_i)_{i < \omega} : G_V \to \Gamma_i$ a sequence of short non free morphisms. Then, there is a constant K (that depends only on $V(\bar{x}) = 1$ and d) such that $|h_i| \le Ki$.

This bounds by another constant K_1 the number of faces in the family of diagrams we have to consider for each ℓ . This number of families of diagrams for a given ℓ growth polynomially with ℓ_{e}

Let Γ_i be a group with C'(1/8) with defining relators of length *i*. Suppose such constant *K* does not exist. We consider a (stable) sequence of shortest non-free morphisms $(h_i)_{i<\omega}: G \to \Gamma_i$ from a finitely generated group *G* such that $|h_i|$ dominates *i*, i.e. $\frac{i}{|h_i|}$ goes to 0 as *i* goes to infinity. We call a group obtained as a quotient, $G/\underbrace{Ker}(h_i)$, a \mathcal{G}_8 -limit group and the canonical map $\varphi: G \to L := \overline{G}/\underbrace{Ker}(h_i)$ the limit map. It is known that this limit group acts in an \mathbb{R} -tree.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Recall, that an action on an \mathbb{R} -tree is *superstable* if whenever, $J \subseteq I$ for segments I, J, we have $Fix(J) \neq Fix(I)$, where Fix(I) denotes the pointwise stabilizer of I, then Fix(I) = 1.

Theorem

If $\{\Gamma_i\}$ is a family of torsion free eighth groups, then the action of the limit group $G/\underline{Ker}(h_i)$ on the \mathbb{R} -tree T is superstable.

The existence of such action implies that homomorphisms can be shorten, therefore contradicts the assumption that no K exists.

Fulfilling a given family of diagrams

We can assume assume the diagrams representing a solution of the system of equations $V(x_1, ..., x_m) = 1$ are triangles

Fulfilling a given family of diagrams

Figure: System $\Sigma(\bar{y}, \bar{c}) = 1$, where the parameters \bar{c} are in red_color.

GMU, Batumi, 2022 Equations and First-order Sentences in Random Groups

Fulfilling a given family of non-filamentous diagrams

Figure: Decoration on the boundaries

GMU, Batumi, 2022 Equations and First-order Sentences in Random Groups

Suppose the decoration *P* on the boundary of a non-filamentous aDVK *D* was imposed by a non-free solution of $V(\bar{x}) = 1$. Let Γ_{ℓ} be a group with $(2n - 1)^{d\ell}$ random relations of length ℓ .

Lemma

The probability that D can be labelled by relations of Γ_{ℓ} such that the labeling satisfies P is not more than

 $(2n-1)^{-\ell(1/2-d)}$.

Theorem (Dahmani-Guirardel-Przytycki)

Let 0 < d < 1. A random group at density d has almost surely property (FA).

Theorem

If $0 < d \le 1/2$, then a random group is not a limit group.

GMU, Batumi, 2022 Equations and First-order Sentences in Random Groups

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

The random group of fixed density d < 1/2 does not satisfy a universal sentence which is not in the axioms of the theory of the free group.

Indeed, the random group contains a nonabelian free group, hence it satisfies the existential theory of the free group.

• (1) • (

Consider a universal axiom σ in T_{fg} of the form

$$\forall \bar{x}(w_1(\bar{x}) = 1 \lor w_2(\bar{x}) = 1 \lor w_k(\bar{x}) = 1 \lor v_1(\bar{x}) \neq 1 \ldots \lor \ldots \lor v_m(\bar{x}) \neq 1).$$

Let $V(\bar{x}) = (v_1(\bar{x}) = 1 \land \dots v_m(\bar{x}) = 1)$. This is equivalent to

$$\forall \bar{x}(V(\bar{x}) = 1 \rightarrow w_1(\bar{x}) = 1 \lor \ldots \lor w_k(\bar{x}) = 1)$$

Now, Γ_{ℓ} satisfies $\neg \sigma$, while \mathbb{F}_n satisfies σ , only if there exists a tuple \bar{b} in Γ_{ℓ} such that $V(\bar{b}) = 1$, while for any pre-image \bar{c} of \bar{b} via $\pi : F_n \to \Gamma_{\ell}$ we have $\bigvee_{i=1}^m v_i(\bar{c}) \neq 1$ in \mathbb{F}_n .

< 日 > < 回 > < 回 > < 回 > < 回 > <