MIXED BOUNDARY VALUE PROBLEM ON HYPERSURFACES

R. DUDUCHAVA, M. TSAAVA, & T. TSUTSUNAVA

Abstract. The purpose of the present paper is to investigate the mixed Dirichlet-Neumann boundary value problems for the anisotropic Laplace-Beltrami equation $\operatorname{div}_{\mathscr{C}}(A\nabla_{\mathscr{C}}\varphi) = f$ on a smooth hypersurface \mathscr{C} with the boundary $\Gamma = \partial \mathscr{C}$ in \mathbb{R}^n . A(x) is an $n \times n$ bounded measurable positive definite matrix function. The boundary is decomposed into two non-intersecting connected parts $\Gamma = \Gamma_D \cup \Gamma_N$ and on the part Γ_D the Dirichlet boundary conditions while on Γ_N the Neumann boundary condition are prescribed. The unique solvability of the mixed BVP is proved, based upon the Green formulae and Lax-Milgram Lemma.

We also prove the invertibility of the perturbed operator in the Bessel potential spaces $\operatorname{div}_{\mathscr{S}}(A\nabla_{\mathscr{S}}) + \mathscr{H}I : \mathbb{H}_p^s(\mathscr{S}) \to \mathbb{H}_p^{s-2}(\mathscr{S})$ for a smooth hypersurface \mathscr{S} without boundary for arbitrary $1 and <math>-\infty < s < \infty$, provided \mathscr{H} is smooth function, has non-negative real part $\operatorname{Re}\mathscr{H}(t) \ge 0$ for all $t \in \mathscr{S}$ and $\operatorname{mes} \operatorname{supp} \operatorname{Re}\mathscr{H} \neq 0$. Further the existence of the fundamental solution to $\operatorname{div}_{\mathscr{S}}(A\nabla_{\mathscr{S}})$ is proved, which is interpreted as the invertibility of this operator in the setting $\mathbb{H}_{p,\#}^s(\mathscr{S}) \to \mathbb{H}_{p,\#}^{s-2}(\mathscr{S})$, where $\mathbb{H}_{p,\#}^s(\mathscr{S})$ is a subspace of the Bessel potential space and consists of functions with mean value zero.