Asymptotics of the smallest singular value of a class of Toeplitz matrices and related rank one perturbations

HERMAN RABE, ANDRÉ RAN

Department of Mathematics, VU university Amsterdam, The Netherlands and Unit for BMI, North West University, Potchefstroom, South Africa

email: a.c.m.ran@vu.nl

Square matrices of the form $X_n = T_n + f_n(T_n^{-1})^*$, where T_n is an $n \times n$ invertible banded Toeplitz matrix and f_n some positive sequence are considered. The norms of their inverses are described asymptotically as their size n increases. As an example, for

$$X_n = \begin{bmatrix} 1 + \frac{1}{n} & -1 & 0 & \cdots & \cdots & 0 \\ \frac{1}{n} & 1 + \frac{1}{n} & -1 & 0 & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & -1 & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ \frac{1}{n} & \cdots & \cdots & \frac{1}{n} & 1 + \frac{1}{n} \end{bmatrix}$$

it will be shown that

$$\lim_{n \to \infty} \frac{2\|X_n^{-1}\|}{\sqrt{n}} = 1$$

Certain finite rank perturbations of these matrices are shown to have no effect on this behaviour. In the concrete example above, for the matrix K_n obtained from X_n by adding one to each entry in the first column, one also has the same asymptotics for the norm of the inverse.

Finally, the singular vectors of a related Toeplitz matrix exhibit a pepeculiar permutation phenomenon. To explain this phenomenon, explicit formulas for the singular values and the singular vectors are given. Although these formulas are known (see [4]), the permutation phenomenon seems to have gone unnoticed thus far.

References:

- H. Rabe and A.C.M. Ran: Asymptotics of the smallest singular value of a class of Toeplitz matrices and related rank one perturbations. *Integral Equations and Operator Theory* 77 (2013), 385–396
- [2] H. Rabe and A.C.M. Ran: Asymptotics of the smallest singular value of a class of Toeplitz matrices and related rank one perturbations II. *Integral Equations and Operator Theory* 79 (2014), 243–253
- [3] H. Rabe and A.C.M. Ran: A peculiar permutation phenomenon arising from the singular vector entries of a special class of Toeplitz matrices. *Linear Algebra and its Applications* 459 (2014), 368–383.
- [4] G. Strang. The Discrete Cosine Transform. SIAM Review 41 (1999), 135–147.